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Antimicrobial resistance (AMR) is recognized as one of the foremost

global health challenges, complicating the treatment of infectious diseases

and contributing to increased morbidity and mortality rates. Traditionally,

microbiological culture and susceptibility testing methods, such as disk

diffusion and minimum inhibitory concentration (MIC) assays, have been

employed to identify AMR bacteria. However, these conventional techniques

are often labor intensive and time consuming and lack the requisite sensitivity

for the early detection of resistance. Recent advancements in molecular

and genomic technologies—such as next-generation sequencing (NGS),

matrix-assisted laser desorption ionization-time of flight mass spectrometry

(MALDI-TOF MS), lateral flow immunoassays (LFIAs), PCR-based diagnostic

methods, and CRISPR-based diagnostics—have revolutionized the diagnosis

of AMR. These innovative approaches provide increased sensitivity, reduced

turnaround times, and the ability to identify genetic resistance mechanisms.

This review seeks to examine the advantages and disadvantages of

both emerging technologies and traditional methods for detecting AMR,

emphasizing the potential benefits and limitations inherent to each.

By understanding the strengths and limitations of these technologies,

stakeholders, including researchers, healthcare professionals, regulatory
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agencies, health authorities, financial managers, and patients, can make

informed decisions aimed at preventing the emergence and dissemination of

antibiotic-resistant strains, thereby ultimately increasing patient safety.

KEYWORDS

antibiotic resistance, detection, contemporary technologies, genomics, microbial
community

1 Introduction

Since penicillin was discovered, antimicrobial drugs have
greatly advanced medicine and community health (Breijyeh and
Karaman, 2023; Gould, 2016; Shanmugakani et al., 2020; Zaffiri
et al., 2012). They have saved millions of lives and controlled
communicable diseases, which were leading causes of mortality
before their introduction (Aminov, 2010; Aminov, 2017). The
development of antimicrobials has been a key advancement in
healthcare (Brown and Wright, 2016; Yamin et al., 2023). However,
new antibiotic-resistant bacteria frequently emerge shortly
after their introduction (Hu et al., 2020; Lobanovska and Pilla,
2017). Penicillin, recognized as the first beta-lactam antibiotic,
fundamentally transformed the management of infectious diseases
and facilitated the development of subsequent antibiotic classes,
including sulfonamides and aminoglycosides, such as streptomycin
and streptothricin. Since its initial discovery, antimicrobial
research has progressed significantly, leading to the emergence of
novel classes of antimicrobial agents (Ventola, 2015). Currently, a
diverse array of antibiotics are commonly used, including modified
beta-lactams, cephalosporins, tetracyclines, fluoroquinolones,
and aminoglycosides. Nevertheless, the increasing incidence of
antibiotic resistance has compelled researchers to investigate
natural compounds as potential alternatives to address the
therapeutic challenges that have arisen since the mid-20th century
(Hunt and Kates, 2024). Although traditional antimicrobials are
common in agriculture, new antimicrobial drugs are scarce (Miller
et al., 2022). Misadministration of antimicrobials in humans and
animals (Caneschi et al., 2023) contributes to an increase in the
prevalence of antibiotic-resistant bacteria (Golding et al., 2019;
Shanmugakani et al., 2020; Singer et al., 2016; Tangcharoensathien
et al., 2018). Factors such as healthcare and environmental
influences facilitate this spread (Ahmad et al., 2021; Bengtsson-
Palme et al., 2018; Serweciñska, 2020), posing a significant threat to
public health and the economy in both developed and developing
countries (Naylor et al., 2018; Weldon and Hoffman, 2023).

Antimicrobial resistance is a major global health threat in
the 21st century, requiring urgent action as per World Health
Organization (WHO) recommendations (Vasala et al., 2020). This
resistance has made common diseases, such as respiratory and
cardiovascular illnesses, more prevalent and difficult to treat
(Bassetti et al., 2017). In 2019, it was responsible for approximately
1.27 million deaths and contributed to an additional 4.95 million
fatalities worldwide (Murray et al., 2022). Antibiotic-resistant
microbes cause more than 33,000 deaths annually in Europe
(Antoñanzas and Goossens, 2019; Peñalva-Moreno et al., 2022) and
affect more than three million people in the Unites States., resulting

in more than 35,000 deaths each year (Church and McKillip, 2021).
In India, more than 50,000 infants die from sepsis due to resistant
bacteria, with an infant dying every 9 min from such infections
(Subramaniam and Girish, 2020).

In 2019, the number of deaths from methicillin-resistant
Staphylococcus aureus (MRSA) surpassed 100,000 (Alghamdi et al.,
2023). The WHO’s Global Antimicrobial Surveillance reported
over 500,000 confirmed infections from bacteria with extensive
AMR. ESKAPE pathogens—Enterococcus faecium, Staphylococcus
aureus (S. aureus), Klebsiella pneumoniae (K. pneumoniae),
Acinetobacter baumannii (A. baumannii), Pseudomonas aeruginosa
(P. aeruginosa), and Enterobacter spp.—are the most commonly
isolated resistant organisms in hospital environments (Miller and
Arias, 2024). Healthcare-associated infections (HAIs) constitute a
major health issue, affecting 5% to 10% of hospitalized patients and
costing the United States healthcare system approximately USD 4
billion annually. A 2011 survey revealed that 4% of hospitalized
patients had an HAI (Magill et al., 2018). AMR contributes to
the increase in HAIs, complicating cost management (Salam et al.,
2023b). Patients with drug-resistant pathogens face longer hospital
stays and higher costs (Fongang et al., 2023). Strict infection
prevention protocols, judicious antibiotic use, and monitoring for
resistant bacteria are crucial for reducing costs and improving
patient safety.

Antibiotic stewardship programs (ASPs) are essential for
reducing global antibiotic resistance (Majumder et al., 2020).
They promote appropriate antimicrobial use by identifying
the most effective agents, durations, doses, and administration
methods, thus minimizing side effects and costs (Ababneh et al.,
2021). Successful ASPs require leadership, hospital management
support, skilled infectious disease clinicians, ongoing education,
and interdisciplinary collaboration (Baraka et al., 2019). The
WHO is working with various organizations to develop strategies
that raise awareness of AMR (World Health Organization,
2014). These strategies aim to reduce transmissible diseases
through precautionary measures, improved antibiotic therapy,
novel treatments, and enhanced antimicrobial drug efficacy (World
Health Organization, 2014). Despite significant advancements in
rapidly detecting antibiotic-resistant bacteria (Yamin et al., 2023),
the effectiveness of antibiotics is declining (Chinemerem Nwobodo
et al., 2022). Microbial infections are often hard to identify, causing
treatment delays (Cansizoglu et al., 2019; Giordano et al., 2018).
As a result, doctors may need to start antimicrobial treatment
before a full evaluation, which can worsen the patient’s condition
and contribute to AMR (van Belkum et al., 2019). There is an
urgent need for rapid, accurate, and affordable tests to detect AMR
(Salam et al., 2023b), enabling better-targeted medications and
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reducing the time for antimicrobial susceptibility testing (AST)
(Cansizoglu et al., 2019). Screening is crucial in managing AMR
(Khan et al., 2019).

Microbiological investigations often use phenotypic methods
to assess infection sensitivity to antibiotics (Maugeri et al., 2019;
van Belkum et al., 2020). Although these techniques are cost-
effective and standardized, they can be labor intensive, causing
treatment delays (Shin et al., 2019; Syal et al., 2017) that negatively
impact patient management (Khan et al., 2019). Delayed antibiotic
treatment is associated with higher mortality rates (Pak et al., 2023)
and longer hospital stays (Nauclér et al., 2021). Comprehensive
surveillance systems are vital for reducing AMR-related mortality
and morbidity, guiding treatment decisions, and developing new
antibacterial medications (Cantón et al., 2023). The Study for
Monitoring AMR Trends (SMART) includes nearly 500,000 isolates
from over 200 sites in more than 60 countries, addressing evolving
medical needs (Cantón et al., 2023). SMART data have identified
emerging resistance risks and informed clinical guidelines, making
the database accessible to clinicians and researchers worldwide,
particularly in resource-limited countries. The development of
rapid tests for antibiotic susceptibility aims to improve patient
treatment and manage AMR (Datar et al., 2022; Gulumbe et al.,
2022; Zakhour et al., 2023) by quickly identifying pathogenic
microorganisms and their susceptibility to antibiotics.

This review examines both traditional and contemporary
methodologies for the detection of bacteria that have acquired
resistance to antimicrobials. The objective of this review was to
improve our understanding of the effectiveness of AST in assessing
the susceptibility of bacteria to various antibiotics. We provide
a thorough analysis of the advantages and limitations associated
with current AST methods while also highlighting significant
advancements in point-of-care testing. Additionally, we present
forecasts regarding the most promising technologies expected to
emerge in the future for ASTs. Figure 1 provides a summary of
the conventional and modern technologies discussed in this review.
To ensure the relevance of the included research, only articles
published in English between 2002 and 2024 were considered.

