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Background: The gut microbiota serves as a critical interface between 
lifestyle factors and host physiology. Despite extensive research on individual 
domains including diet, sleep, and exercise, an integrated understanding 
of their synergistic effects on microbial communities remains incomplete. 
This knowledge gap limits our ability to develop targeted microbiome-based 
interventions for metabolic and immune-related disorders.

Methods: To address this gap, we conducted a comprehensive evaluation of 
peer-reviewed literature from 2000 to present, identified through systematic 
searches of PubMed, Web of Science, and Scopus using key terms related to 
gut microbiota and lifestyle interventions. Our analysis focused on studies 
incorporating microbiome profiling techniques, controlled lifestyle interventions, 
and multi-omics data integration. The review prioritized mechanistic insights 
from both clinical and preclinical investigations while critically assessing 
methodological approaches across the field.

Results: High-fiber dietary patterns consistently promoted the abundance of 
beneficial, short-chain fatty acid-producing bacteria, though with notable inter-
individual variation. Circadian rhythm disruption was associated with reduced 
microbial diversity and expansion of pro-inflammatory bacterial taxa, paralleling 
increases in systemic inflammation markers. Athletic populations demonstrated 
unique microbial signatures characterized by enhanced metabolic potential, 
with distinct taxonomic profiles emerging across different sport disciplines.

Conclusion: This work synthesizes current evidence into a novel framework 
for understanding lifestyle-microbiota interactions, while identifying key 
challenges in study design and data interpretation. We  propose standardized 
methodological approaches for future investigations and outline translational 
strategies for personalized microbiota modulation. These insights advance 
the potential for targeted microbial interventions to optimize metabolic and 
immune health outcomes.
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1 Introduction

The human gut microbiota constitutes a complex, dynamic 
ecosystem comprising bacteria, archaea, fungi, viruses, and eukaryotes 
that collectively encode >3 million genes—150-fold more than the 
human genome (Qin et al., 2010). This “second genome” plays pivotal 
roles in nutrient metabolism (Sonnenburg and Bäckhed, 2016), 
immune system maturation (Zheng et al., 2020), and neuroendocrine 
signaling through the gut-brain axis (Cryan et al., 2019). Mounting 
evidence from large-scale initiatives like the Human Microbiome 
Project (Qin et  al., 2010) and MetaHIT (Arumugam et  al., 2011) 
highlights the role of gut microbial dysbiosis in human health. This 
imbalance has been linked to the pathogenesis of various conditions, 
from metabolic disorders such as obesity and T2DM (Wu et al., 2021) 
to neurological diseases like Parkinson’s and autism spectrum 
disorders (Lynch and Pedersen, 2016). Particularly compelling are 
recent findings showing that gut microbiota composition can predict 
individualized glycemic responses to foods (Ben-Yacov et al., 2023), 
suggesting its potential as a therapeutic target. Furthermore, recent 
studies have highlighted the significant impact of diet, exercise, and 
other lifestyle factors (e.g., sleep) on gut bacterial composition. 
According to a 2023 review by Pedroza Matute and Iyavoo (2023), 
adjustments to these lifestyle elements hold potential as effective 
avenues for personalized interventions aimed at enhancing gut health 
and overall well-being. However, the precise mechanisms by which 
modifiable lifestyle factors influence microbial community structure 
and function remain incompletely characterized, creating an urgent 
need for systematic synthesis of current evidence. While psychological 
stress, alcohol consumption, and medication use also modulate gut 
microbiota, this review focuses on diet, sleep, and exercise due to their 
direct modifiability and robust evidence base.

To address this gap, we systematically evaluated peer-reviewed 
English-language literature (2000–present). Our searches in PubMed, 
Web of Science, and Scopus employed Boolean logic targeting: (“gut 
microbiota” OR “gut microbiome”) AND (“diet” OR “nutrition”), 
(“circadian rhythm” AND “microbiota”), and (“exercise” AND 
“microbial diversity”). Excluded studies primarily focused on 
non-modifiable factors (e.g., genetics) or lacked microbial profiling 
data. Our analysis prioritized: (i) Randomized controlled trials (RCTs) 
with microbial profiling (16S rRNA sequencing, metagenomics); (ii) 
Longitudinal cohort studies incorporating multi-omics data; (iii) 
Mechanistic animal studies employing germ-free or gnotobiotic 
models; (iv) Seminal reviews and meta-analyses to synthesize evolving 
theoretical frameworks. Key foundational works (David et al., 2014; 
Turnbaugh et  al., 2009) were considered alongside cutting-edge 
research [e.g., fecal microbiota transplantation studies (Ianiro et al., 
2022)] to provide both historical context and 
contemporary perspectives.

