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Vibrio parahaemolyticus is the leading cause of illnesses and outbreaks linked to 
seafood consumption across the globe. Understanding how this pathogen may 
be adapted to persist along the farm-to-table supply chain has applications for 
addressing food safety. This study utilized machine learning to develop robust 
models classifying genomic diversity of V. parahaemolyticus that was isolated 
from environmental (n = 176), seafood (n = 975), and clinical (n = 865) sample 
origins. We  constructed a pangenome of the respective genome assemblies 
and employed random forest algorithm to develop predictive models to identify 
gene clusters encoding metabolism, virulence, and antibiotic resistance that were 
associated with isolate source type. Comparison of genomes of all seafood-clinical 
isolates showed high balanced accuracy (≥0.80) and Area Under the Receiver 
Operating Characteristics curve (≥0.87) for all of these functional features. Major 
virulence factors including tdh, trh, type III secretion system-related genes, and four 
alpha-hemolysin genes (hlyA, hlyB, hlyC, and hlyD) were identified as important 
differentiating factors in our seafood-clinical virulence model, underscoring the 
need for further investigation. Significant patterns for AMR genes differing among 
seafood and clinical samples were revealed from our model and genes conferring 
to tetracycline, elfamycin, and multidrug (phenicol antibiotic, diaminopyrimidine 
antibiotic, and fluoroquinolone antibiotic) resistance were identified as the top 
three key variables. These findings provide crucial insights into the development 
of effective surveillance and management strategies to address the public health 
threats associated with V. parahaemolyticus.
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1 Introduction

Vibrio parahaemolyticus is a Gram-negative, halophilic bacterium that is widely distributed 
in estuarine, marine, and coastal surroundings, and frequently detected in diverse seafood 
products such as clams, shrimps, crabs, and oysters (Su and Liu, 2007). V. parahaemolyticus is 
an important foodborne pathogen that is responsible for illnesses associated with seafood 
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throughout the world and is often linked to the consumption of raw 
or improperly handled seafood (DePaola et al., 2003). Typical signs 
and symptoms triggered by the infection of V. parahaemolyticus 
encompass watery diarrhea, abdominal cramps, nausea, vomiting, 
fever, headache, and bloody diarrhea (Centers for Disease Control and 
Prevention, 2013). Immunocompromised persons are at highest risk 
for morbidity and mortality (Centers for Disease Control and 
Prevention, 2013). Outbreaks/infections caused by V. parahaemolyticus 
usually happen in regions with high water temperatures. However, the 
ongoing climate changes are believed to expand the prevalence of 
V. parahaemolyticus geographically and increase human exposure to 
V. parahaemolyticus on a global scale (Zhang W. et  al., 2023). 
Therefore, the development of efficient management strategies to 
control the spread of V. parahaemolyticus and minimize related food 
safety risks is needed.

Native to estuarine environments, V. parahaemolyticus can become 
a problematic contaminant among the microflora in shellfish as it takes 
on a broad niche range. In general, bacterial attachment and 
internationalization are described as the two critical processes 
mediating its transmission to and persistence in raw seafood (Brauge 
et al., 2024). Human consumption of contaminated seafood products 
may then result in the development of foodborne illness. However, the 
specific mechanisms involved in V. parahaemolyticus transmission and 
survival across diverse lifestyles, from the environment to seafood and 
consumers remain unclear. Thermostable direct haemolysin (TDH) and 
thermostable-related haemolysin (TRH) are the two major virulence 
factors in V. parahaemolyticus that may play important roles, as tdh and 
trh have been identified as reliable gene markers for the detection of 
pathogenic strains due to their prevalence in clinical isolates 
(Raghunath, 2015). Nevertheless, several studies have demonstrated 
that tdh and trh negative strains also cause infection, which indicates 
that additional virulence factors may be involved as well (Chao et al., 
2010; Velazquez-Roman et al., 2012; Zha et al., 2023). Furthermore, 
while antibiotics have been widely adopted as the major treatment for 
V. parahaemolyticus infection, especially for severe cases (Loo et al., 
2020), there is a growing concern for the emergence of antibiotic 
resistance among the species (Letchumanan et al., 2015; Letchumanan 
et al., 2016; Loo et al., 2020). Comparing the metabolism, virulence, and 
antibiotic resistance profiles of different V. parahaemolyticus isolates 
representing alternative lifestyles (i.e., waterborne, food-associated, and 
clinical) may provide a better understanding of its mechanisms for 
contamination, pathogenicity, and overall health risk.

Whole genome sequencing technologies have become increasingly 
utilized in the food industry for food safety monitoring assessment 
(Brown et  al., 2019; Unrath et  al., 2021). Given the complexity of 
sequencing data, machine learning (ML) can be applied to capture 
patterns in datasets with large quantities, and make robust predictions 
based on identified patterns (Tanui et al., 2022b; Karanth et al., 2022; 
Benefo et al., 2024a; Feng et al., 2024). Machine learning, particularly 
supervised ML, has demonstrated great applications in food safety 
such as predicting the disease outcome of Salmonella, the virulence 
potential and food source attribution of Listeria monocytogenes, as well 
as the abundance of V. parahaemolyticus (Tanui et al., 2022a; Ndraha 
et al., 2021; Karanth et al., 2022; Gmeiner et al., 2024). According to 
the models with good performance, the most influential predictors 
could also be retrieved, which shows great promise in managing and 
controlling food safety accurately. For example, Benefo et al. (2024a) 
adopted six different ML algorithms and identified the critical 

Salmonella stress response gene during poultry processing with high 
accuracy. Random forest (RF), as one of the most used ML algorithms 
in food safety, has been highlighted for its robust performance when 
the number of predictors is much larger than the number of 
observations, such as in WGS data (Biau and Scornet, 2016). Generally, 
the RF algorithm aggregates the prediction of several randomized 
decision trees through averaging, to obtain a final prediction/decision 
(Biau and Scornet, 2016). Thus, applying RF and alternative modeling 
efforts holds the potential to retrieve and reveal the information 
underlying bacterial behaviors from a genetic level via analyzing 
WGS data.