2 Antimicrobial susceptibility:
technologies of the past, present,
and future

2.1 Traditional “classic” approaches

Organizations such as the Clinical and Laboratory Standards
Institute (CLSI) and the European Committee on AST recommend
phenotypic screening to identify antibiotic-resistant bacteria (Gajic
et al., 2022; Maugeri et al., 2019). Traditional AST methods,
including agar dilution, broth microdilution, and disk diffusion,
involve exposing isolated bacteria to antimicrobial agents and
observing their growth (Puttaswamy et al., 2018; Salam et al.,
2023a). A key method for assessing resistance is determining the
minimum inhibitory concentration (MIC) (Kowalska-Krochmal
and Dudek-Wicher, 2021), which determines the lowest antibiotic
concentration that inhibits bacterial growth via agar or broth.
This technique mixes a standardized number of bacteria (typically

0.5 according to the McFarland standard) with antibiotic-diluted
broth or agar (Wiegand et al., 2008). In brief, the MIC assay was
conducted by standardizing a bacterial culture to 5 × 105 colony-
forming units (CFU)/ml and exposing it to various antibiotic
concentrations for 16–24 h at 37◦C (Lewis and James, 2022). After
the incubation period, bacterial growth was evaluated for each
antibiotic concentration, and the MIC value was identified as the
lowest concentration of the antimicrobial agent needed to inhibit
visible growth of the bacterial strain being studied.

After incubation, bacteria may or may not grow, and the
procedure is simple and inexpensive, requiring no specialized
instruments. The first step in therapeutic treatment often involves
measuring the MICs of antimicrobial agents against bacteria (Gajic
et al., 2022). However, this technique has limitations in assessing
resistance in non-cultivable yet viable microbial species, and its
effectiveness depends on factors such as incubation duration,
antimicrobial concentration, and initial microbial inoculum
(Wiegand et al., 2008). The disk diffusion method involves placing
an antimicrobial-infused disk on solid agar, creating a circular
zone of inhibition that indicates bacterial growth suppression. This
qualitative analysis classifies bacteria as susceptible, intermediate,
or resistant. While effective for rapidly multiplying bacteria, the
method has drawbacks, including low agar diffusion of some
antimicrobial agents and difficulties in evaluating anaerobic and
fastidious bacteria (Sejas et al., 2003). Clinical laboratories use
a variety of antimicrobial susceptibility testing (AST) methods,
depending on the specific equipment and range of laboratory tests
they provide (Gajic et al., 2022).

The E-Test, the original gradient strip, a proprietary tool
from bioMérieux, is widely used in clinical laboratories to
guide antibiotic selection by indicating effective antimicrobial
concentrations (Salam et al., 2023a). It combines elements of
previous methods to generate MIC data via disk diffusion (Erfani
et al., 2011). The E-test

R©

features strips with an exponential
gradient of antibiotic concentrations and a numeric scale. While
it shares time-related limitations with earlier tests, it simplifies
microbial susceptibility quantification (Yamin et al., 2023) and
is particularly effective for hard-to-cultivate microorganisms such
as Mycobacterium (obligate aerobe) and Haemophilus influenzae
(facultatively anaerobic) (Hedberg, 2005). The rapid direct E test is
an effective tool for obtaining preliminary AST data within a period
of 5–6 h. This method is especially beneficial when it is employed
alongside phenotypic or genotypic analyses to clarify essential
mechanisms of resistance (Bianco et al., 2019b). The gradient strips
are used for precise quantification of resistant strains in laboratory
and clinical settings because of their stable concentration gradient
(Khan et al., 2019). Di Bonaventura et al. (1998) reported that
E-test MICs correlated well with agar dilution and disk diffusion
methods for 248 P. aeruginosa isolates from bladder-catheterized
patients, confirming their reliability. Using the EUCAST Rapid
Antimicrobial Susceptibility Testing (RAST) technique, Bianco
et al. (2022b) examined 676 positive blood cultures derived
from gram-negative rods and gram-positive cocci. RAST was
performed within 2 h of leaving the incubator, in accordance with
EUCAST recommendations. Inhibition zones were evaluated at
4, 6, 8, and 16–20 h, and the results were interpreted according
to EUCAST breakpoints (version 5.1). The results after 16–
20 h suggest the potential for more effective antibacterial de-
escalation therapy. Despite these limitations, traditional methods
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FIGURE 1

A brief overview of the various techniques and methodologies used in the current review.

for detecting AMR are crucial for identifying treatment options for
antibiotic resistance. Despite their drawbacks, traditional tests are
inexpensive, easy to perform (requiring no special expertise), and
still widely used in hospitals around the world (Kaprou et al., 2021;
Yalew, 2020).

2.2 Advanced automation techniques

2.2.1 Automation systems
The sensitivity of optical equipment for ASTs can be enhanced

with optoelectronic systems, fiber optics, microfluidics, and pH-
or redox-sensitive indicator dyes (She and Bender, 2019; Trovato
et al., 2022). FDA-approved programmable AST devices, such
as the SensititreTM ARISTM 2X, Vitek 2 Compact System,
PhoenixTM panel systems, and MicroScan WalkAway plus systems,
significantly impact laboratory settings (Bhatnagar et al., 2023;
Elbehiry et al., 2023; Fader et al., 2013; Leonard et al., 2018). These
devices feature antibacterial panels for gram-positive and gram-
negative infections and use redox indicators to identify bacteria
and measure turbidity from multiwell plates. AliFax S.r.l. in Italy
utilizes the ALFRED 60/AST system, which employs laser-light
scattering technology to detect bacterial growth in liquid culture,
providing susceptibility data within four to 6 h from positive blood
cultures (López-Hernández et al., 2022). Broth dilution is used
with AST cards containing varying antimicrobial concentrations
and positive controls, allowing for analysis of MIC patterns in
large microorganism clusters (Puttaswamy et al., 2018; Vasala et al.,
2020).

The Microscan WalkAway system measures experimental
progress via a photometer or fluorometer and can continuously
monitor incubated samples (Shanmugakani et al., 2020).
MicroScan panels use conventional 96-well microdilution
plates for bacterial identification, typically within four hours,
although slow-growing bacteria may take 6–42 h (Reller et al.,
2009). Susceptibility results are available in 20 h, varying from

16.8 to 27.8 h on the basis of the bacteria type (Winstanley and
Courvalin, 2011). In brief, a bacterial suspension corresponding
to the 0.5 McFarland standard was prepared in saline via the
direct colony suspension method. Subsequently, 5 µl of the diluted
suspension was dispensed into each well. Before inoculation, the
panels were checked for expiration dates, batch numbers, and
packaging integrity. The inoculation was carried out via Prompt
Inoculation System-D in conjunction with the RENOK system and
Inoculators-D. The panels were then incubated at 35 ± 1◦C for
16 h, after which readings were taken. The MIC was determined on
the basis of standardized readings provided by the manufacturer.
Successful antimicrobial susceptibility values were assessed and
evaluated according to the European Committee on Antimicrobial
Susceptibility Testing.

A pilot study in a tertiary care teaching hospital located in
Rishikesh, Uttarakhand (Singh et al., 2019), in May and June
2019 used the MicroScan WalkAway 96 Plus ID/AST system and
Mikrolatest MIC kit to assess colistin susceptibility in carbapenem-
resistant gram-negative bacteria. The susceptibility rates were
71.4% for A. baumannii, 85.7% for P. aeruginosa, and 100%
for Acinetobacter junii, Acinetobacter johnsonii, Escherichia coli
(E. coli), and K. pneumoniae. Hernández-Durán et al. (2017)
assessed bacterial susceptibility to antibiotics in hospitalized
patients via the VITEK 2

R©

Compact and MicroScan WalkAway
R©

SI systems. The study included 20 gram-positive cocci, 34 g-
negative rods, and 13 reference strains. Both techniques showed
90.2% concordance for gram-negative bacteria and 96.3% for gram-
positive bacteria, identifying 89.5% of strains by species. VITEK 2
had a median result time of 6.5 h, whereas MicroScan took 12.5 h,
indicating a significant delay.

The BD Phoenix Automated Microbiology System is a reliable
tool for identifying clinical isolates in healthcare laboratories
(Hirakata et al., 2005). It accurately tests most clinically relevant
bacteria (Donay et al., 2004; Funke and Funke-Kissling, 2004)
and detects ESBLs (Sanguinetti et al., 2003). The system analyzes
99 test panels, each with 84 wells of antibacterial agent dilutions
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(Yamin et al., 2023). Growth is monitored with a turbidimeter
and calorimeter, enabling MIC estimation for various pathogens,
including gram-negative and gram-positive bacteria, within 6–16 h
(Shanmugakani et al., 2020). The Vitek system, developed in the
late 1970s, automates AST and identification. After standardizing
the main inoculum, all the necessary steps are performed, and
the results are analyzed every 15 min for kinetic analysis (Funke
et al., 1998; Ligozzi et al., 2002). The system records colorimetric,
turbidity, and fluorescence signals via multichannel fluorimeters
and photometers. It employs 64-well reagent cards containing
diagnostic media and antimicrobial agents (Abalkhail and Elbehiry,
2022; Elbehiry et al., 2022b), allowing for 30–240 simultaneous
assays for gram-negative and gram-positive bacteria within 4–10 h
(Shanmugakani et al., 2020). The protocol for the Vitek system for
the detection of AST is as follows: 2–3 fresh colonies of the tested
bacteria were transferred to a 5 mL tube of sterile physiological
sodium chloride solution. The 0.5 McFarland bacterial mixture was
then diluted to 1.5 × 10ˆ7 CFU/mL in 0.45% saline (0.50–0.63)
via the DensiChek device (BioMérieux, Marcy l’Etoile, France).
After filling, sealing, and inserting the AST cards into the VITEK 2
device (VITEK

R©

2, BioMerieux, France), they were incubated and
read. The results were analyzed in accordance with the guidelines
established by the CLSI.