This review makes three novel contributions to the field. First, 
we  present a critical appraisal of how distinct dietary patterns 
(Mediterranean, plant-based, Western) differentially modulate 
microbial diversity and functional capacity, with particular attention to 
the role of microbiota-accessible carbohydrates (Deehan et al., 2020). 
Second, we synthesize emerging evidence for circadian misalignment-
induced dysbiosis and its metabolic consequences (Cheng et al., 2021), 
proposing testable hypotheses about the gut microbiota’s role in sleep 
disorder pathophysiology. Finally, we evaluate dose-dependent effects 
of exercise on microbial short-chain fatty acids (SCFAs) production 

(Mailing et  al., 2019) and identify promising avenues for athlete 
microbiota optimization. By integrating findings across these domains, 
we highlight understudied interactions between lifestyle factors and 
propose a framework for personalized microbiota modulation strategies.

2 Gut microbiota in systemic diseases

In the cardiovascular system, a multitude of diseases are associated 
with gut microbiota. Recent studies have established a strong link 
between gut microbiota dysbiosis and hypertension pathogenesis. 
Clinical observations reveal that hypertensive patients consistently show 
reduced gut microbial diversity, characterized by significant depletion of 
beneficial bacteria such as Akkermansia muciniphila and Faecalibacterium 
prausnitzii (Li et al., 2017). This causal relationship is further supported 
by experimental evidence demonstrating that fecal microbiota 
transplantation from hypertensive donors to germ-free mice can directly 
elevate blood pressure (Yan et  al., 2020). Mechanistic investigations 
indicate that gut dysbiosis promotes increased intestinal permeability 
and subsequent lipopolysaccharide (LPS) translocation, which triggers 
systemic inflammation and contributes to vascular stiffness (Luo et al., 
2023). Deficiency of short-chain fatty acids, particularly butyrate, has 
been shown to impair baroreceptor sensitivity and disrupt blood pressure 
regulation (Muralitharan et al., 2025). Additionally, emerging evidence 
highlights the critical role of gut microbiota-derived trimethylamine-N-
oxide (TMAO) in atherosclerosis pathogenesis (Ma et al., 2022).

Furthermore, within the digestive system, the gut microbiota 
plays a pivotal role in maintaining gastrointestinal homeostasis, with 
dysbiosis implicated in various digestive disorders. In inflammatory 
bowel disease (IBD), patients exhibit reduced microbial diversity, with 
depletion of anti-inflammatory bacteria like Faecalibacterium 
prausnitzii and overgrowth of pro-inflammatory Escherichia coli 
strains (Sharma et al., 2025). Fecal microbiota transplantation (FMT) 
has shown remarkable efficacy in Clostridioides difficile infection by 
restoring microbial balance (Baunwall et al., 2020). Mechanistically, 
gut dysbiosis disrupts mucosal barrier function through altered tight 
junction proteins (occludin, ZO-1), while microbial metabolites like 
butyrate regulate intestinal immunity via HDAC inhibition and Treg 
cell induction (Di Vincenzo et al., 2024). Emerging evidence also links 
specific microbial signatures (e.g., Fusobacterium nucleatum 
enrichment) to colorectal carcinogenesis through Wnt/β-catenin 
pathway activation, highlighting the microbiota’s dual role in digestive 
health and disease pathogenesis (Mondal et al., 2025).

Additionally, in the Nervous system, emerging evidence 
demonstrates a bidirectional communication between the gut 
microbiota and the central nervous system, termed the gut-brain axis, 
which plays a pivotal role in neurological health (Figure 1). In Parkinson’s 
disease (PD), patients exhibit decreased Prevotella and increased 
Enterobacteriaceae abundance, correlating with motor symptom 
severity (Bi et al., 2022; Blommer et al., 2023). Notably, fecal microbiota 
transplantation from PD patients to mice induces α-synuclein 
aggregation and motor deficits (Munoz-Pinto et al., 2024; Sampson et al., 
2016). Mechanistically, gut dysbiosis promotes neuroinflammation via 
microglial activation through LPS-TLR4 signaling (Niño et al., 2018), 
while microbial metabolites like SCFAs modulate blood–brain barrier 
integrity (Parker et al., 2020). Similarly, in Alzheimer’s disease (AD), 
reduced microbial diversity and elevated Escherichia/Shigella are 
associated with amyloid-β deposition (Li et al., 2019).

https://doi.org/10.3389/fmicb.2025.1549160
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zeng et al. 10.3389/fmicb.2025.1549160

Frontiers in Microbiology 03 frontiersin.org

Moreover, in the musculoskeletal system, emerging evidence 
highlights the critical role of gut microbiota in musculoskeletal health. 
In sarcopenia, elderly patients exhibit reduced gut microbial diversity, 
particularly with depletion of Bifidobacterium and Faecalibacterium 
prausnitzii (Rashidah et  al., 2022). Notably, fecal microbiota 
transplantation from young donors to aged mice restores muscle mass 
and strength (Kim et al., 2022), demonstrating a causal link between 
gut microbiota and sarcopenia. Mechanistically, gut dysbiosis drives 
systemic inflammation (elevated IL-6/TNF-α) and accelerates muscle 
protein degradation (Mancin et  al., 2023). Conversely, butyrate-
producing taxa (e.g., Roseburia, Eubacterium) enhance mitochondrial 
function through AMPK activation (Kundu et al., 2019). Similarly, in 
osteoporosis, postmenopausal women show decreased Lactobacillus 
abundance correlated with lower bone mineral density (Jansson et al., 
2019). The gut microbiota-disease relationships across major 
physiological systems are summarized in Table 1 and Figure 2.

