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Introduction: Biofilms formed by Pseudomonas aeruginosa (P. aeruginosa) are

a major challenge in clinical settings due to their resilience and contribution to

persistent infections, especially in patientswith indwellingmedical devices. There

is an urgent need for e�ective strategies to disrupt mature biofilms and control

associated infections.

Methods: This study investigated the combined antibacterial activity and mature

biofilm eradication e�cacy of slightly acidic electrolyzed water (SAEW) and

thymol against P. aeruginosa PAO1 through mature biofilm removal assays. The

underlying antibacterial mechanism was explored by measuring intracellular

reactive oxygen species (ROS) levels. The impact of the combined treatment

on the expression of PAO1 virulence genes was assessed using RT-qPCR.

Additionally, the safety of the combination was evaluated through acute dermal

toxicity and ocular irritation tests in mice.

Results: The combination of thymol and SAEW e�ectively disrupted mature

biofilms, significantly reduced bacterial load onmedical catheters, and enhanced

ROS production. Furthermore, the treatment downregulated key virulence

genes, lasA and lasB, which are critical for elastin degradation and pathogenicity.

Safety assessments confirmed no acute skin or ocular toxicity, indicating its

suitability for clinical applications.

Discussion: Thymol-enhanced SAEW shows great potential as a safe and

e�ective strategy for biofilm eradication and infection control, paving the

way for innovative approaches to combat antimicrobial-resistant pathogens in

healthcare settings.
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1 Introduction

Given the potential environmental hazards associated with residues of traditional

disinfectants, slightly acidic electrolyzed water (SAEW) has emerged as a novel, safe,

and environmentally friendly alternative (Kurahashi et al., 2021). SAEW, also known

as hypochlorous acid water, is produced by electrolyzing a dilute electrolyte (typically

containing NaCl and/or HCl) in a non-membrane electrolytic cell. The pH of SAEW is

close to neutral (5.0–6.5), and the effective chlorine is almost entirely present in the form of

hypochlorous acid molecules, allowing for rapid eradication of various bacteria and fungi,

such as Escherichia coli, Listeria monocytogenes, Rhizopus stolonifer, etc. (Luo andOh, 2016;

Ye et al., 2017; Li L. et al., 2021). Compared to other commonly used disinfectants, such as
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sodium hypochlorite and 75% ethanol, SAEW does not leave

disinfectant residues, does not corrode instrument surfaces, and

is non-irritating to the eyes, skin, and respiratory tract (Zang

et al., 2019). Due to its broad-spectrum antimicrobial properties,

instantaneous high efficacy, low cost, and environmental safety,

SAEW has a wide range of applications in cleaning and disinfection

across fields such as food, healthcare, environment, and surfaces

(Cao et al., 2009; Ni et al., 2015).

In recent years, the potential hazards associated with the

improper use of chemical disinfectants have garnered increasing

attention. Existing studies indicate that the use of chemical

disinfectants can induce the emergence of disinfectant-resistant

bacteria, some of which also exhibit cross-resistance to clinical

antimicrobial agents (Bland et al., 2021; Yeung et al., 2022).

In addition, due to the disadvantages of SAEW being easily

decomposed and volatile when heated, and not suitable for long-

term storage, there is an urgent need for combination therapy

to achieve short-term rapid killing of bacteria and long-term

reduction of bacterial toxicity. Similar to other chlorine-containing

disinfectants, SAEW exerts its antimicrobial effect through the

oxidative potential of hypochlorous acid. However, its potential to

contribute to bacterial resistance and enhance virulence may pose

limitations to its broader application. Additionally, the emergence

of strains resistant to chlorine-containing disinfectants could
further restrict the antibacterial efficacy of SAEW (Russell, 1986).

Therefore, there have been studies that enhance the antibacterial

effect by combining SAEW with other compounds, such as

didecyldimethylammonium bromide and fumaric acid (Tango

et al., 2014; Li et al., 2022). However, there is still a lack of research

on the combined application of SAEW and plant derived quorum
sensing inhibitors (QSIs).

QSIs do not directly kill bacteria but target the quorum

sensing (QS) system, interfering with the formation of biofilms
and the production of virulence factors, thereby effectively

preventing the development of bacterial resistance (Deryabin

et al., 2019). Thymol, a natural phenolic compound (2-

isopropyl-5-methylphenol) derived from various plants such

as oregano (Origanum vulgare) and thyme (Thymus vulgaris),
is a well-established QSI. Its properties have gained significant

attention, particularly for its ability to disrupt bacterial cell

membranes and inhibit biofilm formation (Marchese et al.,

2016; Walczak et al., 2021; Zhu et al., 2021; Saptami et al.,

2022). The combination of plant-derived QSI and SAEW is

expected to overcome the risks associated with traditional

chemical disinfectants, such as inducing bacterial resistance and

enhancing pathogenicity, making it an ideal choice for safe and

effective disinfection.