At the Prince of Wales Hospital in Hong Kong, China, Ling
et al. (2003) conducted a study on bacterial identification and
susceptibility to various antibiotics from July 21 to December
15, 2002. Using the VITEK 2 system, they performed direct
identification and susceptibility testing on an aerobic bottle from a
positive blood culture set. The results of the susceptibility testing
were available 3.3 h postincubation, while identification reports
were also provided 3.3 h after incubation. A unique method for
assessing antibiotic resistance involves detecting volatile organic
molecules in the headspace of bacterial cultures. Therefore, Bianco
et al. (2024) evaluated the VITEK

R©

REVEAL system on 128 positive
blood cultures, including 95 Enterobacterales, 21 P. aeruginosa,
and 12 A. baumannii complex samples. The study compared
22 antimicrobials with reference techniques across 2,220 strain-
antibiotic combinations, revealing 1,091 resistant pairings (48.7%).
The categorical agreement and essential agreement rates were
97.6 and 97.7%, respectively. In the ESBL phenotype screening
test, positive, indeterminate, and negative results were found for
13.7, 32.6, and 27.4% of the Enterobacterales isolates, respectively,
with 100% concordance with the reference technique. This system
effectively assesses antimicrobial susceptibility in major gram-
negative species from positive blood cultures, delivering results in
under 8 h. Charnot-Katsikas et al. (2018) evaluated the Accelerate
Pheno system at the University of Chicago Medicine for identifying
bacterial and yeast species and conducting AST. When the blood
culture results were compared with those of routine care within
0–8 h of growth detection, the system showed 95.6% sensitivity
and 99.5% specificity for identification, with 95.1% agreement in
essential susceptibility tests and 95.5% agreement in categorical
susceptibility tests. The accelerated Pheno system reduces the
susceptibility testing time by an average of 41.86 h, enabling quicker
delivery of clinically relevant information.

Traditional phenotyping techniques are slow because of the
multiple stages of plating and cultivation, making them unsuitable
for rapid results (Elbehiry et al., 2017; Elbehiry et al., 2022a).
Researchers have developed genetic methods to detect AMR to

address this issue (Anjum et al., 2018; Sahoo et al., 2023). The term
“molecular diagnostics” was introduced by Pauling et al. (1949).
Genetic methods, such as multiplex targeting, offer advantages over
phenotypic testing in identifying antibiotic resistance genes (Yamin
et al., 2023). These methods are useful when sensitivity breakpoints
are unknown and can use non-purified samples, allowing for faster
responses to new resistance components (Vasala et al., 2020).
Genetic approaches have limitations, including low sensitivity and
narrow scope, and often fail to overlook many AMR genes (Gajic
et al., 2022). Additionally, molecular diagnostics can be costly
(Singh et al., 2021). However, advancements in techniques such
as nucleic acid amplification and hybridization are improving
detection (Bai et al., 2023). Overall, molecular methods are effective
and sensitive for identifying AMR genes (Kaprou et al., 2021;
Rentschler et al., 2021).

2.2.2 Nucleic acid amplification tests (NAATs)
Genetic evaluations, such as virulence genotyping and

multilocus sequence typing, are more suitable for outbreak
investigations than are ASTs (Vasala et al., 2020). These methods
require large amounts of pure nucleic acids, making them
impractical for rapid diagnosis. In contrast, molecular beacon
systems and hybridization-based strategies are effectively
integrated into NAATs (Yamin et al., 2023). The CDC states
that commercial NAATs are used mainly in hospitals, health
agencies, and private labs (Ling et al., 2008). Many low-income
countries still rely on in-house PCR tests, which cost $15 each
(Roos et al., 1998). These nations often have the highest case
numbers, limiting their access to expensive technologies. In the
last two decades, NAATs have become essential for detecting
microorganisms, greatly assisting in diagnostic testing and
research on infectious diseases (Apfalter et al., 2005). Global
migration, climate change, urbanization, and the ongoing
pandemic emphasize the significance of NAATs. Although NAATs
are known for their high accuracy and sensitivity, their centralized
structure and dependence on qualified personnel can impede
effective pathogen management during emergencies (Narasimhan
et al., 2023).

Nucleic acid amplification tests are highly effective for
identifying microbial species, especially when combined with
a strong molecular test (Patel, 2022). Recent diagnostic panels
developed by companies such as BioMérieux, Qiagen, and Becton
Dickinson can identify genes related to antibiotic resistance
(Trotter et al., 2019; Vasala et al., 2020) and provide clinically
relevant data even when antimicrobial treatment is not needed
(Vasala et al., 2020). Among drug-resistant pathogens, only a
few, such as Neisseria gonorrhea, Chlamydia trachomatis, and
Mycoplasma, have shown a certain degree of resistance (Unemo
and Jensen, 2017). Identifying genes linked to antibiotic-resistant
bacteria is promising but does not confirm resistance (Salyers
and Amabile-Cuevas, 1997). A key limitation of NAATs is their
inability to specify MICs or recommend antibiotics (Yu et al.,
2023). Nonetheless, NAATs can be easily adapted to address
resistance factors and emerging infections (Bang et al., 2023).
Techniques such as isothermal amplification, polymerase chain
reaction (PCR), multiplex PCR, reverse transcriptase PCR (RT-
PCR), and quantitative PCR (qPCR) can be used to identify
antibiotic resistance genes.
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The isothermal DNA amplification technique is a breakthrough
in molecular biology that eliminates the need for thermal
cycling in conventional PCR (Lee et al., 2019; Zhu et al.,
2020). Techniques such as transcription-mediated amplification
(TMA) and loop-mediated isothermal amplification (LAMP) have
been developed (Glökler et al., 2021; Srivastava and Prasad,
2023), leading to next-generation genetic diagnostics that better
serve patients (Lee et al., 2019). Isothermal methods bypass
thermocycling, reducing analysis times and energy consumption
(Oliveira et al., 2021), and alternative heat control methods have
rendered thermocyclers obsolete (Zou et al., 2020). Additionally,
isothermal amplification offers higher rates of amplification and
specificity than PCR does (Zanoli and Spoto, 2012). A recent study
investigated the efficacy of the Amplex eazyplex

R©

LAMP assay for
rapidly identifying A. baumannii and its predominant acquired
carbapenemases directly from blood culture bottles in less than
30 min (Comini et al., 2021). The findings of this study indicate
that the Amplex eazyplex

R©

LAMP assay is proficient at detecting
A. baumannii and carbapenemases associated with carbapenem
resistance. In numerous international airports, hospitals, and
testing facilities globally, LAMP has emerged as a viable alternative
to qPCR (Subsoontorn et al., 2020). However, these methods
face challenges, including less effective multiplexing due to
experimental complexity (Dhama et al., 2014) and the need for
more primers in complex reactions.

Polymerase chain reaction is an in vitro technique used to
amplify DNA and RNA sequences exponentially (Bej et al., 1991).
False positives may arise from infections or cross-reactivity with
similar microorganisms (Hahn et al., 2020). Therefore, quality
control measures for PCR assays, particularly in diagnostics, start
with established laboratory practices that reduce contamination
and increase reproducibility (Kitchin and Bootman, 1993).
A significant advantage of PCR over traditional culture methods
is its ability to amplify genes from uncultivable or dying organisms
(Adzitey et al., 2013). Overall, PCR is effective for tracking AMR
infections, identifying known resistance genes, such as mecA
(methicillin resistance) in S. aureus (Abalkhail and Elbehiry,
2022), blaSHV (beta-lactam resistance) in Enterobacteriaceae
(Zorbozan and Kimiran, 2022), tetM (tetracycline resistance)
(Domínguez-Pérez et al., 2018), and vanA (vancomycin resistance)
in Enterococcus (Wagner et al., 2023; Wardal et al., 2023). An earlier
investigation assessed the effectiveness of ELITe MGB assays in
detecting the main carbapenemase and ESBL genes and mec genes
associated with S. aureus in blood cultures within a timeframe of
less than three hours (Bianco et al., 2019a). The findings of the
study indicated a concordance between genotypic and conventional
phenotypic outcomes. Boattini et al. (2021) conducted a study
on molecular tests to enhance antibiotic treatment for critically
ill patients with carbapenemase- and/or CTX-M-producing
pneumonia. They examined 197 bronchoalveolar lavage (BAL)
samples for carbapenem-resistant Enterobacteriaceae (CRE) and
ESBL using ELITe MGB

R©

assays and compared them to standard
culture methods. Twenty (10.2%) strains tested positive for
blaKPC−like genes, and twelve (6.1%) strains tested positive for
blaCTX−M−like genes. The CRE ELITe MGB Kit demonstrated a
positive predictive value (PPV) of 85% (95% CI: 64.9–94.6) and a
negative predictive value (NPV) of 100%. The ESBL ELITe MGB
Kit had a PPV of 75% (95% CI: 49.4–90.2) and an NPV of 100%.