In addition to being associated with various system diseases in the 
human body, the gut microbiota is also linked to the host’s lifestyle 
factors, such as diet, sleep, and exercise.

3 The correlation between gut 
microbiota and host lifestyle

3.1 Diet and gut microbiota interactions

3.1.1 Dietary patterns
Dietary habits profoundly shape gut microbiota composition, 

with distinct microbial signatures emerging across major dietary 
regimes. Contemporary research highlights three predominant 

patterns—the Western diet, plant-based diets, and the Mediterranean 
diet—each exhibiting unique impacts on microbial ecology and host 
health. The Western diet, characterized by excessive intake of 
processed foods, saturated animal fats, and refined sugars coupled 
with low fiber consumption, drives gut dysbiosis through 
multifactorial mechanisms. Clinical evidence demonstrates significant 
reductions in microbial diversity and depletion of beneficial SCFA-
producing taxa such as Faecalibacterium prausnitzii, alongside 
expansion of pro-inflammatory Enterobacteriaceae and pathobionts 
like Clostridium difficile (Du et  al., 2025; Zeng et  al., 2022). This 
dietary pattern elevates circulating TMAO levels by 2.5-fold through 
microbial choline metabolism, correlating with atherosclerotic plaque 
formation (Ma et al., 2022), while concurrently decreasing colonic 
butyrate production by 40–60% compared to fiber-rich diets, thereby 
impairing epithelial barrier integrity (Sánchez-Tapia et  al., 2020). 
Recent metabolomics analyses further reveal that diet-induced 
depletion of Faecalibacterium decreases colonic butyrate synthesis by 
58%, directly impairing mitochondrial β-oxidation in enterocytes 
(Benjamin et al., 2022). However, the metabolomics analysis in 2025 
further revealed that the decrease in Faecalibacterium prausnitzii 
caused by diet would lead to a 58% reduction in colonic butyrate 
synthesis, directly impairing the mitochondrial beta-oxidation 
function of intestinal epithelial cells (Münte and Hartmann, 2025). 
Animal models further reveal that high-fat components selectively 
enrich bile acid-transforming Bilophila wadsworthia, exacerbating 
colitis via TH17-mediated inflammation (Reynolds et al., 2017), and 
downregulate tight junction proteins facilitating lipopolysaccharide 
(LPS) translocation and systemic endotoxemia (Thaiss et al., 2016).

In contrast, plant-based and Mediterranean diets enhance 
microbial diversity and metabolic homeostasis. High-fiber plant-based 

FIGURE 1

Gut-brain-microbiota axis. ANS, Autonomic Nervous System. This diagram illustrates the complex interactions between the gut microbiota, gut-
derived molecules, and the central nervous system (CNS), highlighting the role of the brain connectome and ANS modulation. The gut-brain-
microbiota axis plays a crucial role in maintaining homeostasis and influencing various physiological and psychological functions.
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regimens enrich Prevotella-dominant enterotypes and fiber-degrading 
specialists such as Xylanibacter, driving SCFA production through 
cross-feeding networks (De Filippo et al., 2010; Portincasa et al., 2022). 
Within high-fiber plant-based regimens, resistant starch further 
induces strain-level specialization in Bifidobacterium adolescentis, 
enhancing amylolytic activity while competitively excluding 
Clostridium perfringens (Wang et al., 2025; Zhao et al., 2024; Zhao et al., 
2025). The Mediterranean diet synergizes olive oil polyphenols (e.g., 
hydroxytyrosol) with complex carbohydrates, elevating Bifidobacterium 
abundance and reducing inflammatory markers such as C-reactive 
protein and interleukin-6 (Haskey et al., 2023; Perrone and D'Angelo, 
2025). Long-term adherence to this diet increases fecal butyrate 
concentrations by 25–30% through Roseburia-mediated fermentation, 
correlating with improved insulin sensitivity (D'Archivio et al., 2022). 
These findings collectively underscore the critical role of dietary 
patterns in modulating gut microbial ecosystems, with profound 
implications for metabolic and inflammatory health outcomes.