In summary, this study aimed to investigate the combined effect

of thymol and SAEW on the clearance of mature Pseudomonas

aeruginosa (P. aeruginosa) biofilm, which often forms on host

tissues and medical device surfaces and hinders antibacterial

treatment (Jeong et al., 2024). This study focused on the

antibacterial mechanism of the combination of SAEW and thymol

and its potential impact on the expression of virulence genes.

By elucidating the role of thymol in enhancing the antimicrobial

and antibiofilm effects of SAEW, we strive to promote the

development of effective and safe biofilm management strategies in

clinical applications.

2 Materials and methods

2.1 Bacterial isolates

This study selected the model strain P. aeruginosa PAO1

(ATCC15692) as the research subject. The strain was preserved

at −80◦C in Luria-Bertani (LB) broth supplemented with 30%

glycerol for future studies.

2.2 Antimicrobial susceptibility testing

We utilized the microbroth dilution method to determine

the minimum inhibitory concentrations (MICs) of thymol for

the PAO1 strain, assessing its susceptibility to the treatment

(Humphries et al., 2021). The procedure was conducted based on

previously established protocols with minor modifications. Briefly,

96-well plates were prepared with cation-adjusted Mueller-Hinton

broth (CAMHB) and a series of drug concentrations created

through geometric dilutions. Subsequently, 100 µL of a bacterial

suspension (1 × 106 CFU/mL) was added to each well, and the

plates were incubated at 37◦C for 16–18 h. The MIC was defined

as the lowest drug concentration that completely inhibited visible

bacterial growth.

2.3 Preparation of slightly acidic
electrolyzed water

In this study, SAEW was prepared using an SAEW

generator (SHC-50MS SAEW generator, Shandong Shenghuai

Bioengineering Co., Ltd.). To produce an 80 ppm SAEW solution,

5 g of NaCl was dissolved in 1,600mL of ddH2O and allowed

to sit for 30 s before being introduced into the generator for

electrolysis. The resulting 80 ppm SAEW was then diluted with

ddH2O to achieve the required concentrations for the experiments.

The pH of the SAEW was determined using a pH meter (Yan

et al., 2021). For subsequent experiments, a concentration of

30 ppm SAEW was selected, as it represents a commonly used

concentration in practical applications and is also the standard

experimental concentration adopted by most SAEW antimicrobial

research studies (Kim et al., 2018; Li et al., 2022; Yan et al.,

2022).

2.4 Eradication of mature biofilms formed
by P. aeruginosa PAO1

Due to the unstable physical and chemical properties of SAEW,

this study optimized the experimental procedure to ensure its

effectiveness in eradicating mature P. aeruginosa biofilms (Yan

et al., 2022). Thymol (purity ≥98.5%) used in this study was

purchased from Sigma-Aldrich. The experimental workflow was

as follows: First, P. aeruginosa was cultured overnight until it

reached the logarithmic growth phase. The bacterial suspension

was then diluted to 1 × 106 CFU/mL, and 1mL of the suspension

was added to a 24-well plate. The plate was then incubated
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statically at 37◦C for 24 h to allow the formation of a mature

biofilm. Before drug treatment, the old culture medium was

discarded, and the biofilm was rinsed with 1 × PBS to remove

planktonic bacteria. Once the mature biofilms were established,

monotherapy treatments were applied according to the following

schemes: (1) 30 ppm SAEW for 10min; or (2) Thymol at

concentrations of 32, 64, 128, 256, or 512µg/mL for 10min.

While for the combination groups, biofilms were first treated with

thymol at 32, 64, 128, 256, or 512µg/mL for 10min, followed

by three washes. Subsequently, 30 ppm SAEW was applied for

an additional 10min. After treatment, ultrasound was used to

release bacteria from the biofilm, and the resulting bacterial

suspension was serially diluted (10−1 to 10−7) with 1 × PBS.

The diluted suspensions were then plated onto LB agar plates.

After incubation, bacterial colonies were counted to evaluate

treatment efficacy.