Multiplex PCR may outperform conventional and quantitative
PCR in increasing the possibility of cross-contamination during
multiplexing (Adler et al., 2008). The use of different primers in
a solution blend allows the identification of various bacteria in a
single test run, reducing costs and time (Pishnian et al., 2019).
Multiplex PCR can effectively identify specific mutations in AMR
genes (Banerjee and Patel, 2023; Chahorm and Prakitchaiwattana,
2018) if one primer interacts with the mutation points. It has been
developed to quickly and cost-effectively identify AMR genes in
infections and multiple organisms in patient samples (Sigmund
et al., 2019). However, information on its effectiveness for detecting
antibiotic resistance indicators in healthcare settings is limited
(Sigmund et al., 2020).

Reverse transcriptase polymerase chain reaction converts RNA
into complementary DNA (cDNA) and amplifies it via PCR. This
method is efficient, responsive, and reliable (Adzitey et al., 2013;
Rodrigues et al., 2018). cDNA produced from RNA is free of
impurities such as proteins that can skew analyses, allowing for
precise identification with primers. RT-PCR also detects viable
microbes, including antibiotic-resistant organisms (Rajapaksha
et al., 2019), and is highly specific for replicating cells. A study
was conducted at the Hospital of Tropical Diseases in Ho Chi
Minh City by Dung et al. (2024). They collected tracheal aspirates
and sputum from patients with lower respiratory tract infections
to identify and detect AMR genes for various bacteria. The
Microbiology Department at the hospital used RT-PCR to identify
six bacterial pathogens and their AMR genes. The results revealed
that this technique is rapid, straightforward, and highly specific.
Treating infections caused by antibiotic-resistant microorganisms,
especially those with high AMR gene concentrations, is challenging.
Real-time PCR and reverse transcription-PCR are currently used
together to evaluate gene expression variations.

2.3 Techniques currently being utilized

2.3.1 Next-generation sequencing (NGS)
technology

The NGS method has been developed for sequencing DNA
and RNA and detecting mutations and variants (Qin, 2019; Satam
et al., 2023). NGS can sequence thousands of genes or entire
genomes in a short time (Goodwin et al., 2016). Integrating
DNA and RNA next-generation sequencing (NGS) is the most
effective strategy for understanding and adapting to the evolving
resistance mechanisms to targeted therapies (Reita et al., 2021).
NGS is particularly recognized for evaluating organisms with
slow progression and unusual resistance patterns, such as highly
resistant Mycobacterium tuberculosis isolates (Iketleng et al., 2018).
Since the 1995 sequencing of Haemophilus influenzae type B
(Fleischmann et al., 1995), advances in genomic technology have
transformed infection prevention, control, and healthcare delivery
(Purushothaman et al., 2022). Key methodologies include whole-
genome sequencing (WGS), which analyzes the complete genome
of a single bacterial colony, and metagenomics, which examines
microbial communities in a sample without considering the
cultural background (Chiu and Miller, 2019; Eyre, 2022). The cost
of nucleotide sequencing has decreased significantly since the early
21st century (Brown et al., 2021; Dymond et al., 2020) owing to
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advancements in sequencing capabilities, affordable technologies,
improved laboratory automation, and standardized procedures
(Perez-Sepulveda et al., 2021). WGS is now used as a diagnostic
tool in various laboratories for medical microbiology diagnosis and
monitoring (Bonsall et al., 2020; Smetana and Brož, 2022; Van
Belkum and Rochas, 2018). Its ability to quickly identify resistance
factors has influenced treatment strategies (Iketleng et al., 2018).

However, recent challenges have limited the widespread use
of NGS in resistance screening (Ávila-Ríos et al., 2020). NGS
faces challenges such as high costs and limited user-friendly
bioinformatics systems (Sherry et al., 2013). Nevertheless, high-
quality sequencing can be achieved within days to a week (Sherry
et al., 2013). NGS is anticipated to replace standard cultivation
methods in the medium or long term (Femerling et al., 2023) and
serve as a practical alternative for routine microbiological testing
to identify bacterial infections and predict antibiotic susceptibility
(Dunne et al., 2012). Additionally, NGS has the potential to provide
both typing results and the ability to detect resistance genes in
a single experiment (Veenemans et al., 2014). Many innovative
NGS applications have recently transitioned from research to
clinical use (Di Resta and Ferrari, 2018), including cell-free DNA
analysis in prenatal testing, circulating tumor DNA testing, HLA
typing, microbial analysis (Yohe and Thyagarajan, 2017), RNA
sequencing, and methylation analysis. Despite ongoing challenges,
these technologies are increasingly employed for therapeutic
purposes.

Whole-genome sequencing antibiotic susceptibility testing is
a rapid and accurate method for detecting antibiotic resistance
(MacLean et al., 2020). The correlation between genotypes
and clinical phenotypes is not always accurate, for example,
mechanisms involving inducible resistance, gene expression
and regulation, posttranslational modifications or combinations
thereof. Consequently, rapid phenotypic testing and growth-based
susceptibility testing are expected to be required initially to confirm
an NGS result (Ellington et al., 2017). Most resistance strategies
involve multiple genes and complex cellular networks, which are
not well understood. WGS provides a novel approach to studying
these systems by examining the entire genomes of microorganisms
in clinical settings. A systematic review by Yusof et al. (2022)
revealed that WGS is commonly used to detect variants in colistin
resistance genes among K. pneumoniae isolates. WGS significantly
advances AMR research by analyzing all contributing factors and
identifying relationships between resistance genes and their host
elements. WGS enables genome-wide studies of multiple genes
and alterations (De Been et al., 2015; Kohl et al., 2014; Lin
et al., 2022). Katiyar et al. (2020) used WGS to explore resistance
genes and their symptom correlations, aiding in targeted treatment
selection. These findings revealed that fluoroquinolone-resistant
isolates presented changes in the gyrA, gyrB, parC, and parE genes.
By predicting resistance polymorphisms and their phenotypic
relationships, WGS enhances understanding and facilitates efficient
identification of AMR correlates, allowing for antibiotic use on the
basis of genetic factors (Wan Makhtar et al., 2021).

2.3.2 Mass spectrometry (peptide fingerprinting
analytical technique)

Peptide fingerprinting analytical technique (PFAT) can be used
to identify proteins in microorganisms, including bacteria and

fungi (Elbehiry et al., 2022a; Elbehiry et al., 2022c; Elbehiry et al.,
2023). It breaks down target proteins into smaller peptides and
measures the mass-charge ratio (m/z), such as matrix-assisted laser
desorption ionization-time-of-flight mass spectrometry (MALDI-
TOF MS). This method is valuable for assessing AMR (Figure 2),
bridging the gap between species identification and resistance
evaluation (Florio et al., 2020; Vrioni et al., 2018). Since 2010,
healthcare settings have utilized MALDI-TOF MS, which is
easier, faster, more accurate, and less expensive than traditional
biochemical methods (Elbehiry et al., 2022a). The San Lazaro
Hospital-Nagasaki Collaborative Research Laboratory analyzed
approximately 13,000 bacterial and fungal isolates via MALDI-
TOF MS over a span of 5 years (Osa et al., 2021). This system
is able to detect resistance mechanisms and identify biomarkers,
making it vital for monitoring resistant infections and facilitating
rapid diagnosis (Rodríguez-Sánchez et al., 2019). Compared
with traditional methods, MALDI-TOF accelerates resistance
identification (Vrioni et al., 2018). The MBT-ASTRA evaluates
bacterial growth by comparing the area under the curve (AUC)
of bacterial peaks in antibiotic-treated (AUCBAC+ATB) versus
untreated (AUCBAC) spectra. The ratio (AUCBAC+ATB)/(AUCBAC)
is known as relative growth (RG). An RG close to zero indicates
susceptibility, whereas an RG near one suggests resistance (Lange
et al., 2014; Sparbier et al., 2016).

Matrix-assisted laser desorption ionization-time of flight mass
spectrometry has shown potential for detecting antibiotic resistance
in clinical samples, but its use is limited by low sensitivity and a
focus on relatively small resistance pathways (Yamin et al., 2023).
Recent machine learning advancements have improved the ability
of these methods to recognize drug-resistant bacteria (Griffin
et al., 2012). MBT-ASTRA quickly analyzes spectra, providing AST
results within 2–3 h (Vrioni et al., 2018). A study conducted by
Rhoads et al. (2016) evaluated the utility of the 2,415 m/z peak
in clinical isolates of S. aureus and Staphylococcus epidermidis as a
predictor of mecA gene carriage . Although numerous molecular
assays are available for the rapid detection of mecA, these tests
are predominantly performed on blood cultures. Nevertheless, in
certain staphylococcal species, MALDI-TOF MS may serve as an
effective and expedient method for the detection of mecA carriage.
Timely diagnosis of mecA is crucial for facilitating appropriate
medical intervention and enhancing antibiotic stewardship. By
analyzing data obtained from routine MALDI-TOF MS testing,
it is feasible to identify methicillin resistance in a subset of
clinically isolated staphylococci. A recent study conducted by
Bianco et al. (2022a) in a tertiary teaching hospital in northwestern
Italy over a 3 years period (November 2019–October 2022)
revealed that the MALDI Biotyper

R©

platform can accurately and
effectively identify K. pneumoniae carbapenemase (KPC) producers
without the need for additional procedures or extra costs. This
MALDI-based method is suitable for high-throughput laboratories.
Depending on the local prevalence of non-pKpQIL-encoded KPC
and other carbapenemases, molecular or immunochromatographic
tests should be utilized.