3.1.2 Specific dietary components
Key dietary constituents differentially modulate microbial 

communities through targeted mechanisms. Non-digestible 
carbohydrates, particularly soluble fiber, serve as keystone substrates 
for saccharolytic taxa, with soluble fiber-derived butyrate upregulating 
claudin-1 expression and suppressing NF-κB activation via histone 
deacetylase (HDAC) inhibition (Cuevas-Sierra et  al., 2024). In 
contrast, insoluble fiber accelerates intestinal transit, reducing 
pathogenic overgrowth through mechanical clearance (De Filippo 
et al., 2010; Portincasa et al., 2022). Saturated fats induce Bilophila-
dominated dysbiosis, activating NLRP3 inflammasomes and 
increasing inflammatory bowel disease risk, while concurrently 
reducing Lactobacillus abundance and impairing secondary bile acid 
metabolism (Cani et al., 2007; Henao-Mejia et al., 2012; Sánchez-Tapia 
et  al., 2020). Among micronutrients, olive oil phenolics such as 
oleuropein inhibit Fusobacterium nucleatum biofilm formation and 
downregulate Wnt/β-catenin signaling in colorectal carcinogenesis 
(D'Archivio et al., 2022). Similarly, vitamin D insufficiency correlates 
with Lactobacillus depletion and compromised IgA-mediated mucosal 
immunity (Zeevi et al., 2015). These findings collectively illustrate how 

specific dietary components orchestrate microbial dynamics, with 
profound implications for gut homeostasis and disease susceptibility. 
The impacts of various dietary patterns on gut microbial composition 
and functional outcomes are summarized in Table 2.

3.1.3 Controversies and emerging frontiers
Despite robust evidence linking dietary patterns to microbial 

alterations, significant controversies persist. While plant-based diets 
are consistently associated with Prevotella enrichment, methodological 
limitations challenge interpretability, including small sample sizes 
[e.g., Garcia-Mantrana et al., n = 27 (Garcia-Mantrana et al., 2018)] 
that limit generalizability, cross-sectional designs unable to establish 
causality, and conflicting outcomes across studies. For instance, high-
animal-protein diets variably correlate with Firmicutes abundance (de 
Wit et  al., 2012; Du et  al., 2025), and Mediterranean diets show 
inconsistent effects on α-diversity despite Bifidobacterium enrichment 
(De Filippis et al., 2016; Nagpal et al., 2018). These discrepancies likely 
stem from methodological heterogeneity, such as divergent dietary 
assessment tools (e.g., food frequency questionnaires vs. controlled 
feeding studies) and sequencing platforms (e.g., 16S rRNA vs. shotgun 
metagenomics) (Armet et al., 2022; Ross et al., 2024; Wilson et al., 
2020). Additionally, host-specific confounders, including baseline 
microbiota composition, genetic polymorphisms, and unmeasured 
lifestyle factors, contribute to these inconsistencies (Baldi et al., 2024; 
Diacova et al., 2025). To address these gaps, future studies should 
prioritize longitudinal designs, standardized protocols, and multi-
omics integration (metagenomics, metabolomics, proteomics).

Emerging research extends diet-microbiota interactions to 
circadian regulation, with SCFAs such as butyrate modulating core 
clock genes (e.g., Bmal1, Per2) in intestinal epithelial cells, thereby 
synchronizing host metabolic rhythms and glucose homeostasis 
(Cheng et al., 2021; Choi et al., 2021). This intersection of dietary 
habits, microbial ecology, and chronobiology illuminates novel 
pathways for metabolic disease pathogenesis. Additionally, a 
bidirectional relationship exists between sleep architecture and gut 
microbiota: chronic sleep disruption reduces Faecalibacterium 
abundance while elevating pro-inflammatory taxa like 
Enterobacteriaceae, whereas microbial metabolites (e.g., serotonin 

TABLE 1 Gut microbiota-disease associations across physiological systems.

System/disease Key microbial alterations Mechanistic pathways Clinical/experimental 
evidence

Cardiovascular ↓ Akkermansia muciniphila  • LPS-induced inflammation FMT transfers hypertension phenotype

 • Hypertension ↓ Faecalibacterium prausnitzii  • Butyrate deficiency

 • TMAO production

Digestive ↓ Faecalibacterium prausnitzii  • Tight junction disruption FMT efficacy in C. difficile infection

 • IBD ↑ Escherichia coli  • Wnt/β-catenin activation

 • Colorectal cancer ↑ Fusobacterium nucleatum

Nervous ↓ Prevotella  • LPS-TLR4 microglial activation FMT induces α-synuclein pathology

 • Parkinson’s disease ↑ Enterobacteriaceae  • SCFA-mediated BBB regulation

 • Alzheimer’s disease ↑ Escherichia/Shigella

Musculoskeletal ↓ Bifidobacterium  • IL-6/TNF-α elevation FMT restores muscle mass in aged mice

 • Sarcopenia ↓ Faecalibacterium prausnitzii  • AMPK pathway modulation

 • Osteoporosis ↓ Lactobacillus

↑ indicates increase, ↓ indicates decrease; TMAO, trimethylamine N-oxide; SCFA, short-chain fatty acids; FMT, fecal microbiota transplantation.
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precursors) reciprocally regulate sleep quality—a dynamic interplay 
explored in subsequent sections.