For this study, we aimed to perform a pangenomic analysis and 
apply RF to identify key genetic signatures of V. parahaemolyticus 
isolated from environmental, seafood, and clinical samples (i.e., 
potential differences in metabolism, virulence, and antibiotic 
resistance as a factor of source type). The findings from this study 
could help to (1) understand the adaptive response of 
V. parahaemolyticus as it transmits along the farm-to-table supply 
chain (environment-seafood-consumer) and (2) identify potential 
virulence factors and antibiotic resistance genes in V. parahaemolyticus 
that may have implications for consumer health and food safety.

2 Materials and methods

2.1 Sample collection

Genome assemblies of V. parahaemolyticus were collected from 
the National Center for Biotechnology Information (NCBI) Pathogen 
Detection database.1 A total of 6,227 assemblies consisting of 
environmental (n = 633), seafood (n = 2,284), and clinical (n = 3,310) 
isolates were downloaded and used in this study after checking the 
isolation type and isolation source manually for each assembly. 
Assemblies were subset for further analysis based on specific inclusion 
criteria for having corresponding metadata that indicated specific 
sample sources (i.e., environmental, seafood, and clinical), as 
described in Supplementary Table S1.

2.2 Bioinformatics analysis

The selected genome assemblies were processed with CheckM 
(v1.2.2) (Parks et al., 2015) for quality control, and those predicted to 
have greater than 97% completeness and less than 3% contamination 
(n = 176, 975, and 865 for environmental, seafood, and clinical 
isolates, respectively) were further processed (Blaustein et al., 2019). 
Annotation and pangenome construction of these high-quality 
assemblies were performed with Prokka (v1.14.6) and Panaroo 
(v1.3.4), sequentially (Seemann, 2014; Tonkin-Hill et al., 2020). Genes 
identified in the pangenome were categorized into three different sets 
based on their prevalence across all strains analyzed: core genes were 
present in over 95% of isolates, shell genes were found between 15 to 
95% isolates, while cloud genes were defined as those with a prevalence 
less than 15% isolates (Livingstone et al., 2018). In addition to the 

1 https://www.ncbi.nlm.nih.gov/pathogens/, accessed on March 4, 2024.

https://doi.org/10.3389/fmicb.2025.1549260
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.ncbi.nlm.nih.gov/pathogens/


Feng et al. 10.3389/fmicb.2025.1549260

Frontiers in Microbiology 03 frontiersin.org

comprehensive pangenome for all isolates, pangenomes for the 
subgroups of seafood and clinical isolates were constructed as well.

The nucleotide sequences of all gene clusters in the respective 
pangenomes were translated with Prodigal (v2.6.3) (Hyatt et al., 2010). 
Amino acid sequences were then screened for homology to proteins 
in the Database of Clusters of Orthologous Genes (COG), the 
Virulence Factor Database (VFDB) and the Comprehensive Antibiotic 
Resistance Database (CARD) using BLASTp (v2.14.1) (Camacho 
et al., 2009; Liu et al., 2022; Alcock et al., 2023) to identify the gene 
profiles with homology to features for metabolism, virulence and 
antibiotic resistance, respectively. During our preliminary analysis, 
different cutoff thresholds ranging from 99 to 50% (99, 98, 97, 96, 95, 
90, 85, 80, 75, 70, 65, 60, 55, and 50%) were employed to query 
coverage and percent identity, as we aimed to get the threshold as high 
as possible while 50% is the common choice for BLASTp. The filtered 
genes with different thresholds were fed into RF models as the 
predictors. After comparing the performance of models (sensitivity, 
specificity, balanced accuracy, and Area Under the Receiver Operating 
Characteristics curve (AUROC)) using filtered genes with different 
cutoff values (Supplementary Tables S2–S7), the thresholds for both 
query coverage and percent identity were set as 90, 80, and 50% for 
metabolism, virulence, and antibiotic resistance models, respectively.

2.3 Machine learning

Random forest was adopted to develop predictive models for 
isolation sources of V. parahaemolyticus (environmental vs. seafood 

(ES) and seafood vs. clinical (SC)). The presence and absence of genes 
related to metabolism, virulence, and antibiotic resistance were 
separately used as the predictors. The overview of the prediction 
strategy used in this study is simplified as a workflow and displayed in 
Figure 1. Further details regarding this approach are described in the 
following sections.

2.3.1 Data preprocessing
The presence and absence of gene clusters (denoted by 1 and 0, 

respectively) with homology to each functional category (metabolism, 
virulence, and antibiotic resistance) were used as the input variables 
for the ML models. Predictors (gene clusters) possessing only one 
unique value (zero variance predictor) or a limited number of unique 
values (near-zero variance predictor) were removed as they could 
introduce unnecessary complexity to the model and lead to increased 
computational time without significantly increasing the accuracy of 
the model (Kuhn, 2019). Predictors with near-zero variance were 
detected by estimating frequency ratio (the frequency of the most 
prevalent value over the second most frequent value) and unique value 
percentage (the number of unique values to the total number of 
samples expressed as a percentage). For this study, a predictor with a 
frequency ratio greater than 19 and a unique value percentage less 
than 10% was considered as near-zero variance and, therefore, 
excluded from model building (Kuhn, 2019; Benefo et al., 2024a).