2.5 Scanning electron microscopy

To observe bacterial morphology, silicon chips (3 × 3mm)

were placed in a 24-well plate to provide a flat surface for

bacterial attachment. Mature biofilms were cultivated on the

silicon chips following the previously described experimental

procedure. The biofilms were then treated with either SAEW,

thymol, or a combination of both, according to the established

treatment protocols. After incubation, the silicon chips were

rinsed three times with PBS, fixed in 2.5% glutaraldehyde at

low temperatures for 15min, and dehydrated through a series of

ethanol concentrations (30%, 50%, 70%, 80%, 90%, and 100%),

with each concentration lasting 10min. Following air drying, the

samples were gold-coated and examined using scanning electron

microscopy (SEM; Hitachi SU8010, Japan; Liu et al., 2023).

2.6 Reactive oxygen species detection

To assess the effect of SAEW on bacterial reactive oxygen

species (ROS) levels, a commercial ROS detection kit (Biyuntian

Biotechnology Co., Ltd, Shanghai, China) was used. After

overnight culture, the bacterial cells were washed three times

with PBS and then diluted to an OD600 of 0.3–0.4. The bacterial

suspension was incubated with the fluorescent probe 2
′

,7
′

-

dichlorodihydrofluoresce at 37◦C in the dark for 30min (Liu et al.,

2023). The monotherapy groups were treated according to the

following scheme: (1) 30 ppm SAEW for 10min; or (2) Thymol at

concentrations of 32, 64, 128, 256, or 512µg/mL for 10min. The

combination groups were treated as follows: first, the biofilms were

exposed to thymol at 32, 64, 128, 256, or 512µg/mL for 10min,

and then treated with 30 ppm SAEW for 10min. We centrifuge

the bacterial cells between different drug (thymol and SAEW)

treatments for the next drug treatment. The fluorescence intensity

was thenmeasured using amicroplate reader (BioTek, Synergy), set

to an excitation wavelength of 488 nm and an emission wavelength

of 525 nm. The drug concentration was adjusted to 0.5× Fractional

Inhibitory Concentration Index (FICI) values.

2.7 RT-qPCR

The relative expression levels of genes associated with P.

aeruginosa virulence and quorum sensing (including lasA, lasB,

rhlA, pqsA, pqsE) were analyzed using RT-qPCR (Li et al., 2018).

The procedure was performed as previously described (Sonbol

et al., 2019). Residual cells from the biofilm were collected and

cultured in LB medium at 37◦C with shaking overnight to obtain

sufficient biomass for RNA extraction. In this study, rpoB served

as the housekeeping gene, and the 2−11Ct method was used

to calculate the expression levels of the virulence genes. RNA

extraction was performed following the manufacturer’s protocol,

and cDNA was synthesized using the Bacterial RNA Miniprep Kit

and RevertAid First Strand cDNA Synthesis Kit. PCR amplification

was carried out using the TB Green Premix Ex Taq II (Tli RNaseH

Plus) kit. The primer sequences used in this study were listed in

Supplementary Table S1.

The RT-qPCR running conditions were as follows: (1) Holding

stage: 95◦C for 30 s; (2) PCR stage: 95◦C for 5 s, followed by 50◦C

for 30 s, for a total of 40 cycles; (3) Melt curve stage: 95◦C for 15 s,

60◦C for 1min, and finally 95◦C for 15 s.

2.8 Surface disinfection of medical devices

We simulated contaminated medical devices using artificially

contaminated medical catheters to evaluate whether thymol could

enhance the efficacy of SAEW in removing mature biofilms formed

on medical instruments (Burton et al., 2006). Briefly, a bacterial

suspension with a concentration of 106 CFU/mL was prepared

as the initial contaminating bacterial load. A 1 cm-long medical

catheter was placed into a 24-well plate. One milliliter of the

bacterial suspension was then added to each well, followed by

incubation at 37◦C for 24 h to allow the formation of mature

biofilms on the catheter surfaces. The catheters with attached

biofilms were then transferred to a clean 24-well plate and washed

to remove planktonic bacteria. After treating with thymol for

10min, they were washed three times and then treated with

SAEW for another 10min. Na2S2O3 (0.5%) was added to remove

excess chlorine. Finally, 0.9% saline was added to each well, and

ultrasonic treatment was applied for 15min to release bacteria from

the biofilms. The resulting bacterial suspension was then serially

diluted and inoculated onto LB agar plates for colony counting.