The advantages of MALDI-TOF MS include precision,
reliability, affordability in terms of cost/sample run, and simplicity
(Vrioni et al., 2018). However, spectrum analysis software usually
requires programming skills that many microbiology laboratory
specialists do not possess (Welker and Van Belkum, 2019).
The technique also requires purification and sample preparation,
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FIGURE 2

A workflow for the detection of antimicrobial resistance (AMR) using matrix-assisted laser desorption ionization-time of flight mass spectrometry
(MALDI-TOF MS).

making it unsuitable for mixed materials, and relies on additional
chemicals such as those in the matrix (Wang et al., 2018). Databases
should differentiate between susceptible and resistant strains
(Dubourg and Raoult, 2016). Mass spectrometry can identify key
resistance genes, such as vanA, blaKPC, and mecA (Neil et al.,
2021). Although Bruker Daltonics has created a prototype software
package, it is not yet available (Wilhelm et al., 2023). Therefore,
there is considerable interest in developing a modified version of
this test for hospitals in need of faster AST results.

2.4 Future techniques

2.4.1 Hybridization-based systems (fluorescence
in situ hybridization)

The fluorescence in situ hybridization (FISH) technique is
effective for quantifying target microorganisms (Swidsinski et al.,
2022; Vasala et al., 2020). PNA-FISH, which uses peptide nucleic
acid (PNA) probes, offers rapid and specific binding advantages
over DNA or RNA probes (Almeida et al., 2009; Vasala et al.,
2020). Its electrically neutral backbone minimizes non-specific
attachment, making it reliable for routine diagnostics, although
PNA probes are often more expensive. Enroth et al. (2019)
highlighted the use of PNA-FISH in QuickFish technology (OpGen,
United States), which targets 16S rRNA for identification. FISH-
based identification of resistance determinants is a fast, simple, and
affordable method. Many AMR genes, such as blaCTX−M (Khan
et al., 2020), mecA (Zhu and Li, 1994), and vanA (Conwell et al.,
2021), can be detected via FISH. Salimnia et al. (2014) revealed
that XpressFISH can identify the mecA gene in MRSA alongside
QuickFish, allowing the diagnosis of methicillin resistance within
2 h of a positive blood culture. FISH can be used to assess resistance
directly from raw materials such as tissues, making it suitable
for resource-limited settings. Two conditions must be satisfied
for FISH to be effective in identifying resistance determinants.

First, the high abundance of ribosomal RNA copies in living
cells results in ribosomally mediated resistance, which influences
the efficacy of antibiotics such as macrolides and linezolid and
is particularly suitable for FISH analysis. Second, FISH can be
effectively employed when resistance is conferred by only one or
a few variable bases, thereby eliminating the necessity for a large
array of probes (Frickmann et al., 2014).

Unlike PCR, FISH can pinpoint specific resistance mechanisms
in bacteria, but its applications are limited, and the results
may be inconsistent (Frickmann et al., 2014). Resistance testing
with FISH lacks standardization, posing challenges. Additionally,
tissue autofluorescence must be considered, requiring expert
interpretation of the results (Vasala et al., 2020). Expertise is
required to interpret outcomes, especially when dealing with tissue
autofluorescence. Counterstaining with a paneubacterial FISH
probe and non-specific DNA stains is crucial for confirming nucleic
acids associated with detected illnesses (Swidsinski, 2006). Owing to
its limitations, FISH may serve as a temporary solution until more
user-friendly and cost-effective amplification-based alternatives
become available (Frickmann et al., 2014). Future research that
investigates the mechanisms underlying drug resistance and the
failure of eradication efforts in developing countries, particularly
regarding clarithromycin and its related medications, may benefit
from the application of the FISH approach (Frickmann et al., 2017).

2.4.2 DNA microarray (DNA chip) technique
Microarray analysis is a valuable method for examining

genomic AMR in microorganisms (Waskito et al., 2022). It
allows for the purification and amplification of specific RNA
molecules, facilitating gene expression analysis and gene function
determination (Galhano et al., 2021; Hung and Weng, 2017).
Microarrays are effective in gene transcriptome studies and can
identify AMR genes via multiple hybridization procedures on
the same substrate. DNA samples can be extracted without
culturing bacterial cells (Nsofor, 2014). However, microarrays
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are increasingly being replaced by next-generation sequencing
(Galhano et al., 2021). A key limitation is the requirement for prior
knowledge of the genetic region being studied, which may result
in overlooked data (Kanzi et al., 2020). Additionally, analyzing
target genes can be complicated because of hybridization of similar
sequences (Jaksik et al., 2015).

Baumgartner et al. (2014) used the microarray method
to identify genes linked to resistance in foodborne pathogens
and reported that mecA, vanB, msr, aadD, and cat confer
resistance to methicillin, vancomycin, macrolides, tobramycin, and
chloramphenicol, respectively. Vogt et al. (2014) reported strains of
E. coli resistant to third-generation cephalosporins in various meats
and identified genes associated with resistance to trimethoprim
(dfrA), sulfonamides (sul), tetracycline (tet), and chloramphenicol
(cmlA1-like). Conventional resistance tests for Mycobacterium
tuberculosis are time-consuming, delaying treatment (Asmare and
Erkihun, 2023). Microarray analysis can quickly identify AMR
by detecting mutations in the rpoB and katG genes linked
to rifampin and isoniazid resistance (Herrera-Rodriguez et al.,
2013). It can also identify ESBL- and carbapenemase-producing
Enterobacteriaceae (Dortet et al., 2014). Microarrays are more
effective and faster at detecting AMR genes in both gram-
positive and gram-negative microbes (Fink et al., 2019). Recently,
microarrays have emerged as widely utilized diagnostic techniques
in biological research and clinical laboratories around the world
(Rabiee et al., 2021). Song et al. (2019) analyzed 416 clinical
samples from the Chinese PLA General Hospital via microarray
technology, which directly identified eight carbapenemase genes
across diverse samples. This method is recognized for its user-
friendly design, adaptability for high-throughput detection, and
clinical application potential. In 2019, Fink et al. (2019) evaluated a
DNA microarray for the detection of AMR genes in 240 g-positive
and gram-negative bacterial isolates. These genes included plasmid-
encoded extended-spectrum β-lactamases and carbapenemases, as
well as mecA, vanA, and vanB. The isolates were sourced from
the Microbiology Services of two hospitals in Valencia, Spain.
The assay demonstrated 100% sensitivity and specificity for all
target genes. Although the manufacturing of DNA microarrays
has advanced significantly and has been commercialized in recent
decades, the constraints associated with high-resolution scanning,
along with the time-intensive and expensive processes involved in
microarray production, continue to restrict their accessibility to
many laboratories (Xu et al., 2024).

2.4.3 Flow cytometry laser-based technique
Flow cytometry, introduced in the 1960s, is an effective

single-cell analytical method that has significantly impacted
fields such as immunology, molecular biology, chemotherapy,
healthcare microbiology, ecological microbiology, and the food
and beverage industries (Marutescu, 2023). Advances in cytometry
have transformed life sciences and biomedicine by enabling
rapid evaluation of bacterial cells without cultivation (Robinson
et al., 2023). Researchers are developing strategies and tests to
combat AMR, using flow cytometry to identify antibiotic-resistant
microorganisms in healthcare and environmental samples (Godeux
et al., 2018; Zhang et al., 2023). Flow cytometry analysis in
healthcare can assess a microorganism’s susceptibility, resistance,
or intermediate status to antibiotics (Martins-Oliveira et al., 2020;
Silva-Dias et al., 2021). It quickly identifies AMR patterns in

hospital samples (Filbrun et al., 2022; Inglis et al., 2020; Mulroney
et al., 2022; Velican et al., 2020) and uses fluorescent dyes to
evaluate bacterial cell viability after antibiotic treatment.

In accordance with the recommendations of Thermo Fisher
Scientific, the flow cytometry-AST workflow comprises several
critical steps. Initially, bacteria are collected and suspended in an
appropriate solution to minimize background noise for the Attune
(NxT) flow cytometer. The bacteria are subsequently exposed to
various antibiotics, and a vital dye is applied to facilitate detection.
The preinstalled software then analyzes the gated populations,
monitoring alterations in size, shape, and color intensity induced
by the antibiotics. The Attune (NxT) flow cytometer effectively
illustrates the impact of varying antibiotic concentrations on these
parameters, rendering this method more efficient than traditional
culture-based MIC determination. However, limitations exist, such
as non-specific dye binding, variable microorganism–antimicrobial
interactions, and inadequate computational power for diverse
populations (Waagsbø et al., 2022). Recently, commercial flow
cytometry-based ASTs have been introduced, providing results in
under 2 h, whereas traditional methods require 24–48 h (Martins-
Oliveira et al., 2020; Silva et al., 2019; Silva-Dias et al., 2021).
Unlike conventional culture-based methods, flow cytometric tests
can determine microorganism fatality in medical samples treated
rapidly with pharmaceuticals in less than 24 h (Marutescu, 2023).