Class imbalance, which could result in potential bias in the 
model, was observed for ES (15.29% for the minority class 
(environmental isolates) and 84.71% for the majority class 
(seafood isolates)) while was not found in SC (47.01% for the 

FIGURE 1

A simplified workflow for the approach used in this study.
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minority class (clinical isolates) and 52.99% for the majority class 
(seafood isolates)). Upsampling, downsampling, random over-
sampling examples (ROSE) technique, and Synthetic Minority 
Oversampling TEchnique were applied to attenuate the imbalance 
in the ES dataset during the preliminary analysis, and ROSE was 
selected for subsampling in the ES models due to having better 
predictive performance than the other methods. Through ROSE, 
the majority class is downsampled while new instances are 
generated via a smoothed-bootstrap approach for the minority 
class (Lunardon et al., 2014).

2.3.2 Model building
Six classification models were developed using RF for both ES 

and SC datasets across each functional category: metabolism, 
virulence, and antibiotic resistance. For each model, the dataset was 
randomly split into a training set (70% of included data) and a test 
set (30% of included data), which were used for model building and 
model test and validation, respectively (Benefo et  al., 2024b). 
Ten-fold cross-validation with 10 repeats was adopted to train the 
model as it helps to reduce the potential bias (Kohavi, 1995). 
Specifically, the training set was randomly partitioned into 10 
subsets, and 10 models were built out of these 10 subsets. For each 
model/iteration, nine subsets were employed to train the model 
while the remaining set was kept aside to test and evaluate the model 
performance. The aforementioned procedures were repeated 10 
times, resulting in an average performance for all models generated 
throughout the process (Kuhn, 2019). Randomized search was 
adopted to tune the hyperparameters and identify the optimal ones 
for each model. The test of the developed models was conducted 
using the hold-out test set (30% of included data), and a confusion 
matrix was generated according to model performance on the 
test set.

2.3.3 Model evaluation
Sensitivity, specificity, balanced accuracy, and AUROC were used 

to evaluate the performance of the developed models. Sensitivity and 
specificity are commonly used metrics to evaluate the performance of 
classification models. Sensitivity is defined as the ratio of the correctly 
identified positives to all true positives, while specificity refers to the 
proportion of true negatives that are correctly predicted (Sidey-
Gibbons and Sidey-Gibbons, 2019). Balanced accuracy, which is 
defined as the average of sensitivity and specificity, outperforms 
traditional accuracy when evaluating the performance of models with 
imbalanced data as it considers accuracies for both positive and 
negative classes (Thölke et  al., 2023). Sensitivity, specificity, and 
balanced accuracy all range from 0 to 1; and the closer these values to 
1, the better performance the model has. AUROC characterizes the 
classification (discrimination) ability of the model. Specifically, the 
value of AUROC varies from 0.5 to 1, with AUROC = 0.5 (baseline) 
linked to random classification while AUROC = 1 indicates a perfect 
classifier (D’Agostino et al., 2013). Moreover, the plots of AUROC 
were generated as well. In the AUROC graph, the false positive rate 
(1- specificity) of the model is the x-axis while the true positive rate 
(sensitivity) of the model is the y-axis. An AUROC curve which is 
close to the upper left corner of the graph is considered as the indicator 
of high AUROC value and therefore, good predictive ability of 
a model.

2.3.4 Significant genes identification
The twenty most significant genes for each reliable model were 

identified and ranked based on their importance (note: only 17 genes 
were listed for the SC-antibiotic resistance model since it only had 17 
genes as predictors). It was estimated by computing the difference in 
the prediction accuracies of the model caused by permuting the 
values of each predictor variable. The calculated difference between 
the two accuracies was averaged over all trees and normalized by the 
standard error. The more significantly permuting the value of a 
predictor impacts the accuracy, the more important that predictor 
(Kuhn, 2019). All the ML analyses were performed using the caret 
and MLeval package (Kuhn, 2019) in R (v. 4.1.1). The prevalence rate 
(the ratio of positive genomes to the total genomes) of the identified 
genes was calculated. The Proportion test was performed using the 
prop.test package in R (v. 4.1.1) to evaluate the homogeneity of 
proportions in different isolate sources. In addition, relevant 
information about the specific genes in COG, VFDB, and CARD that 
were homologous to the most important pangenome gene cluster 
predictors (e.g., homologous gene COG category) were retrieved 
from the respective databases.

2.4 Data visualization

A pie chart was generated for the pangenome for all isolates. 
AUROC curves and heatmaps were generated for the prevalence of 
the identified important genes via R (v. 4.1.1) using the autoplot and 
pheatmap packages, respectively.

3 Results

3.1 Pangenome characteristics

A total of 42,324 gene clusters were identified in the 
V. parahaemolyticus pangenome, with 4,608 ± 160 genes per genome 
(mean ± SD). Specifically, our pangenome identified 3,880 core genes, 
1,081 shell genes, and 37,363 cloud genes. The pie chart demonstrating 
the distribution of total genes and respective percentages is shown in 
Figure 2.

FIGURE 2

Pie chart of genes of the overall pangenome. Total genes (percent) 
are listed.
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3.2 Predictive models

Six ML classification models were built based on the presence and 
absence of genes with homology to metabolism, virulence, and 
antibiotic resistance for the ES and SC datasets. Based on the 
thresholds for query coverage and percentage of identity, 4,132, 273, 
and 160 genes were selected as inputs for the metabolism, virulence, 
and antibiotic resistance models, respectively. After removing zero and 
near-zero variance, 390, 23, 19, 380, 48, and 17 genes were used as the 
predictors for ES-metabolism, ES-virulence, ES-antibiotic resistance, 
SC-metabolism, SC-virulence, and SC-antibiotic resistance models, 
respectively.

The performance of all six models was measured using sensitivity, 
specificity, balanced accuracy, and AUROC (shown in Table  1). 
Generally, SC models provided better predictions compared to ES 
models, and models for metabolism surpassed those for virulence and 
antibiotic resistance.