2.9 Acute toxicity assessment on mouse
skin

Animal research was conducted following ethical standards and

approved by the Ethics Committee of the First Affiliated Hospital of

WenzhouMedical University [Approval Number: SYXK(zhe)2021-

0017], following the Wenzhou Experimental Animal Welfare and

Ethical Standards. A total of 24 ICR mice (comprising three male

mice and three female mice per group, with four groups in total)

were used in the experiment, employing a single-dose method. The

treatment area covered approximately 10% of the body surface

for each mouse, specifically a 3 cm × 3 cm depilated area. The
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monotherapy groups were treated as follows: (1) 30 ppm SAEW

was evenly applied to the skin. (2) 512µg/mL thymol was evenly

applied to the skin. In the combination group, 512µg/mL thymol

was applied to the skin for 10min, followed by the application of

30 ppm SAEW. The skin conditions of the mice were observed at

1, 3, 8, and 24 h after treatment to evaluate for any signs of damage,

irritation, or allergic reactions (Na et al., 2020).

2.10 Eye irritancy testing on mouse

A total of 24 mice (three male and three female mice per group,

with four groups in total) were used for the experiment. During

the experiment, the lower eyelid of one eye of each mouse was

gently pulled down, and 10 µL of the test substance was instilled

into conjunctival sac. The upper and lower eyelids were allowed

to passively close for 1 s to prevent sample loss, while another eye

served as the control. The monotherapy groups received treatment

as follows: (1) 10 µL of 30 ppm SAEW was instilled. (2) 10 µL of

512µg/mL thymol was instilled. In the combination group, 10 µL

of 512µg/mL thymol was first instilled, followed by 10 µL of 30

ppm SAEW after 10min. The eyes were not rinsed for 24 h post-

instillation. Observations of the eyes were conducted at 1, 24, and

48 h post-instillation to assess for signs of redness, inflammation,

cloudiness, or tearing (Zhao et al., 2021).

2.11 Statistical analysis

Statistical analysis and graphical representation in this study

were performed using Prism 9.0 software (GraphPad Software,

LLC; San Diego, California, USA). Data were presented as mean

± standard deviation, based on at least three replicates from

three independent experiments. Statistical analyses were performed

using Student’s t-test or ANOVA, with a significance threshold set at

P < 0.05. The correlation between P-values and asterisks is defined

as follows: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001.

3 Results

3.1 The combination of SAEW and thymol
significantly eliminates mature biofilms of
PAO1

The combined effect of thymol and SAEWon the elimination of

mature PAO1 biofilms was evaluated across various concentrations.

The MIC of thymol against P. aeruginosa PAO1 was determined

to be 256µg/mL. At sub-inhibitory thymol concentrations ranging

from 32 to 128µg/mL (1/8MIC to 1/2MIC), no enhanced

antibiofilm effect was observed when combined with 30 ppm

SAEW. However, when the thymol concentration was increased

to 256µg/mL and paired with SAEW, the PAO1 biofilm content

significantly decreased by 5.03 log CFU/mL compared to the blank

control group. This result demonstrated a substantial enhancement

in efficacy, with statistically significant improvements compared

to both SAEW alone and the 256µg/mL thymol treatment

groups. Furthermore, at a higher concentration of 512µg/mL

thymol combined with SAEW, the reduction in PAO1 biofilm

content reached 5.73 log CFU/mL compared to the blank group,

approaching the detection limit of 102 CFU/mL. Consistent with

the previous results, this combination demonstrated significant

improvement compared to SAEWalone and the 512µg/mL thymol

treatment groups. These results confirm the effectiveness of the

thymol-SAEW combination in eliminating PAO1 from mature

biofilms (Figure 1).

3.2 Scanning electron microscopy reveals
that thymol enhanced the antibiofilm e�ect
of SAEW

At 4000×magnification, scanning electron microscopy clearly

demonstrated that the combination of 30 ppm SAEW and

512µg/mL (2MIC) thymol effectively disrupted the structure of

mature biofilms, leading to a significant reduction in bacterial

density. This structural alteration indicates the loss of biofilm

integrity and potential bacterial viability impairment.

Further examination at 7000 × magnification provided

deeper insights, revealing more pronounced damage to bacterial

cells. We observed that P. aeruginosa exhibited varying degrees

of shrinkage when treated individually with 30 ppm SAEW

or different concentrations of thymol; however, no significant

bacterial membrane disruption or leakage of intracellular contents

was detected. In contrast, when 30 ppm SAEW was combined

with 512µg/mL (2MIC) thymol, the majority of P. aeruginosa

cells lost their normal structural integrity, displaying severe surface

shrinkage and damage, with some cells exhibiting noticeable

rupture. These findings suggest that the combined treatment

disrupted biofilm cohesion while causing substantial damage at

the cellular level. The observations highlight the potent antibiofilm

activity of the SAEW-thymol combination, underscoring its

potential clinical application in eradicating persistent biofilm-

associated infections (Figure 2).