Flow cytometric assays assess bacterial susceptibility, resistance,
or intermediate responses to antibiotics in clinical microbiology. In
2020, Velican et al. (2020) evaluated the antibiotic susceptibility
of 29 E. coli strains from urine samples of hospitalized patients
in Bucharest, Romania. The technique effectively quantified
susceptibility to nitrofurantoin, trimethoprim-sulfamethoxazole,
ciprofloxacin, and ceftriaxone. In 2021, Kállai and his team at
Budapest (Kállai et al., 2021) developed AST protocols using
flow cytometry on six bacterial strains: E. coli, K. pneumoniae,
P. aeruginosa, S. aureus, Streptococcus pyogenes, and Enterococcus
faecalis. A flow cytometer was used to monitor bacterial growth to
determine the optimal AST timing. The bacteria were tested against
12 antibiotics, with MIC values compared with microdilution
values as a reference. Using EUCAST clinical breakpoints,
susceptibility profile-matched microdilution results in more than
92% of the cases, indicating that flow cytometry-AST is an efficient
method for generating susceptibility profiles with a low failure
rate. Costa-de-Oliveira et al. (2017) studied the effectiveness of
FASTinov

R©

testing for managing gram-negative bacteremia at
Centro Hospitalar S. João in Porto, Portugal, in 2015. An analysis
of 102 positive blood cultures via routine methods, the Vitek2
test, the FASTinov

R©

kit, and the gold standard microdilution
method revealed that the FASTinov

R©

kit yielded significantly faster
results than did the Vitek2 test or the standard method. Although
molecular ASTs are faster and can predict phenotypic resistance,
varying sensitivity levels necessitate phenotypic screening to
identify emerging resistance pathways (Marutescu, 2023).

2.4.4 Fourier transform infrared (ftir)
spectroscopy

Microbiology laboratories and healthcare settings have greatly
benefited from advancements in optical techniques (Kaprou et al.,
2021), particularly infrared (IR) spectroscopy and microscopy,
which enhance the collection of molecular-level biological data
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on microbes (Beć et al., 2020). Fourier transform infrared
spectroscopy (FTIR) is an innovative tool for biochemical
evaluation that provides detailed information on a substance’s
chemical composition (Chirman and Pleshko, 2021; Theakstone
et al., 2021). By measuring infrared light absorption by proteins,
carbohydrates, lipids, and genetic material, FTIR generates
a spectrum that accurately reflects the sample’s composition
(Candoğan et al., 2021; Vogt et al., 2019). Its application is
increasingly used to identify chemical changes linked to AMR in
prokaryotic organisms (Novais et al., 2019; Salman et al., 2017).

In 2017, Sharaha et al. (2017) used FTIR to assess antibiotic
susceptibility in bacteria through IR spectroscopy. After 24 h of
culturing bacterial colonies from patient samples, they employed a
computer classification method and an IR microscope to evaluate
E. coli sensitivity to gentamicin, ceftazidime, nitrofurantoin,
nalidixic acid, and ofloxacin. Approximately 85% of bacteria are
classified as susceptible or resistant, highlighting the technique’s
potential for rapid testing. Abu-Aqil et al. (2024) employed FTIR
spectroscopy in conjunction with machine learning techniques
to identify 636 strains of K. pneumoniae from urine samples
collected from patients with urinary tract infections and to
assess their antibiotic susceptibility. An analysis of a total
of 27,966 spectra via an XGBoost classifier revealed that the
identification accuracy exceeded 95%, with the sensitivity for
antibiotic susceptibility ranging from 74 to 81%. These results
suggest that the proposed system has the potential to reduce the
risks associated with bacterial resistance; however, further research
is necessary to validate these findings. Research by Kochan and
colleagues indicated that S. aureus has evolved chemically, leading
to resistance against daptomycin and vancomycin. They utilized
atomic force microscopy with infrared spectroscopy, a novel single-
cell nanoscale technique (dos Santos et al., 2023; Li, 2023), which
enhances the precision and imaging of atomic-scale structures
within cells.

In 2022, Wang-Wang et al. (2022) assessed FTIR as a primary
tool for identifying extended-spectrum β-lactamase-producing
K. pneumoniae outbreaks in hospitals. Compared with traditional
methods, FTIR identified more true clustering relationships (38 out
of 42 vs. 24 out of 42, p = 0.001), highlighting its potential as a rapid
and cost-effective detection tool, with WGS for confirmation. This
integration can enhance infection control in clinical microbiology
laboratories. FTIR provides advantages in AMR research, such as
speed, cost-effectiveness, reliability, and environmental friendliness
(Kaprou et al., 2021; Mashhadikhan et al., 2022; Yamin et al.,
2023). However, its application in resource-limited settings as a
point-of-care tool for testing AMR is hindered by the instrument’s
size and cost (Kaprou et al., 2021). Accurate results require
prioritizing sample purification, culturing, and processing, along
with accessible datasets that distinguish between sensitive and
resistant isolates.

2.4.5 Lab-on-a-chip technology and
microfluidics

Microfluidics-based lab-on-a-chip technologies benefit
various fields, including environmental surveillance (Fernandez-
Gavela et al., 2019), food security (Tsougeni et al., 2019), and
healthcare diagnostics (Papadakis et al., 2019), and have recently
enabled the identification of antibiotic-resistant microorganisms

(Li et al., 2020). MIC values are essential for analyzing bacterial
phenotypic resistance, assessing new antimicrobial agents, and
monitoring global drug resistance (Zhang et al., 2020). This
technique determines if an antibiotic can inhibit pathogen growth,
even if slowly. However, this delay prolongs the selection of
effective treatments, leading to worse clinical outcomes and
higher patient mortality rates (Li et al., 2017). To address
this issue, developing technologies for the early detection of
antibiotic resistance during therapy is crucial. In 2018, Zhang
et al. (2018) developed a microfluidic chip platform to identify
bacteria and detect antibiotic resistance genes in 108 cerebrospinal
fluid culture broths from Beijing Tiantan Hospital and Capital
Medical University, China. The platform achieved a 94.44%
concordance rate with traditional methods and demonstrated
over 90% sensitivity and specificity for carbapenemase and ESBL
resistance genes. The study concluded that the platform is rapid,
accurate, and user friendly, with strong potential for treating
postneurosurgical meningitis. Ardila et al. (2023) conducted a
systematic review examining the potential clinical applications of
microfluidics-based lab-on-a-chip technology for the identification
and assessment of antibiotic susceptibility in Enterococcus faecalis
associated with endodontic infections. Although these platforms
demonstrate significant potential for enhancing the diagnosis and
treatment of Enterococcus faecalis, their effective implementation
in clinical practice requires comprehensive research, development,
and validation to ascertain their efficacy and reliability. Figure 3
shows recent microfluidic techniques for quick bacterial ASTs,
including genotypic methods (such as droplet digital technology
for resistance detection) and phenotypic methods (such as
microfluidic single bacterial culture).

Lab-on-a-chip technologies offer advantages over macroscale
methods, including rapid output evaluation, precise fluid
control, cost-effectiveness, the utilization of minimal amounts
of reagents/samples/solvents (few µL), automation, mobility, and
process integration (Fernandez-Gavela et al., 2019). Microfluidic
identification techniques fall into two categories: phenotypic
and molecular analyses. Loop-mediated isothermal amplification
enables rapid results by analyzing genetic markers such as AMR
genes (Zhang et al., 2018). Integrating nucleic acid detection
assays into microfluidic devices provides a cost-effective solution
for diagnostics in the clinic, food safety, and environmental
monitoring. These devices, which are designed for resource-
limited settings and point-of-care use, require amplification
of target nucleic acids for sensitive detection. Traditional PCR
methods are limited by temperature cycling. Therefore, novel
isothermal amplification techniques will be developed to integrate
sample preparation and target identification using minimally
invasive samples such as saliva, blood, or urine (Giuffrida and
Spoto, 2017; Zhang et al., 2019).

Phenotypic microfluidic methods reliably track microorganism
growth for AST in the presence of antimicrobial agents
(Campbell et al., 2016). These methods utilize small amounts
of microorganisms in droplets, channels, or chambers (Needs
et al., 2020) and can encapsulate them in agarose-filled capsules
or immobilize them using antibodies on magnetized substrates
(Dong and Zhao, 2015). Hydrodynamic capture is one technique
for immobilization, offering dense trap arrays and easy integration,
but it has low effectiveness (Kaprou et al., 2021). Antibodies
are costly and may not be accessible for all bacteria, whereas
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FIGURE 3

Procedures for the rapid screening of individual bacteria utilizing microfluidics encompass gene-based detection of antimicrobial resistance (AMR)
through droplet digital assessment, as well as phenotypic evaluation via microfluidic-based single bacterial culture.

droplet-based methods often require complex reading techniques.
Although agarose-based methods can use standard multiwell
plates, they complicate automatic identification and information
processing (Kaprou et al., 2021). Further research is needed before
these devices can be commercially viable.