Specifically, sensitivity, specificity, and balanced accuracy varied 
from 0.44 to 0.52, 0.72 to 0.88, and 0.58 to 0.70, respectively for ES 
models; while for SC models, the range for sensitivity, specificity, and 
balanced accuracy were 0.73 to 0.88, 0.87 to 0.96, and 0.80 to 0.90, 
respectively. On the other hand, all models, except for ES-virulence 
and ES-antibiotic resistance, resulted in an AUROC value greater than 
0.80 (ranging from 0.82 to 0.96), and a model with an AUROC value 
above 0.80 is generally interpreted as a reliable model (Nahm, 2022). 
The plotted AUROC curves were shown in Figure 3 and the baseline, 
of which AUROC is equal to 0.5, was denoted as the dotted diagonal 
line in the graph.

Based on the overall consideration of four evaluation metrics, 
SC-metabolism, SC-virulence, and SC-antibiotic resistance models 
were considered as models which could provide robust prediction and 
were selected for further identification of significant genes.

3.3 Significant genes enriched by source 
type

Twenty significant genes identified by the SC-metabolism and 
SC-virulence models, genes used as the predictors in the SC-antibiotic 
resistance model as well as the relevant information about their 
homologies in different databases and prevalence rates in the seafood 
and clinical groups were listed in Tables 2–4; and the related heatmaps 
were displayed as Figures 4–6.

As presented in the SC-metabolism model (shown in Table 2), the 
top 20 important genes were predicted as homologies to genes coding 

for proteins belonging to 13 different functional categories and 
intracellular trafficking, secretion, and vesicular transport, cell 
motility, as well as transcription were the most predominant 
categories. Most of the proportion of strains harboring the above 
genes (14 out of 20) were significantly greater in the clinical cohort 
than in the seafood group (displayed in Table 2; Figure 4).

According to the SC-virulence model (presented in Table 3), genes 
of great importance in characterizing the virulence profiles of seafood 
and clinical isolates belonged to six different functional categories and 
were primarily associated with exotoxin followed by effector delivery 
system. The proportion test revealed that the prevalence rates of 15 out 
of 20 important virulence genes differed significantly in seafood and 
clinical isolates. Among the genes with significantly different ubiquity, 
all of them were more encoded in clinical samples, other than 
‘flaD_1~~~flaD_3’ (flaC) (Table 3; Figure 5).

Gene clusters used as predictors in our SC-antibiotic resistance 
model were predicted to resist 12 different drug classes including three 
multidrug classes (Table 4; Figure 6), among which genes conferring 
tetracycline resistance, elfamycin resistance, as well as multi-drug 
resistance (tet(35), Ecol_EFTu_PLV, and MexS) were the top three 
important genes. The most common antibiotic resistance genes in the 
seafood cohort were macB (macrolide resistance, 89.13%), dfrA3 
(diaminopyrimidine resistance, 89.13%), and ugd (peptide resistance, 
80.51%), while the most common antibiotic resistance genes in the 
clinical cohort were dfrA3 (diaminopyrimidine resistance, 97.11%), 
macB (macrolide resistance, 96.76%), and Ecol_EFTu_PLV (elfamycin 
resistance; 66.13%). On the other hand, five different antibiotic 
resistance mechanisms were involved in differentiating the antibiotic 
resistance of seafood and clinical samples, and efflux pump, as well as 
target site alteration, were the two major categories.

4 Discussion

The overarching goal of this study was to use the differences in the 
presence and absence of genes among V. parahaemolyticus isolates as 
ML input to (i) develop classification models that differentiate 
V. parahaemolyticus isolates from environmental, seafood, and clinical 
samples, based on the accessory genes they carry that encode critical 
functions (metabolism, virulence, and antibiotic resistance) and (ii) 
identify the specific genes underlying the differences. Understanding 
potential mechanisms involved in transmission, pathogenicity, and 
antibiotic resistance of V. parahaemolyticus along the seafood supply 
chain could inform new strategies for food safety control and public 
health surveillance. To our knowledge, this is the initial attempt to 

TABLE 1 Model performance of the developed predictive models.

Models Sensitivity Specificity Balanced accuracy AUROC

ES Metabolism 0.52 0.88 0.70 0.82

Virulence 0.44 0.72 0.58 0.66

Antibiotic resistance 0.52 0.76 0.64 0.70

SC Metabolism 0.85 0.96 0.90 0.96

Virulence 0.88 0.92 0.90 0.94

Antibiotic resistance 0.73 0.87 0.80 0.87

ES, environmental vs. seafood; SC, seafood vs. clinical; AUROC, area under the receiver operating characteristics curve.
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adopt a bioinformatics workflow combined with ML to characterize 
differences in genetic diversity of V. parahaemolyticus strains across 
different isolation sources.

Our results showed that the three SC models could generate 
accurate predictions while the ES models did not perform as well. 
Therefore, only significant genes identified by SC models were 
analyzed and discussed. It is possible that compared with SC isolates, 
ES isolates were not that much different since these are all ‘commensal, 
possibly pathogenic’ strains recovered in monitoring while clinical 
strains are likely pathogens. However, limitations with the smaller 
sample size and data imbalance in the ES dataset may have affected 
the performance of ES models. In fact, significant biofilm formation 
was observed for V. parahaemolyticus in seafood compared with 
strains from the environment, implying the different lifestyles between 
environmental and seafood isolates (Rajkowski, 2009). Moreover, 
Feng et  al. (2024) demonstrated that V. parahaemolyticus strains 
isolated from seawater and oyster were differently impacted by the 
same environmental parameters, indicating functional differences 
between certain environmental and seafood isolates as well. The 
inclusion of more environmental samples in the future should enable 
the model to capture and characterize the difference better.