3.3 Disinfection of simulated medical
catheters

The experimental procedure, as illustrated in Figure 3A,

involved biofilm formation on medical catheters and subsequent

treatments with SAEW and thymol to assess their antibiofilm

efficacy. The results indicated that the combination of 128µg/mL

thymol (1/2×MIC) with 30 ppm SAEW did not enhance the

antibiofilm effect. However, at higher concentrations of 256µg/mL

(1×MIC) and 512µg/mL (2×MIC), the combination with SAEW

demonstrated significant efficacy in reducing the biofilms on the

catheters. Specifically, the combination of 256µg/mL thymol and

SAEW reduced the bacterial load in the catheter biofilms by 2.7

log CFU/mL. Remarkably, the combination of 512µg/mL thymol

with SAEW achieved complete eradication of the biofilms within

the catheters, underscoring its potential as a powerful strategy for

managing biofilm-associated infections (Figure 3B).

Frontiers inMicrobiology 04 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1547632
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ma et al. 10.3389/fmicb.2025.1547632

FIGURE 1

Thymol significantly enhances the ability of SAEW to combat mature biofilms of P. aeruginosa. The black bars represent the viable bacterial count in

mature biofilms treated with di�erent concentrations of monotherapy; the gray bars represent the viable bacterial count in mature biofilms under

di�erent concentrations of combination therapy. The detection limit for bacterial count in this experiment is 10² CFU/mL. ***p < 0.001 were

analyzed by multiple comparative t-tests.

3.4 ROS quantification

The positive control from the ROS assay kit validated the

experimental procedures, as treatment with this reagent resulted

in a significant increase in ROS levels in PAO1 compared

to the negative control group. Treatment with SAEW alone

also resulted in a notable increase in ROS levels. Similarly,

thymol treatments at concentrations of 128, 256, and 512µg/mL

demonstrated a dose-dependent elevation in ROS levels. When

128 or 256µg/mL of thymol were combined with SAEW, ROS

levels were significantly higher compared to their respective

monotherapy groups. However, for the combination of 512µg/mL

thymol with SAEW, the ROS levels were lower than those observed

in the monotherapy groups. This reduction is likely due to the

effective bactericidal action of the combination treatment, which

caused cell lysis and the subsequent loss of intracellular fluorescent

probes (Figure 4).

3.5 RT-qPCR detection of virulence gene
expression in P. aeruginosa

Previous studies have shown that P. aeruginosa has a

remarkable ability to degrade elastin, which is a crucial component

of connective tissue. This capability likely underpins the bacterial

pathogenicity and its ability to persist within human tissues. The

extracellular enzyme LasA plays a pivotal role in this process,

as it is essential for the bacterial elastase activity. Furthermore,

the secreted enzyme LasB is recognized as a significant virulence

factor that not only contributes to tissue degradation but also

enhances the processing of LasA, thereby increasing its elastolytic

effectiveness (Toder et al., 1991; Kessler et al., 1993; Camberlein

et al., 2022; Llanos et al., 2023). Additionally, LasA and LasB are

closely associated with the quorum sensing of P. aeruginosa and are

commonly used to evaluate the quorum sensing inhibitory effects

of drugs (Li et al., 2018). In our study, the combined treatment

group exhibited a noteworthy decrease in the relative expression

levels of the virulence genes lasA and lasB when compared to both

the control and monotherapy groups. This reduction highlights

the efficacy of the combined treatment in mitigating key virulence

factors that facilitate tissue invasion and damage. Conversely, the

treatment did not significantly affect the expression levels of other

related genes, such as rhlA, pqsA, or pqsE. This specificity suggests

that the combined approach effectively targets specific pathways

involved in virulence without broadly impacting other regulatory

mechanisms related to the pathogenic potential of P. aeruginosa.

These results underscore the therapeutic potential of targeting LasA

and LasB as a focused strategy for combating infections caused by

this opportunistic pathogen (Figure 5).
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FIGURE 2

SEM images of bacterial biofilms treated individually or in combination. Red arrows indicate that P. aeruginosa shrinks and ruptures under combined

treatment; green arrows show that adhesion decreases, bacterial load is reduced, and the biofilm is disrupted under combined treatment.