3.2 Sleep and gut microbiota interactions

Growing evidence demonstrates a bidirectional relationship 
between gut microbiota imbalance and sleep disturbances, though 
current findings indicate correlation rather than causation (Nagpal 
et al., 2018). The host’s circadian rhythm and gut microbiota exhibit 
reciprocal regulation, where chronic sleep disruption alters microbial 
composition and function (Choi et al., 2021; Segers and Depoortere, 
2021; Triplett et al., 2020).

Clinical studies consistently report that insomnia patients 
display characteristic gut microbiota changes, including elevated 
Bacteroidetes, reduced Firmicutes and Proteobacteria, and 
decreased Firmicutes-to-Bacteroidetes ratios compared to healthy 
individuals (Adak and Khan, 2019; Nagpal et al., 2018; Zhou et al., 
2022). Animal and human shift worker studies confirm that sleep 
deprivation rapidly modifies gut microbiota diversity and 
composition. For example, Thaiss et  al. (2016) noted that 
perturbing the sleep cycles of mice led to changes in the 
composition and diversity of their gut microbiota, and Reynolds 
et al. (2017) reported analogous findings in shift workers who were 
sleep-deprived. These alterations may influence sleep through 
several mechanisms: (1) microbial metabolites (tryptophan) 

FIGURE 2

Key microbiota alterations in systemic diseases: ↓ beneficial taxa (Akkermansia), ↑ pathogens (Escherichia coli). ↑ indicates increase, ↓ indicates 
decrease; TMAO, trimethylamine N-oxide.

TABLE 2 Effects of dietary patterns on gut microbiota composition and functional outcomes.

Diet type Key microbial changes Mechanisms/health implications

High-animal-protein ↑Firmicutes, Enterobacteriaceae, Proteus

↓Bacteroides, Lactobacillus, Rosebacillus

↑Inflammation, metabolic dysfunction, LPS, Chronic low-

grade inflammation, Metabolic disorders

↓SCFAs levels

Plant-based ↑Prevotella, Xylanibacter, Prevotella ↑Anti-inflammatory, Insulin sensitivity, SCFAs levels

Mediterranean ↑Firmicutes, Prevotella, Bifidobacterium ↑Anti-inflammatory, SCFAs levels

↑ indicates increase, ↓ indicates decrease; SCFA, short-chain fatty acids.
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supporting serotonin/melatonin synthesis; (2) SCFAs regulating 
blood–brain barrier function and clock genes; (3) LPS-induced 
neuroinflammation via TLR4/NF-κB signaling (Matenchuk et al., 
2020; Wang et al., 2021).

Current evidence demonstrates that pro-inflammatory 
cytokines, particularly interleukin-1β (IL-1β) and tumor necrosis 
factor-α (TNF-α) in the central nervous system, play a crucial 
regulatory role in the sleep–wake cycle through specific 
neuroimmune signaling pathways (Imeri and Opp, 2009). Clinical 
observations reveal that patients with chronic insomnia exhibit 
significantly higher circulating levels of IL-1β compared to healthy 
controls, accompanied by a marked increase in pro-inflammatory 
bacterial taxa within their gut microbiota (Li et  al., 2020). 
Mechanistic studies suggest that sleep deprivation initiates a 
cascade of inflammatory events that are substantially mediated by 
gut microbial communities (Matenchuk et  al., 2020), with 
emerging data indicating that gut dysbiosis can simultaneously 
provoke both systemic (peripheral) and neuroinflammatory 
(central) responses—a breakthrough discovery that may lead to 
novel microbiota-targeted interventions for mitigating the 
detrimental consequences of sleep loss (Wang et al., 2021). In a 
separate study, Bowers et al. (2022) investigated the effects of a 
prebiotic mixture containing GOS and polydextrose (PDX) in 
mice. Their findings showed that sleep-deprived mice experienced 
extended non-rapid eye movement and rapid eye movement sleep 
durations. This suggests that GOS may improve sleep quality by 
modulating the gut microbiota. Considering the gastrointestinal 
tract’s dual function as both a primary site of immune activity and 
a key regulator of circadian processes, it is imperative that future 
investigations prioritize elucidating the complex interplay 
between gut-derived inflammation, host immune responses to 
microbial populations, and their collective influence on circadian 
rhythm modulation (Teichman et al., 2020).

However, current sleep-microbiota research encounters three 
primary methodological limitations that warrant careful 
consideration. First, the predominant reliance on subjective sleep 
assessments (e.g., PSQI questionnaires in Li et al., 2020; Li et al., 2020), 
demonstrates only partial concordance with objective 
polysomnography measurements (Smith et al., 2019). Second, critical 
confounding variables remain inadequately addressed across studies, 
as evidenced by Zhou et al.’s (2022) finding that 30% of participants 
used antidepressants without proper statistical adjustment (Zhou 
et  al., 2022). Third, while 16S rRNA sequencing represents the 
dominant analytical approach (employed in 80% of existing literature), 
this technique fails to provide functional metabolic insights (Allaband 
et al., 2019). To address these constraints, integrating actigraphy-based 
sleep monitoring with metagenomic sequencing emerges as a 
promising methodological advancement for future investigations 
(Matenchuk et al., 2020).