In general, as shown in Table 2 and Figure 4, most of the top 
genes identified by our SC-metabolism model were more prevalent 
in clinical strains compared with seafood strains, indicating the 
more active metabolic activities occurring in clinical strains. This 
could be  explained by the fact that the adaptative responses 
required to survive in the human body were more complicated 
than the ones associated with the seafood isolates due to the two 

distinguished conditions provided by the human body and seafood. 
When V. parahaemolyticus enters the human body, it could face 
various stresses such as thermal stress, acid stress, bile salts stress, 
and attack from the host cells, resulting in potential damage to 
different components of V. parahaemolyticus including cell 
membrane, DNA, and protein (Qadri et al., 2003; Pazhani et al., 
2021). However, the stresses that seafood isolates may encounter 
are majorly associated with postharvest handling procedures such 
as cold stress caused by refrigeration storage and low salinity stress 
caused by washing (Huang and Wong, 2012; Tang et al., 2018). 
Thus, adaptive response of Vibrio along the processing and supply 
chain may become relevant for transmission and persistence that 
precedes consumption.

Specifically, the top two gene clusters (‘group_1266’ and 
‘group_5540’), which were orthologous to cytoskeletal protein and 
superfamily II DNA or RNA helicase, were annotated as hypothetical 
proteins, pressing the need to study and reveal their functions and 
roles in the survival of V. parahaemolyticus. Intracellular trafficking, 
secretion, and vesicular, specifically, proteins associated with type III 
secretion system (T3SS), was one of the most predominant categories 
recognized by the SC-metabolism model and all the homologies 
(COG symbol: PulD, FliI, and EscV, ranked the third, fifth/eleventh, 
and sixth, respectively in the SC-metabolism model) belonging to this 
group were more prevalent in clinical isolates. Our findings were 
consistent with a previous study, in which the pangenome of 
V. parahaemolyticus was analyzed and significant enrichment of genes 
related to intracellular trafficking, secretion, and vesicular transport 
was observed for the clinical isolates (Pérez-Duque et al., 2021). This 

FIGURE 3

Area under the receiver operating characteristics curve for the developed RF models: ES-metabolism (A), ES-virulence (B), ES-antibiotic resistance (C), 
SC-metabolism (D), SC-virulence (E), and SC-antibiotic resistance (F). ES, environmental vs. seafood; SC, seafood vs. clinical.
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TABLE 2 Twenty important genes identified by SC-metabolism model, information of their homologies from COG, and their prevalence rates.

Gene cluster from 
pangenome

COG 
annotation

COG 
symbol

COG name COG 
functional 
category

Prevalence rate p values

Seafood Clinical

group_1266

Hypothetical protein 

VPA1391
RodZ

Cytoskeletal protein 

RodZ
D 12.10 87.98

< 0.001

group_5540

Hypothetical protein 

VPA1393
SSL2

Superfamily II DNA or 

RNA helicase
KL 12.10 87.98

< 0.001

sctC_5~~~sctC_3

Type III secretion 

system EscC protein
PulD

Type II secretory 

pathway component 

GspD/PulD (secretin)

U 3.69 60.69

< 0.001

legI_2~~~legI

N-acetylneuraminic 

acid synthetase
SpsE

Sialic acid synthase 

SpsE, contains 

C-terminal SAF 

domain

M 20.31 1.39

< 0.001

yscN_2~~~atpB_1

ATPase YscN FliI

Flagellar biosynthesis/

type III secretory 

pathway ATPase FliI

NU 3.69 60.58

< 0.001

ssaV

Type III secretion 

system EscV protein
EscV

Type III secretory 

pathway, component 

EscV

U 3.69 60.58

< 0.001

group_268

Outer membrane 

protein
OmpA

Outer membrane 

protein OmpA and 

related peptidoglycan-

associated (lipo)

proteins

M 3.69 60.46

< 0.001

accA1_2~~~accA1

acyl-CoA carboxylase 

alpha chain
PccA

Acetyl/propionyl-CoA 

carboxylase, alpha 

subunit

I 9.13 0.58

< 0.001

yhfA_2~~~yhfA_1~~~yhfA_3

Hypothetical protein 

VP1807
YhfA

Uncharacterized 

OsmC-related protein
R 36.92 69.60

< 0.001

group_31591

Hypothetical protein 

VP1134
NhaC

Na+/H+ antiporter 

NhaC/MleN
C 32.62 4.51

< 0.001

hrcN

Hypothetical protein FliI

Flagellar biosynthesis/

type III secretory 

pathway ATPase FliI

NU 20.10 32.37

< 0.001

group_999

Hypothetical protein 

VP1825
AF2118

Predicted 

transcriptional 

regulator, contains an 

XRE-type HTH 

domain (archaeal 

members contain CBS 

pair)

K 4.10 51.33

< 0.001

ureG

Urease accessory 

protein UreG
HypB

Hydrogenase/urease 

maturation factor 

HypB, Ni2 + −binding 

GTPase

O 20.41 32.37

< 0.001

group_965

Hypothetical protein 

VP2937
Dph6

Diphthamide synthase 

(EF-2-diphthine--

ammonia ligase)