3.6 Safety evaluation of SAEW combined
with thymol

The acute dermal toxicity test in mice showed no signs

of redness, lesions, or erythema on the skin of mice treated

with SAEW, thymol, or their combination during the 1–24-h

observation period, compared to the control group. This indicates

that the combined application of SAEW and thymol does not

cause skin irritation (Figure 6A). Similarly, the ocular irritation test

revealed no signs of redness, inflammation, cloudiness, or tearing

in the eyes of mice treated with either SAEW, thymol, or their

combination or over the 1–48-h observation period, compared to

the control group. These findings confirm that the combined use

of SAEW and thymol is safe and does not induce ocular irritation.

Overall, the results highlight the potential of this combination as a

safe disinfectant for clinical applications (Figure 6B).

4 Discussion

The clinical threat posed by P. aeruginosa is increasingly severe,

particularly evident in healthcare-associated infections (Kerr and

Snelling, 2009). The formation of biofilms is a critical factor

contributing to its pathogenicity, allowing the bacteria to firmly

adhere to medical devices and human tissues, while resisting

host immune responses and antimicrobial treatments (Costerton

et al., 1999; Thi et al., 2020). This biofilm structure not only

enables persistent and recurrent infections but also facilitates

the acquisition of antimicrobial resistance through gene transfer,

further complicating treatment (Zheng et al., 2023). In scenarios

such as ventilator-associated pneumonia and catheter-associated

urinary tract infections, the biofilm of P. aeruginosa plays a

significant role, markedly increasing the severity of infections

(Maurice et al., 2018; Govindan Nadar et al., 2021). Therefore,

effective measures for the removal of these biofilms are urgently

needed to reduce the risk of transmission in hospital environments

and improve clinical outcomes for patients. In this context, the

development of novel disinfectants, particularly those designed

to target biofilms, will be crucial in addressing this challenge.

Currently, other antibiofilm therapies, although effective in biofilm

eradication, often require extended treatment durations, such as

the application of plant extracts as biofilm disruptors (Alam et al.,

2020). However, the combination therapy of SAEW and thymol

demonstrates a potent biofilm-clearing effect within a short period,

enhancing the efficiency of biofilm removal while addressing the

practical requirements for environmental applications.

SAEW represents a promising advancement in disinfection

technology, offering distinct characteristics and advantages over

traditional disinfectants (Ye et al., 2017). Its primary active

component, hypochlorous acid, enables rapid eradication of
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FIGURE 3

The combination of SAEW and thymol completely eradicates mature biofilms on medical catheters. (A) Flowchart of the experiment for the removal

of PAO1 mature biofilms on catheters using the combination of SAEW and thymol; (B) Experiment for the removal of PAO1 mature biofilms on

catheters using SAEW combined with thymol. The black bars represent the viable bacterial counts in mature biofilms treated with di�erent

concentrations of monotherapy, while the gray bars indicate the viable bacterial counts in mature biofilms treated with di�erent concentrations of the

combination. The detection limit for bacterial counts in this experiment is 102 CFU/mL. ***p < 0.001 were analyzed by multiple comparative t-tests.

FIGURE 4

Changes of ROS levels during the removal of mature biofilms using SAEW combined with thymol. (−) represents the negative control, which is the

untreated blank group; (+) represents the positive control, which is the group treated with the positive control reagent included in the ROS assay kit.

***p < 0.001 were analyzed by multiple comparative t-tests.

a wide spectrum of pathogens, including bacteria, fungi, and

viruses, without leaving harmful residues. Unlike conventional

disinfectants such as sodium hypochlorite and ethanol, SAEW does

not corrode surfaces or irritate the eyes, skin, or respiratory tract,

making it ideal for various applications in food, healthcare, and

environmental cleaning (Hao et al., 2013; Zang et al., 2019; Du et al.,

2024). However, despite its broad-spectrum efficacy and minimal

environmental impact, SAEW is not without limitations. Similar
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FIGURE 5

The combination of SAEW and thymol can reduce the expression of virulence genes (lasA and lasB) in P. aeruginosa. (A–E) Relative expression levels

of lasA, lasB, rhlA, pqsA, and pqsE in P. aeruginosa under treatment with SAEW and thymol, either alone or in combination. The relative expression

analysis of each gene standardizes the gene expression level of the untreated group to “1”, and calculates the gene expression fold of the treated

group compared to the untreated group. *p < 0.05, **p < 0.01, ***p < 0.001 were analyzed by multiple comparative t-tests.

to other chlorine-based disinfectants, its dependence on oxidative

mechanisms raises concerns about the potential emergence of

disinfectant-resistant bacteria, which could also develop cross-

resistance to clinical antimicrobial agents (Bland et al., 2021).