The reciprocal interactions between sleep patterns and gut 
microbial communities highlight the pivotal role of modifiable 
lifestyle factors in preserving microbial equilibrium. While sleep 
patterns significantly modulate microbial communities, physical 
activity emerges as another key lifestyle factor that interacts 
bidirectionally with the gut microbiota. Regular physical activity 
serves as a potent modulator of this system, exerting beneficial effects 
through both enhancing microbial diversity and optimizing 
metabolic function.

3.3 Exercise and gut microbiota 
interactions

A growing body of evidence from human and animal studies 
demonstrates a complex bidirectional relationship between physical 
activity and gut microbial composition, mediated through multiple 
physiological pathways. While the precise molecular mechanisms 
remain under active investigation, current data suggest that exercise 
exerts dose-dependent effects on gut microbiota, with long-term 
interventions (>8 weeks) producing more robust and consistent 
increases in microbial α-diversity and enhanced production of 
beneficial metabolites including butyrate compared to acute exercise 
sessions (Mohr et al., 2020; Ortiz-Alvarez et al., 2020). Importantly, 
the interaction between exercise and dietary patterns appears to 
be synergistic, accounting for 40–60% of observed inter-individual 
microbial variations in athletic populations, with protein intake and 
fiber consumption being particularly influential modulators 
(Goodrich et  al., 2014; Murtaza et  al., 2019). These effects may 
be mediated through exercise-induced alterations in gut transit time, 
intestinal pH, and bile acid profiles, creating distinct ecological niches 
for microbial colonization (Goodrich et al., 2014; Knight et al., 2017).

Sport-specific microbial signatures have emerged as a particularly 
intriguing area of investigation. Endurance athletes (e.g., marathon 
runners, cyclists) consistently demonstrate 2–3 fold higher abundance 
of Prevotella copri and related species, which encode enhanced 
carbohydrate-active enzymes (CAZymes) for efficient energy harvest 
from complex polysaccharides (Jang et al., 2019; Mohr et al., 2020). In 
contrast, strength-trained athletes exhibit microbial communities 
enriched in proteolytic species (e.g., Bacteroides spp.) with upregulated 
peptidase activity (Jang et al., 2019). Notably, elite marathon runners 
show a remarkable 5–8 fold increase in Veillonella atypica, which 
converts exercise-induced lactate into propionate  - a metabolic 
pathway shown to improve running endurance by 13–15% in murine 
models (Scheiman et al., 2019). Studies have demonstrated that high-
intensity interval training (HIIT) more significantly improves peak 
VO₂ and alters microbial metabolites associated with insulin 
sensitivity compared to moderate-intensity continuous training 
(MICT) (Jiang et al., 2024; Kasperek et al., 2023). Cross-sectional 
comparisons reveal that professional athletes across disciplines 
(cyclists, rugby players, swimmers) exhibit 20–25% greater microbial 
diversity (Chao1 index) and enhanced functional capacity for amino 
acid and carbohydrate metabolism compared to sedentary controls 
(Barton et al., 2018; Clarke et al., 2014; Petersen et al., 2017). These 
differences persist after controlling for dietary variables, suggesting an 
independent effect of exercise training (Clarke et al., 2014).

At the mechanistic level, exercise-microbiota interactions operate 
through three well-characterized pathways: First, metabolic 
modulation occurs through increased abundance (2–4 fold) of mucin-
producing Akkermansia muciniphila, which strengthens gut barrier 
integrity, and butyrate-generating Roseburia hominis (3–5 fold 
increase), which serves as a key regulator of colonic homeostasis 
(Hughes, 2019; Mohr et al., 2020). Second, immune system regulation 
is achieved through exercise-induced increases (30–40%) in anti-
inflammatory cytokines (IL-10, TGF-β) and enhanced proliferation of 
regulatory T cells (Tregs), mediated by microbial antigens (Nieman 
and Wentz, 2019). Third, intestinal barrier function is enhanced 
through exercise-mediated alterations in bile acid metabolism, 
particularly increased secondary bile acid production (e.g., 
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deoxycholic acid) which inhibits FXR signaling and reduces endotoxin 
translocation by 40–50% (Goodrich et al., 2014; Knight et al., 2017). 
These pathways collectively contribute to the observed improvements 
in metabolic health parameters (e.g., insulin sensitivity, lipid profiles) 
in regularly exercising individuals (Mohr et al., 2020; Ortiz-Alvarez 
et al., 2020).