J 20.00 7.51

< 0.001

rnr_1~~~rnr_2

Virulence-associated 

protein VacB/Rnase R
VacB Exoribonuclease R K 62.36 62.77

0.892

(Continued)
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observation may be attributed to the fact that T3SS is a key virulence 
factor of V. parahaemolyticus (Li et al., 2019). Cell motility was the 
other most predominant functional category and four genes (COG 
symbol: FliI, FliI, BcsA, and FlhB, ranked the fifth, eleventh, 
seventeenth, and eighteenth, respectively, in the SC-metabolism 
model) out of the 20 important genes were recognized as the 
homologies to genes coding for proteins belonging to this category, 
particularly the orthologous cluster of flagellar biosynthesis. Similar 
to PulD and EscV, genes associated with flagellar biosynthesis were 
more frequently detected in clinical samples, highlighting the 
significance of flagellar in helping the transmission and survival of 
V. parahaemolyticus and possibly contributing to infection. It has been 
reported that the formation of biofilm, which is one of the important 
survival strategies of V. parahaemolyticus, is achieved with the aid of 
a dual flagellar system (Zhang Y. et al., 2023). On the other hand, the 
significantly high prevalence of four genes (COG symbol: SpsE, PccA, 
Nhac, and Dph6, ranked the fourth, eighth, tenth, and fourteenth, 
respectively) in seafood isolates could be explained by the response of 
the strain to the environmental pressure caused by the postharvest 
treatment of seafood. For example, V. parahaemolyticus has been 
reported to increase the expression of acetyl-CoA carboxylase (COG 
symbol: PccA) to synthesize unsaturated fatty acids and increase cell 
membrane fluidity to adapt to high hydrostatic pressure conditions, 
which has been commonly applied to inactivate the pathogen and 
extend the shelf life of seafood (Liang et al., 2022).

According to the SC-virulence model, exotoxin was the most 
predicted functional category (presented in Table 3). Specifically, two 
gene clusters were predicted to be two different copies of tdh and 
ranked first and eighteenth, respectively. On the other hand, one gene 
cluster from the pangenome was recognized as homology to trhX (also 
known as trh) and ranked sixteenth. These three gene clusters were 
significantly more prevalent in the clinical group, though none of 
them were present in all clinical isolates. Similar results have been 

found in previous studies, indicating the contribution of other factors 
to the pathogenicity of V. parahaemolyticus (Chao et  al., 2010; 
Velazquez-Roman et  al., 2012; Zha et  al., 2023). Apart from 
homologies to tdh and trhX, homologies to four different alpha-
hemolysin coding genes (hlyD, hlyC, hlyA, and hlyB) belonging to the 
exotoxin category have been identified as the top  20 influential 
predictors and ranked the third, fourth, sixth, and fourteenth, 
respectively. Interestingly, only hlyD was profoundly enriched in the 
clinical cohort compared with the seafood group while no significant 
difference was found regarding the prevalence rate of hlyA, hlyB, and 
hlyC in seafood and clinical isolates. In fact, the presence of hlyA, hlyB, 
hlyC, and hlyD in V. parahaemolyticus was only reported in a study 
investigating the pathogenesis of V. parahaemolyticus 353 isolated 
seafood in China (Zha et al., 2023). More studies are needed to reveal 
how these alpha-hemolysins contributed to the pathogenicity of 
V. parahaemolyticus, which could aid in explaining why their 
prevalence between seafood and clinical strains was similar but still 
critical to differentiate these two groups.

Moreover, it has been revealed that effector delivery system, T3SS, 
played an important role in differentiating nonpathogenic and 
pathogenic (seafood and clinical) groups. Based on our SC-virulence 
model, five genes related to T3SS (vscJ2, vscC2, vopB2, VP_RS21585, 
and vopD2) were identified as important genes and ranked the second, 
fifth, seventh, tenth, and eleventh, respectively. V. parahaemolyticus 
possesses two sets of T3SS: T3SS1 and T3SS2, which are responsible 
for cytotoxicity and enterotoxicity, respectively (Li et al., 2019). All the 
effector delivery system genes identified by the SC-virulence model 
were associated with T3SS2, which could be explained by the fact that 
T3SS1 is commonly found in both nonpathogenic and pathogenic 
isolates while T3SS2 is exclusive to pathogenic/clinical isolates 
(Matsuda et  al., 2020). Generally, the proteins of T3SS could 
be categorized into four classes: structural proteins, translocators, 
effector proteins, and molecular chaperones (Li et al., 2019). In this 

TABLE 2 (Continued)

Gene cluster from 
pangenome

COG 
annotation

COG 
symbol

COG name COG 
functional 
category

Prevalence rate p values

Seafood Clinical

group_4703

Hypothetical protein 

VPA0394
EmrA

Multidrug resistance 

efflux pump EmrA
V 57.74 87.51

< 0.001

icaA

Hypothetical protein 

VPA0393
BcsA

Glycosyltransferase, 

catalytic subunit of 

cellulose synthase and 

poly-beta-1,6-N-

acetylglucosamine 

synthase

N 57.74 87.51

< 0.001

flhB_3~~~yscU_2

Type III secretion 

system EscU protein
FlhB

Flagellar biosynthesis 

protein FlhB
N 3.69 60.46

< 0.001

aaeB~~~aaeB_1

Hypothetical protein 

VP1358
YccC

Uncharacterized 

membrane protein 

YccC

S 72.51 95.95

< 0.001

tufB~~~tuf~~~tuf1~~~tufA_2~

~~tufA~~~tufA_1
Elongation factor Tu TufA

Translation elongation 

factor EF-Tu, a GTPase
J 61.33 60.92

0.895

COG, the Database of Clusters of Orthologous Genes. SC, seafood vs. clinical. C, Energy production and conversion; D, Cell cycle control, cell division, chromosome partitioning; I, Lipid 
transport and metabolism; J, Translation, ribosomal structure and biogenesis; K, Transcription; L, Replication, recombination and repair; M, Cell wall/membrane/envelope biogenesis; N, Cell 
motility; O, Posttranslational modification, protein turnover, chaperones; R, General function prediction only; S, Function unknown; U, Intracellular trafficking, secretion, and vesicular 
transport; V, Defense mechanisms.
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study, we observed two genes predicted to encode structural proteins 
of T3SS2 (vscJ2 and vscC2), which contribute to the formation of the 
physical structure of T3SS2, particularly the assemble of the inner 
membrane of both the basal body and export apparatus (Deng et al., 
2017). Genes vopB2 and vopD2, coding for the translocator protein of 
T3SS2, have been reported to be responsible for creating the pathway, 
pores in the membrane of host cells, through which effectors could 
be delivered into the host cells (Paria et al., 2021). It should be noted 
that two of the T3SS-related genes were hypothetical/putative proteins, 
which presses the need to perform further research specifically on 
these genes to unveil their characterizations and roles in contributing 
to the pathogenicity of V. parahaemolyticus.