Moreover, the emergence of strains resistant to chlorine-based

agents poses a significant challenge to the effectiveness of SAEW,

highlighting the need for a critical evaluation of its application in

clinical settings (Russell, 1986). To address these challenges and

enhance the overall effectiveness of SAEW, combining it with non-

antimicrobial agents could be a pivotal strategy. This combination

application method could improve antimicrobial efficacy while

reducing the risk of resistance development, offering a safer and

more effective solution for infection control in healthcare and

other applications. Currently, there are studies that combine SAEW

with other substances, such as using Didecyldimethylammonium

bromide in conjunction with SAEW to combat Staphylococcus

aureus and P. aeruginosa biofilms (Li et al., 2022). However, there

is limited research on the combined application of SAEW and QSI.

Building upon the aforementioned information, we report

for the first time that thymol enhances the antimicrobial and

antibiofilm effects of SAEW, and we elucidate the underlying

mechanisms. In our preliminary experiments, we found that

mixing SAEW with thymol reduced the available chlorine

concentration in SAEW, thereby affecting its efficacy. Moreover,

numerous studies have reported the combined use of thymol with

acidic substances, suggesting that a low-pH treatment environment

may have limited impact on thymol activity (Chung et al., 2023;

Li et al., 2025). Nevertheless, it remains important to minimize

any potential influence of pH on thymol’s effectiveness. To avoid

the drawbacks of combining the two, we adopted a sequential

application approach. The order of SAEW and thymol treatment

was determined based on practical clinical applications. Given

that the available chlorine in SAEW has sustained antimicrobial

activity, and to prevent possible pH-induced interference with

thymol’s activity, SAEW was applied after thymol treatment in

practice to preserve its prolonged antibacterial effect. Therefore,

we implemented an experimental procedure in which thymol

treatment was followed by SAEW treatment. The combination

of thymol and SAEW has demonstrated remarkable effectiveness

in combating P. aeruginosa, particularly in the context of
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FIGURE 6

The combination of SAEW and thymol demonstrates good safety. (A) Acute skin toxicity experiment on mice; (B) Mouse eye irritation experiment.

mature biofilm eradication. At optimal concentrations, this

combination application method significantly reduced the biomass

of PAO1 biofilms, showcasing its ability to penetrate and disrupt

established biofilm structures. Furthermore, the combination

treatment effectively eradicated mature biofilms from medical

catheters, highlighting its practical potential in clinical settings

where biofilm-associated infections pose significant challenges.

Additionally, we utilized SEM to provide a more intuitive

visualization of the bactericidal and biofilm-clearing effects of

SAEW and thymol. Our observations revealed a substantial

reduction in P. aeruginosa density following combined treatment,

along with drastic morphological changes, including severe cell

shrinkage andmembrane disruption, with some bacteria exhibiting

evident rupture.

In terms of the combined antimicrobial and antibiofilm

mechanisms of SAEW and thymol, the intrinsic antimicrobial

potential of thymol itself should not be overlooked. Previous studies

have demonstrated that thymol can cause bacterial cell membrane

destabilization, leakage of cytoplasmic contents, and DNA damage,

which has led to numerous investigations on the synergistic

antimicrobial effects of thymol combined with other agents

(Marchese et al., 2016; Chung et al., 2023; Peter et al., 2024). In

this study, we focused on explaining the antimicrobial mechanism

of the SAEW-thymol combination through changes in intracellular

reactive oxygen species (ROS) levels in bacteria. Numerous studies

have demonstrated that SAEW can mediate its bactericidal effects

by disrupting bacterial ROS homeostasis through the inhibition

of intracellular antioxidant enzyme activity (Ye et al., 2017; Li H.

et al., 2021; Wu et al., 2022). Consistent with previous findings, our

ROS assay results showed that SAEW alone significantly increased

intracellular ROS levels in P. aeruginosa. However, we found

that in the presence of thymol, the combination of SAEW and

thymol led to a significantly greater accumulation of intracellular

ROS compared to SAEW treatment alone. This indicates that

enhanced antimicrobial activity of the SAEW-thymol combination

is largely attributable to the enhanced accumulation of intracellular

ROS, thereby disturbing ROS homeostasis. Notably, the ROS

fluorescence intensity in the 512µg/mL thymol combination group

was lower than that in the 256µg/mL thymol combination group.

Based on TEM images, we observed that under treatment with

512µg/mL thymol combination group, a large number of bacterial

cells exhibited pronounced shrinkage or even rupture, which may

have led to the leakage of fluorescent substances from the cells,

thereby reducing the detected ROS fluorescence intensity.