2.4.6 Lateral flow immunoassays
The rise of antimicrobial-resistant bacteria has prompted the

development of lateral flow immunoassays (LFIAs) that target
enzyme-mediated resistance in key pathogens (Boutal et al.,
2022). Despite advancements, identifying pathogenic bacteria and
detecting antibiotic resistance remain complex (Shanmugakani
et al., 2020). In the last decade, LFIAs have improved the
diagnosis of antimicrobial resistance, proving essential for detecting
resistance mechanisms in gram-negative bacteria, especially beta-
lactamases (Bernabeu et al., 2020; Boutal et al., 2018; Han
et al., 2021). One LFIA identified the AAC (6’)-Iae enzyme from
P. aeruginosa with a sensitivity of 10ˆ5 CFU per test (Kitao et al.,
2010). Another LFIA targets the ArmA 16S rRNA methylase,
which is prevalent in resistant gram-negative bacteria such as
A. baumannii and E. coli (Oshiro et al., 2015). Early identification of
methicillin resistance relies on detecting penicillin-binding protein
2a (PBP2a), which affects all beta-lactams. The affinity of S. aureus
protein A for mammalian immunoglobulins complicates antibody-
based detection. Nevertheless, Yamada et al. (2013) used an LFIA,
whereas Amini et al. (2020) utilized IgY anti-PBP2a antibodies. For
VanA vancomycin-resistant Enterococcus (VRE) isolates, LFIA is
100% sensitive and specific, with detection limits of 6.3 × 10ˆ6 or
4.9 × 10ˆ5 cfu per test on either MH or ChromID

R©

VRE plates,
respectively (Oueslati et al., 2021).

Lateral flow immunoassays have been developed for the
detection of KPC and OXA-48-like enzymes (Coris Bioconcept,

Gembloux, Belgium) (Wareham et al., 2016), as well as IMP,
which is recognized as the most prevalent metallo-β-lactamase
in Japan (Notake et al., 2013), and New Delhi metallo-beta-
lactamase 1 (NDM) (Boutal et al., 2017; Tada et al., 2019).
These assays demonstrate 100% sensitivity and specificity when
utilized with isolated colonies obtained from agar plates. Comini
et al. (2022) evaluated a rapid diagnostic method using MALDI-
TOF MS, LFIAs, and molecular testing to identify gram-negative
bacteria and key β-lactamases from positive blood cultures. The
NG-Test

R©

CARBA 5 and NG-Test
R©

CTX-M MULTI LFIAs
had sensitivities of 92.2 and 91.6%, respectively, whereas the
Easyplex

R©

SuperBug CRE showed 100% sensitivity for blaKPC
mutations linked to ceftazidime/avibactam resistance. No false
positives were found, making this method a cost-effective solution
for quickly identifying gram-negative organisms and resistance
indicators. In a French clinical laboratory, the NG-Test CTX-
M MULTI identified 98% of ESBL producers from colonies and
positive blood cultures (Bernabeu et al., 2020). While CTX-
M enzymes are primarily responsible for extended-spectrum
cephalosporin (ESC) resistance, some uncommon enzymes, such
as plasmid-encoded AmpC and certain carbapenemases, may not
be detected. The LFIA-CTX test showed 99.1% sensitivity and
100% specificity for detecting ESC hydrolytic activity in colonies
(Moguet et al., 2022).

A recent evaluation of ESC hydrolysis compared three
assays: the ESBL NDP test, the ZG-LactaTM test, and the
LFIA-CTX test with the NG-Test CTX-M-Multi. LFIA-CTX
demonstrated increased sensitivity and specificity, particularly for
Enterobacterales. LFIA-CTX offers the advantage of detecting more
than just ESBLs, unlike the NDP test. Its integration with NG-CTX-
M-Multi effectively enables the hydrolysis of extended-spectrum
cephalosporins (ESCs) and ESBLs. Moguet et al. (2022) introduced
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a novel LFIA strip that combines the LFIA-CTX and NG-CTX-M-
Multi assays. This strip allows clinical microbiology laboratories to
detect extended-spectrum cephalosporin (ESC) hydrolysis directly
from colonies grown on culture media used for CTX-M-like
enzymes, which represent 98% of ESBLs. This improvement in
antimicrobial stewardship allows for early treatment with new
medications. NG Biotech’s LFIA can detect MCR-1 within 15 min
via the use of streptavidin-labeled anti-MCR-1 mouse monoclonal
antibodies. A multicentric validation study revealed that this test
successfully identified 109 true-positive MCR-1 cases with no false-
negative results. Additionally, the assay detected three E. coli
isolates that produce MCR-2. In contrast, isolates producing MCR-
3, MCR-4, or MCR-5 tested negative (Smelikova et al., 2022;
Volland et al., 2019).

2.4.7 CRISPR-Cas system antimicrobials
A novel strategy is urgently needed to address the rise of

antibiotic resistance and infectious diseases caused by bacteria. The
CRISPR/Cas system, an RNA-guided adaptive immune mechanism
in prokaryotes, identifies and neutralizes invasive genetic elements
such as plasmids and phages (Tao et al., 2022). This technology is
being developed to prevent and control antimicrobial resistance,
effectively targeting DNA sequences that carry resistance genes
(Aslam et al., 2020; Duan et al., 2021; Wu et al., 2021). Over the past
few decades, CRISPR/Cas has become increasingly popular for gene
modification. Some research suggests that it could be more effective
in addressing antibiotic resistance genes in certain cell types
and experimental platforms (Manghwar et al., 2019). Antibiotic-
resistant bacteria pose a threat to human health and hinder the
progress of modern medicine (Okaiyeto et al., 2024). By swiftly
and accurately identifying resistance, healthcare practitioners can
administer appropriate treatment faster, optimize the use of current
antibiotics, and avoid resorting to “last resort” medications (Raro
et al., 2024). Therefore, the development of technology capable of
rapidly and accurately detecting drug resistance genes is crucial for
the advancement of modern medicine. Since its discovery in 2012 in
Streptococcus pyogenes, the Cas9 protein in the CRISPR system has
led to the development of numerous novel applications (Jinek et al.,
2012). The detection of antibiotic resistance genes and bacterial
infections has also become increasingly prevalent in recent years.

Müller et al. (2016) developed an optical DNA mapping
technique utilizing a single plasmid within a nanofluidic tube. This
method leverages the cleavage capabilities of Cas9 to convert a
circular plasmid into a linear form, thereby facilitating the detection
of resistance genes. The CRISPR/Cas9 system incorporates a
gene-specific RNA (gRNA) that assists in the identification of
target genes. The optical DNA mapping technique can identify
this gRNA by linearizing it at a predetermined location on the
circular plasmid. Through their investigations, researchers have
examined the potential for enhancing this detection technology
for future clinical applications. They integrate multiple gRNAs
that target various genes associated with antibiotic resistance.
In a study conducted by Nyblom et al., strains of E. coli and
K. pneumoniae were directly identified in patient samples via this
approach (Nyblom et al., 2023). By targeting antibiotic resistance
genes with the Cas9 protein, researchers have successfully identified
specific strains or subtypes, as well as plasmids associated with
these strains. This optical DNA profiling technique enables the
rapid acquisition of comprehensive diagnostic information, thereby

optimizing antibiotic treatment regimens and paving the way for
the future of precision medicine management.

In 2023, (Qin et al. (2023). developed a method using
CRISPR/Cas9-induced isothermal exponential amplification
reactions (IEXPARs) to discover antibiotic resistance genes. They
achieved this by cleaving the genes into two short fragments with
free 3’-OH ends. The cleaved DNA templates trigger exponential
amplification of IEXPAR under isothermal conditions, enabling
the direct detection of antibiotic resistance genes. This rapid
and precise method relies on the CRISPR/Cas9 system, which
cleaves DNA only in the presence of antibiotic resistance genes.
This ensures high specificity, as antibiotic-sensitive bacteria lack
these genes. After approximately half an hour of amplification,
the method has a detection limit of 81 fM, allowing for the
identification of antibiotic resistance genes at concentrations as
low as 100 fM. This method is effective in detecting both antibiotic-
resistant and antibiotic-sensitive bacteria in real biological samples
under isothermal conditions.

A study conducted in 2023 by Gao et al. (2023) introduced
a CRISPR/Cas12a-based colorimetric paper sensor. This sensor
utilizes the trans-cleavage activity of Cas12a, which is enhanced
through rolling circle replication, to generate a 3D DNAzyme
that strongly adheres to the paper. This resulted in a sensor with
a high concentration of functional DNAzymes, making it highly
bioactive. The assay was designed to swiftly detect the antibiotic
resistance gene NDM with exceptional sensitivity. In the absence of
the gene, the 3D DNAzyme produced a blue color. Conversely, the
presence of the gene triggered collateral Cas12a cleavage activity,
causing the circular template to be cleaved and preventing the
formation of the 3D DNAzyme, leading to no colorimetric signal.
This paper introduces a sensor capable of rapidly and affordably
detecting antibiotic resistance genes in pathogenic microorganisms
with femtomolar sensitivity. The results are visible to the naked
eye, and the analysis can be completed in under one and a
half hours. The programmable CRISPR probe design shown in
this study has potential for swift responses to emerging global
epidemics. At present, CRISPR-based antimicrobials are not widely
utilized, so there have been no reports of resistance to this type
of antimicrobial in clinically significant bacteria (Mayorga-Ramos
et al., 2023). Research indicates that CRISPR-Cas systems could
serve as next-generation antimicrobials, although their clinical
application remains largely unexplored. Concerns regarding the
safety and environmental implications of CRISPR-Cas technology
highlight the need for risk assessments and strict regulatory
measures for therapeutic purposes (Caplan et al., 2015). It is crucial
to engage and educate the medical community and the public
about this emerging technology to ensure its responsible and safe
utilization (Javed et al., 2018; Pursey et al., 2018).