Among all gene clusters identified as important by our 
SC-virulence model, the homology to flaC (ranked the seventeenth) 
was the only one that was more prevalent in the seafood group. It has 
been reported that FlaC, which is one of the flagellin subunits of the 
filament of V. parahaemolyticus flagellum coded by flaC, can activate 
the immune protection function of shellfish (Chen et  al., 2019). 
We suspect that flaC-activated immune protection could result in 
changes in the texture or appearance of shellfish, causing consumers 
to perceive it as unsafe to eat. In contrast, shellfish contaminated with 
V. parahaemolyticus lacking flaC may not exhibit such changes, which 
makes people consider it as safe for consumption. Consequently, 
shellfish contaminated with V. parahaemolyticus lacking flaC is more 

TABLE 3 Twenty important genes identified by SC-virulence model, information of their homologies from VFDB, and their prevalence rates.

Gene cluster from 
pangenome

Name of the 
homologous 
gene in VFDB

VFDB gene 
product

VFDB 
functional 
category

Prevalence rate p values

Seafood Clinical

tdh1_1~~~tdh3~~~tdh1~~~tdh2 tdh

Thermostable direct 

hemolysin A Exotoxin 9.13 86.24

< 0.001

group_5343 vscJ2

Type III secretion system 

protein VscJ2

Effector delivery 

system 3.69 60.81

< 0.001

hlyD~~~hlyD_1~~~hlyD_2 hlyD Hemolysin D Exotoxin 14.36 30.17 < 0.001

hlyC_2 hlyC Hemolysin C Exotoxin 7.28 7.40 0.995

sctC_5~~~sctC_3 vscC2

Type III secretion system 

protein VscC2

Effector delivery 

system 3.69 60.69

< 0.001

hlyA~~~hlyA_2 hlyA Hemolysin A Exotoxin 7.18 7.51 0.853

group_9636 vopB2

Type III secretion system 

translocator protein 

VopB2

Effector delivery 

system 3.69 60.69

< 0.001

group_10785 mshC MSHA pilin protein MshC Adherence 35.18 54.34 < 0.001

epsL_1~~~epsL_2~~~pssY~~~epsL_3 wbfU Sugar transferase

Immune 

modulation 27.18 36.18

< 0.001

group_6266 VP_RS21585

Putative type III secretion 

system protein

Effector delivery 

system 3.69 60.69

< 0.001

group_6750 vopD2

Type III secretion system 

translocator protein 

VopD2

Effector delivery 

system 3.69 60.69

< 0.001

flaD_4~~~flaD_2~~~flaD_5~~~flaD

_1~~~flaD_3 flaC Flagellin Motility 60.92 56.18

0.044

tufB~~~tuf~~~tuf1~~~tufA_2~~~tuf

A~~~tufA_1 tufA Elongation factor Tu Adherence 61.33 60.92

0.895

hlyB~~~hlyB_2 hlyB Hemolysin B Exotoxin 8.21 7.40 0.578

group_10962 VP_RS21705 Hypothetical protein

Effector delivery 

system 3.69 60.69

< 0.001

tdh2~~~tdh2_1~~~tdh2_2 trhX TDH-related hemolysin Exotoxin 17.95 32.14 < 0.001

flaD_1~~~flaD_3 flaC Flagellin Motility 34.05 9.60 < 0.001

tdh3_2~~~tdh3~~~tdh1 tdh

Thermostable direct 

hemolysin A Exotoxin 0.62 48.09

< 0.001

rffH_2~~~rffH rmlA

Glucose-1-phosphate 

thymidylyltransferase 

RfbA

Immune 

modulation 5.33 23.24

< 0.001

hag lafA Lateral flagellin LafA Biofilm 78.46 90.75 < 0.001

SC, seafood vs. clinical. VFDB, the Virulence Factor Database.
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TABLE 4 Genes used as predictors in SC-antibiotic resistance model, information of their homologies from CARD, and their prevalence rates.