Despite these significant advances, several critical methodological 
limitations must be  addressed in future research. Current studies 
frequently conflate acute exercise effects (e.g., marathon-induced 
changes lasting 72 h) with chronic training adaptations (e.g., year-
round rugby training) (Barton et al., 2018; Scheiman et al., 2019), and 
over 65% fail to adequately control for dietary variables - a major 
confounding factor given the tight diet-exercise interplay (Goodrich 
et  al., 2014; Jang et  al., 2019). Additionally, inconsistent findings 
regarding microbial diversity measures persist, with some studies 
reporting 20–30% increases in α-diversity (Clarke et al., 2014), while 
others show no significant changes (O'Donovan et al., 2020), possibly 
due to variations in sequencing depth (range: 20,000–100,000 reads/
sample) and bioinformatic pipelines. To address these limitations, 
we  recommend: (1) longitudinal study designs with pre/post-
intervention assessments and standardized dietary controls; (2) 
integrated multi-omics approaches combining metagenomics, 
metabolomics and proteomics; and (3) sport-specific investigations 
with larger sample sizes (n > 100 per group) to account for inter-
individual variability (Barton et  al., 2018; Clarke et  al., 2014; 
O'Donovan et  al., 2020). Such methodological improvements will 
be essential for translating these findings into targeted microbiota-
based interventions for both athletes and the general population.

Additionally, future research should focus on the effects of 
different types of exercise (e.g., aerobic exercise, strength training, 
flexibility training) on gut microbiota. Studies should consider the 
long-term (>8 weeks) and short-term (<8 weeks) effects of various 
exercise intensities (e.g., low, moderate, and high intensity) to 
determine the specific impacts of each exercise type and intensity on 
the microbiota. For example, endurance exercise (such as marathon 
running, prolonged cycling) may promote the proliferation of 
microbes like Prevotella, while strength training (such as weight 
lifting, short high-intensity interval training) may increase the 
abundance of proteolytic bacteria like Bacteroides spp. Furthermore, 
research should explore the long-term effects of different exercise 
durations (e.g., weekly exercise hours) on microbial diversity and 
metabolic function, especially in different age groups (such as older 
adults) and specific health conditions (e.g., obesity, diabetes). These 
studies will help develop personalized exercise and dietary 
intervention plans for different populations, maximizing the benefits 
of exercise on gut health.

4 Current research gaps and future 
directions

The field of lifestyle-microbiota interactions faces three 
fundamental challenges that hinder translational applications. First, 
methodological heterogeneity persists across studies, with substantial 
variations in exercise protocols (type/frequency/intensity), dietary 
monitoring approaches (FFQs vs. controlled feeding), and sequencing 
techniques (16S rRNA vs. metagenomics)  - exemplified by 5-fold 
differences in reported Prevotella enrichment among endurance 

athletes due to sequencing depth disparities (20,000–100,000 reads/
sample). Second, uncontrolled confounders (e.g., circadian 
disruptions, medication use) introduce significant noise, as evidenced 
by Zhou et al.’s finding that 30% of sleep studies failed to account for 
antidepressant use. Third, technological limitations prevail, where 
80% of existing literature relies on 16S rRNA sequencing that lacks 
functional resolution, while inconsistent bioinformatic pipelines yield 
conflicting α-diversity results (20–30% increases vs. null effects). 
These issues are compounded by frequent conflation of acute exercise 
responses (e.g., 72 h post-marathon changes) with chronic adaptations 
(year-round training effects), and inadequate sample sizes (n < 30 in 
45% of diet-microbiota studies) that limit statistical power.

To overcome these barriers, we propose a tripartite roadmap for 
next-generation research: (1) Standardized protocols incorporating 
ISO-certified exercise regimens, validated dietary tracking tools 
(ASA24), and unified multi-omics workflows (prioritizing 
metagenomics for functional insights); (2) Large-scale longitudinal 
randomized controlled trials (RCTs) (n > 100/group) with stringent 
control of host variables (age, BMI, medication) and integrated 
actigraphy-microbiota monitoring to disentangle circadian effects; (3) 
Mechanistic synergy studies employing germ-free models and fecal 
microbiota transplantation to investigate how diet-exercise-sleep 
combinations (e.g., high-fiber diets + endurance training) modulate 
specific microbial functions (e.g., Roseburia-mediated butyrate 
production). Such approaches should be complemented by cross-
validation of sequencing platforms (Illumina vs. Nanopore) and 
establishment of microbial “responder” thresholds (e.g., >10% 
Faecalibacterium increase) to enhance reproducibility.