3 Final thoughts and future
prospects

Collaboration among scientists, risk administrators,
government agencies, and businesses is essential to address
the AMR crisis and improve ASTs. Current instruments have
limitations, such as the need for specimens before therapy and
a lack of integration and mobility. Extensive biological methods
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TABLE 1 An analysis of the benefits and drawbacks of conventional and non-conventional methods used to detect antimicrobial resistance.

Technique Benefits Drawbacks

Traditional techniques

Phenotypic This technique is unique due to its simplicity and verifiable methods,
allowing it to serve as a reference, determine the MIC, and identify
pathogens.

The guidelines vary, requiring prior cultivation, which is
challenging for fastidious microbes and impossible for
non-cultivable ones.

Molecular It allows for the analysis of polymicrobial specimens, multiplexing of
resistance determinants, and quick detection of resistance genes,
facilitating a rapid response to emerging resistance factors.

AMR genes present challenges such as the need for specialized
training, high laboratory costs, difficulties in defining MIC, and
the risk of overlooking certain genes.

Techniques currently being utilized

Next-generation sequencing The ability to identify fastidious, non-cultivable microbes is
improved by long-read sequencing devices, which are convenient
and resource-efficient. Genome sequencing characterizes new
resistance mechanisms and establishes the genetic basis of
antimicrobial resistance, enabling simultaneous investigation of
resistance determinants from various hosts through whole
metagenomic sequencing.

High equipment costs, labor-intensive methods, and the need
for trained personnel. The unidentified hosts of AMR
determinants complicate the determination of the MIC, and the
link between phenotypic resistance and MIC is not fully
understood.

MALDI-TOF mass
spectrometry

Rapid investigation, high productivity, automated techniques, low
costs, small sample sizes, and screening of antimicrobial resistance.

Requires prior cultivation and significant equipment costs.
Libraries must include spectra from both sensitive and resistant
strains. AMR biomarkers face challenges such as limited
mobility, statistical differentiation, and determining the MIC.

Future techniques

DNA microarray (DNA chip)
technique

Identifying multiple resistance genes simultaneously enhances AMR
detection. This rapid, high-throughput method is crucial for
large-scale surveillance of multidrug-resistant organisms and for
addressing AMR.

High costs, and complicated data interpretation. In clinical
practice, they work best when combined with antibiotic
susceptibility testing.

Flow cytometry laser-based
technique

This method enables high-throughput, simultaneous real-time
antibiotic susceptibility testing, efficiently detecting phenotypic
resistance and mechanisms.

Requires technical expertise, is costly, complicates the
identification of new resistance mechanisms, and lacks
quantitative antibiotic susceptibility data, such as MIC values.

FTIR
spectroscopy

Rapid examination, high-throughput automation, easy sample
handling, low costs, and minimal specimen volume.

Prior cultivation, database establishment (including spectra
from resistant strains), and the acquisition of AMR biomarkers
are essential. However, these patterns are not applicable to all
microbes and require mathematical skills and discrimination
processes.

Fluorescence in situ
hybridization (FISH)

Rapid detection of AMR genes in clinical samples without culturing,
and its multiplexing and visualization capabilities improve the study
of antimicrobial resistance.

FISH faces challenges such as reliance on known resistance
genes, potential false positives, and insufficient phenotypic
susceptibility data. Its complexity and need for specialized
equipment limit its practicality in resource-poor settings and
large-scale surveillance.

Lab-on-a-chip and
microfluidics

Rapid analysis delivers high productivity, precise fluid handling, low
costs, minimal reagent and energy use, small sample sizes,
automation, and easy sample preparation.

Challenges include defining MIC, scalability and reproducibility
issues in fabrication, a large surface-to-volume ratio,
commercialization hurdles, and the need for surface treatments
to reduce adsorption.

Lateral flow immunoassays The implementation of these methods offers several advantages in
combating antimicrobial resistance, especially in terms of their
speed, cost-effectiveness, and user-friendliness in resource-limited
environments. They are particularly beneficial for quickly screening
specific resistance markers and for use in large-scale surveillance
programs.

The inability of these methods to identify specific resistance
patterns, their limited applicability, and lack of comprehensive
profiling make them unsuitable for complex or high-stakes
cases that require precise knowledge of resistance.

CRISPR-Cas-based detection
methods

Detection of antibiotic resistance and virulence genes, diagnosis of
bacterial infections, identification of genotypes and single nucleotide
polymorphisms, high specificity and sensitivity, and time-saving.

This technique encounters challenges, such as a high incidence
of bacterial escape from double-stranded DNA breaks induced
by CRISPR-Cas systems and alterations in the CRISPR-Cas
effector protein, guide RNA (gRNA), or target sequence.

remain the only viable options for infection detection. Innovative
screening technologies are essential for expediting approval and
commercialization. They should provide improved accuracy,
faster turnaround times, lower costs, enhanced accessibility, and
scalability in various healthcare settings. Faster and more reliable
detection will benefit both healthcare practitioners and patients.

Investing in the improvement of existing procedures and tools
is necessary. A MarketsandMarkets Research Pvt. An Ltd. report
predicts that the AST market will reach USD 4.2 billion by 2025
(Kaprou et al., 2021). However, the high costs of programmed
AST systems limit their use, especially among budget-constrained
organizations, despite their effectiveness in reducing incubation
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and identification periods (MarketsandMarketsTM, 2021). In 2019,
manual AST devices were popular because of their lower costs,
with the disk diffusion method holding the largest market share
due to the variety and affordability of disks. Healthcare facilities
and testing laboratories account for the largest segment of the
AST market (MarketResearch.com, 2021). AST has been proven
to reduce hospital stays and improve patient outcomes (Cassini
et al., 2019). However, the cost of molecular testing, which ranges
from $100–$250 per test (Li et al., 2017), presents a significant
barrier to its widespread implementation. Additionally, NAATs
can result in annual reagent costs exceeding $500,000 for a 500-
bed community hospital (She and Bender, 2019). In contrast, AST
using mass spectrometry costs approximately €79 per patient, with
reagent costs of approximately $1 (Patel et al., 2017). The costs
associated with Microscan and Vitek susceptibility testing typically
range between €30 and €50 (European Union, 2013). The variability
in pricing for different AST methodologies further complicates the
estimation of overall expenses (Vasala et al., 2020).

While the methods and technologies mentioned here show
promise in addressing antimicrobial resistance, several questions
remain. What percentage are consistently effective? Do they meet
industry standards? When will new techniques be widely available?
Although many claims to detect resistance within hours, they
often neglect time-consuming steps such as culture isolation and
enrichment before treatment. The traditional AST takes 18 to 36 h
and provides MICs (Gajic et al., 2022); however, it is unsuitable for
non-culturable microorganisms. The automated systems currently
available do not accommodate these organisms and have response
times of 2–24 h. Some methods can measure MICs (Kasas et al.,
2021), while MALDI-TOF MS can yield results in 2–4 h, although
it shares limitations with traditional methods and lacks processing
software (Elbehiry et al., 2022a). NAATs can be used with ASTs
when culture is not possible (Johnson et al., 2002; Theel and
Schuetz, 2022), and new AMR genes can be detected. WGS is
a promising tool for rapid AST but requires extensive datasets,
making bioinformatics a major challenge (Bogaerts et al., 2019).
An overview of the benefits and drawbacks of these techniques is
provided in Table 1.

Meeting the demands for rapid ASTs is challenging, and
no existing methods are ideal. However, some may significantly
influence the quick AST market. This market includes point-
of-need services offered by well-equipped labs in healthcare
and research facilities, which can integrate methods such as
whole-genome sequencing, PCR, and automated AST systems.
Alternatively, portable microfluidic AST systems may be better
suited for smaller labs and medical professionals, offering cost-
effectiveness, mobility, and quick turnaround times.

4 Conclusion

Identifying AMR is crucial in combating resistant infections.
Advances in diagnostic technology have revolutionized AMR
identification and treatment. While traditional methods such
as disk diffusion and MIC testing are accessible and cost-
effective, they often lack the speed and sensitivity required
to detect new resistance mechanisms. Modern technologies,
such as CRISPR-based systems, PCR diagnostics, MALDI-TOF

mass spectrometry, and next-generation sequencing (NGS), have
significantly improved AMR diagnosis by enabling comprehensive
genomic analyses and providing real-time results. However,
challenges such as cost, complexity, and the need for specialized
training persist. The future of AMR detection will likely involve
a combination of traditional and modern methods, allowing for
quicker and more accurate diagnostics. This integrated approach
can improve treatment decisions, enhance surveillance, and
ultimately lead to better patient outcomes in the global fight
against antimicrobial resistance. Continued research, investment
in infrastructure, and policy support are essential for the effective
clinical application of these advancements.
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