The combination of thymol and SAEW exhibited strong

antibacterial activity against P. aeruginosa while significantly

affecting the expression of virulence genes associated with this

pathogen. Specifically, studies have shown that the lasA and lasB

genes are crucial for the elastase activity of P. aeruginosa, which

enables the degradation of elastin, a key component of connective

tissue. Consequently, lasA and lasB are closely linked to the tissue-

invasive virulence of P. aeruginosa (Toder et al., 1991; Kessler et al.,

1993). Notably, as members of the las system, lasA and lasB also

play an essential role in P. aeruginosaQS system (Li et al., 2018). In

addition, studies have demonstrated that thymol, as a QSI, not only

suppresses the QS system and biofilm formation of various bacteria,

but also downregulates the expression of adhesion-related genes in

E. coli and Salmonella Enteritidis (Upadhyaya et al., 2013; Singh

et al., 2017; Saptami et al., 2022; Goodarzi et al., 2023). Our results

indicate that thymol can independently suppress the expression of

lasA and lasB. Moreover, SAEW also affects the expression of these

genes. However, the combined application of SAEW and thymol

results in a further reduction in their expression levels compared

to either agent alone, maintaining consistently low levels. Thus,

through the joint suppression of lasA and lasB, the combination of

thymol and SAEW not only inhibits the QS system of P. aeruginosa

but also reduces tissue-invasive virulence. In addition, pqsA and

pqsR play important roles in the pseudomonas quinolone signal

(PQS) system and are involved in the QS regulation of P. aeruginosa

(Sabir et al., 2020). Similarly, rhlA is a virulence-associated gene
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that is also closely linked to the QS system of P. aeruginosa

(Wang et al., 2020). However, we found that the combination

of thymol and SAEW did not significantly inhibit the expression

of rhlA, pqsA, and pqsE. This may be attributed to the fact that

neither thymol nor SAEW individually affects the expression of

these genes, suggesting that the enhanced anti-virulence effect

of the combination mainly relies on their intrinsic activities. It

is noteworthy that while investigating the expression of PAO1

virulence genes under the combined treatment, we resuspended

residual biofilm bacteria in LBmedium and assessed their virulence

after regrowth. Surprisingly, these sub-damaged bacteria still

exhibited reduced expression of QS-associated virulence genes

(lasA and lasB) upon regrowth. This finding suggests that combined

application of SAEW and thymol has a strong and lasting impact

on virulence suppression. Therefore, this dual-targeting approach

simultaneously inhibiting microbial QS and virulence may lead

to more effective infection management strategies, particularly in

hospital settings where P. aeruginosa poses a significant threat.

Importantly, this combination therapy has demonstrated a

favorable safety profile, with no significant adverse effects observed

during acute toxicity assessments. This characteristic makes the

thymol and SAEW combination an attractive candidate for clinical

use, providing a dual benefit of effective disinfection while

maintaining patient safety. Overall, the combined application of

thymol and SAEW presents a promising strategy for managing P.

aeruginosa infections, particularly in environments where biofilm

formation poses a significant threat. However, this study has

some limitations. Our preliminary research indicated that due

to the unstable and easily decomposable chemical properties of

SAEW, mixing SAEW with thymol would reduce the available

chlorine concentration, thereby diminishing its bactericidal effect.

Therefore, we adopted a stepwise application strategy in this study.

Currently, many studies on the combined application of SAEWalso

utilize a stepwise approach (Li et al., 2022). Therefore, we hope

that future research can address the instability of SAEW through

emerging technologies, such as using nanocapsule carriers, and

develop an efficient environmental composite disinfectant that can

bemixed with SAEW (Wen et al., 2023;Wang et al., 2025). This will

significantly improve disinfection effectiveness and convenience,

making it more suitable for clinical applications.

5 Conclusions

This study demonstrated the efficacy of thymol combined

with SAEW in eliminating mature biofilms of P. aeruginosa

PAO1, which was further validated in medical catheters. SEM

analysis revealed that the combined treatment caused significant

bacterial shrinkage and rupture. Mechanistically, the combination

facilitates bacterial cell death by further promoting SAEW-

mediated intracellular ROS accumulation. In terms of virulence

reduction, the combination did not affect the expression of pqsA,

pqsE, or rhlA in P. aeruginosa. However, it significantly suppressed

the expression of key virulence and QS-related genes lasA and lasB,

which may contribute to the inhibition of the QS system and tissue-

invasive virulence of P. aeruginosa. Regarding safety, no signs of

skin or ocular toxicity were observed in mice under this treatment.

These findings suggest that the combination of SAEW and thymol

could serve as a safe and effective strategy for biofilm eradication

and infection control.
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