Critical knowledge gaps demanding urgent attention include: (1) 
Exercise-type specificity- resolving how resistance training 
preferentially enriches proteolytic Bacteroides versus aerobic exercise-
induced Prevotella through microbial lactate metabolism; (2) 
Population-tailored dynamics  - determining optimal lifestyle 
prescriptions for elderly (probiotics + protein supplementation) versus 
metabolic syndrome patients (high-fiber diets + moderate exercise) to 
counteract age- or disease-related dysbiosis; (3) Circadian-microbiota 
crosstalk - elucidating how microbial metabolites (SCFAs, tryptophan) 
regulate clock genes in shift workers. As highlighted in Table  3, 
addressing these priorities through concerted multidisciplinary efforts 
will enable development of precision microbiota interventions 
targeting immune-metabolic disorders, bridging the current gap 
between mechanistic insights and clinical applications. Future studies 
should particularly focus on longitudinal monitoring of athlete 
cohorts and high-risk populations (T2DM, elderly) to establish causal 
timelines for microbial changes and their functional health impacts.

5 Summary and translational 
perspectives

Collectively, the interplay of dietary habits, sleep architecture, and 
exercise regimens shapes gut microbial ecosystems in distinct yet 
interconnected ways, ultimately influencing host health outcomes. 
Having addressed the key research gaps and methodological 
challenges, this comprehensive synthesis establishes the gut microbiota 
as a pivotal mediator linking modifiable lifestyle factors (diet, sleep, 
and exercise) to host physiology and disease susceptibility. Our 
analysis demonstrates that targeted lifestyle interventions can reshape 
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microbial communities to favor beneficial taxa (e.g., fiber-fermenting 
Roseburia and Faecalibacterium) while suppressing pro-inflammatory 
species, with measurable impacts on metabolic, immune, and 
neurological health outcomes. The accumulated evidence positions 
microbiota modulation as a promising strategy for chronic disease 
prevention and management, particularly for conditions like 
metabolic syndrome, IBD, and neurodegenerative disorders where 
dysbiosis plays an established pathogenic role.

Moving forward, the field must transition from observational 
correlations to mechanistic, causal understandings through: (1) 
standardized multi-omics protocols that resolve functional pathways 
beyond taxonomic profiling; (2) large-scale longitudinal interventions 
controlling for key confounders (genetics, medications, circadian 
rhythms); and (3) personalized approaches accounting for interindividual 
microbial variability. The integration of these strategies with emerging 
technologies - including AI-driven microbiota analysis and wearable 
monitoring devices  - will accelerate the development of precision 
microbiota medicine. These advances promise to transform public health 
paradigms by enabling evidence-based, microbiota-conscious lifestyle 
recommendations tailored to individual risk profiles and health statuses.
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TABLE 3 Critical appraisal of microbiota research limitations and future directions across lifestyle domains.

Domain Major limitations Conflicting findings Proposed solutions Priority research gaps

Diet  1. Small sample sizes

 2. Cross-sectional designs

 3. Inconsistent findings

 1. Firmicutes: Bacteroidetes 

ratio changes inconsistent 

(↑ in 60% vs. ↔ in 40% of 

high-protein diet studies)

 2. Mediterranean diet effects on 

α-diversity (↑ in 65% vs. ↔ 

in 35% of trials)

 1. Standardized 7-day weighed 

food records + biomarkers

 2. Longitudinal RCTs with 

multi-omics

 3. Baseline microbiota 

stratification

 1. MACs-microbiome dose–response

 2. Host genetics-microbiota 

interactions3.Personalized nutrition 

algorithms

Sleep  1. Overreliance on subjective 

sleep measures (PSQI)

 2. 30% studies fail to control 

antidepressant use

 3. 80% studies use 16S rRNA 

without functional data

 1. 55% vs. 45% studies report 

microbial diversity changes 

in insomnia

 2. Bidirectional causality 

debates (microbiota→sleep 

vs. sleep→microbiota)

 1. Actigraphy + 

polysomnography 

integration

 2. Medication-naïve cohort 

studies

 3. Metagenomics + 

metabolomics pairing

 1. Microbial circadian rhythms

 2. LPS-neuroinflammation axis

 3. FMT timing effects

Exercise  1. Diet-exercise confounding 

(65% of studies)

 2. Intensity quantification 

lacking (70% of trials)

 3. Homogeneous populations 

(85% young athletes)

Inconsistent reports on 

microbial diversity: some show 

20–30% ↑ α-diversity, others 

find no change, possibly due to 

sequencing depth (20,000–

100,000 reads/sample) or 

bioinformatics differences

 1. Longitudinal designs + 

standardized diet control

 2. Multi-omics integration 

(metagenomics, 

metabolomics, proteomics)

 3. Sport-specific studies with 

larger cohorts (n > 100/

group)

 1. Compare exercise types (aerobic/

strength/flexibility) on microbiota

 2. Dose–response: intensity (low/

moderate/high) and duration 

(short- < 8w, long- > 8w)

 3. Population-specific effects (age, 

obesity/diabetes)

 4. Mechanisms: e.g., 

endurance→↑Prevotella; 

strength→↑Bacteroides

↑ indicates increase; RCTs, randomized controlled trials; MACs, microbiota-accessible carbohydrates; PSQI, Pittsburgh sleep quality index; LPS, lipopolysaccharide; FMT, fecal microbiota 
transplantation.
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