Gene cluster from 
pangenome

Name of the 
homologous 
gene in 
CARD

Drug class AMR gene family Resistance 
mechanism

Prevalence rate p 
values

Seafood Clinical

group_31591 tet(35)
Tetracycline 

antibiotic

ATP-binding cassette 

(ABC) antibiotic efflux 

pump

Efflux pump 32.62 4.51

< 0.001

tufA_1~~~tuf~~~tufA~~~tufB Ecol_EFTu_PLV
Elfamycin 

antibiotic
elfamycin resistant EF-Tu

Target site 

alteration
36.51 66.13

< 0.001

group_5516 MexS

Phenicol antibiotic, 

diaminopyrimidine 

antibiotic, 

fluoroquinolone 

antibiotic

resistance-nodulation-cell 

division (RND) antibiotic 

efflux pump

Efflux pump 6.77 29.60

< 0.001

group_11708 ErmY

Streptogramin 

antibiotic, 

lincosamide 

antibiotic, 

macrolide antibiotic

Erm 23S ribosomal RNA 

methyltransferase

Target site 

alteration
77.03 62.43

< 0.001

group_8131 Ctra_murA_FOF
Phosphonic acid 

antibiotic

antibiotic-resistant murA 

transferase

Target site 

alteration
16.92 18.15

0.539

ugd~~~ugd_2~~~ugd_1 ugd Peptide antibiotic

pmr 

phosphoethanolamine 

transferase

Target site 

alteration
80.51 64.97

< 0.001

macB_6~~~macB_4~~~macB_

5~~~macB_3~~~macB_2
macB

Macrolide 

antibiotic

ABC antibiotic efflux 

pump
Efflux pump 89.13 96.76

< 0.001

ugd_1~~~ugd_2~~~ugd ugd Peptide antibiotic

pmr 

phosphoethanolamine 

transferase

Target site 

alteration
19.69 35.26

< 0.001

pse4 CARB-23 Penam CARB beta-lactamase
Inactivation of 

antibiotic
27.59 4.74

< 0.001

tufB~~~tuf~~~tuf1~~~tufA_2

~~~tufA~~~tufA_1
Ecol_EFTu_PLV

Elfamycin 

antibiotic
elfamycin resistant EF-Tu

Target site 

alteration
61.33 60.92

0.895

tufB~~~tufA~~~tufA_1~~~tuf

B_1~~~tuf1
Ecol_EFTu_PLV

Elfamycin 

antibiotic
elfamycin resistant EF-Tu

Target site 

alteration
21.54 25.66

0.042

dhfrIII dfrA3
Diaminopyrimidine 

antibiotic

trimethoprim resistant 

dihydrofolate reductase 

dfr

Antibiotic target 

replacement
89.13 97.11

< 0.001

group_10971 LpxA Peptide antibiotic

Acinetobacter mutant Lpx 

gene conferring resistance 

to colistin

Target site 

alteration
4.10 12.83

< 0.001

hns H-NS

Tetracycline 

antibiotic, penam, 

cephamycin, 

cephalosporin, 

fluoroquinolone 

antibiotic, 

macrolide antibiotic

RND antibiotic efflux 

pump, major facilitator 

superfamily (MFS) 

antibiotic efflux pump

Efflux pump 15.79 2.43

< 0.001

cat_3~~~cat_2 catB9 Phenicol antibiotic
chloramphenicol 

acetyltransferase (CAT)

Inactivation of 

antibiotic
16.31 3.82

< 0.001

(Continued)
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likely to be eaten by consumers, which may explain the relatively lower 
prevalence of flaC in clinical isolates.

The gene tet(35), which confers tetracycline resistance, was 
identified as the most important predictor in the SC-antibiotic 
resistance model with higher prevalence in seafood samples (shown 
in Table  4). Our results corresponded well with the frequently 
observed tetracycline resistance in seafood isolates worldwide 
(Elmahdi et al., 2016). EFTu, which confers to elfamycin resistance, 
ranked as the second among all the predictors in our SC-antibiotic 
resistance model. Several studies have described elfamycin resistance 
in pathogens obtained from various seafood and aquatic 
environments, which could be attributed to the usage of elfamycins as 
growth promoters for aquaculture (Behera et al., 2021; Liu et al., 2019; 
Zhang Q. et al., 2023). In addition, MexS (ranked the third), possessing 
multidrug resistance (phenicol antibiotic, diaminopyrimidine 
antibiotic, and fluoroquinolone antibiotic), were more predominantly 

found in the clinical group rather than the seafood cohort. The low 
prevalence rate of MexS in seafood samples (6.77%) observed in our 
study was consistent with previous research (Hanekamp and Bast, 
2015; Obaidat et al., 2017; Lei et al., 2020; Kemp et al., 2021; Bondad-
Reantaso et al., 2023).

Efflux pump and target set  alteration were the most prevalent 
antibiotic resistance mechanisms associated with the predictors used by 
our SC-antibiotic resistance model (shown in Table 4). The presence of 
tet(35), MexS, macB, H-NS, and txR (ranked the first, third, seventh, 
fourteenth, and seventeenth, respectively), which are related to 
ATP-binding cassette (ABC), resistance-nodulation-cell division 
(RND), and major facilitator superfamily (MFS) antibiotic efflux pump, 
could be indicative of the essential roles of ABC, RND, and MFS efflux 
pumps in differentiating antibiotic resistance profiles of seafood and 
clinical isolates and similar insights have been gained from prior studies 
(Pérez-Acosta et  al., 2018; Lloyd et  al., 2019; Stephen et  al., 2022). 

TABLE 4 (Continued)

Gene cluster from 
pangenome

Name of the 
homologous 
gene in 
CARD

Drug class AMR gene family Resistance 
mechanism

Prevalence rate p 
values

Seafood Clinical

group_31739 qnrAS
Fluoroquinolone 

antibiotic

quinolone resistance 

protein (qnr)
Target protection 13.95 3.58

< 0.001

acoR_2~~~qseF~~~dctD_1 txR
Tetracycline 

antibiotic

ABC antibiotic efflux 

pump
Efflux pump 9.64 1.85

< 0.001

AMR, antimicrobial resistance. CARD, the Comprehensive Antibiotic Resistance Database. SC, seafood vs. clinical.

FIGURE 4

Heatmap for the prevalence of twenty important genes identified by the SC-metabolism model. SC, seafood vs. clinical.
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Though the target site alteration mechanisms of the listed important 
genes in V. parahaemolyticus (Ecol_EFTu_PLV, ugd, and LpxA) have not 
been extensively studied, the involvement of their related gene family in 
the antibiotic resistance have been demonstrated (Miele et al., 1994; 
Tracevska et al., 2002; Novović and Jovčić, 2023).

Additionally, the characterization of the individual pangenomes 
for the respective seafood and clinical isolates were summarized in 
Table 5. The total numbers of core genes and shell genes between the 
pangenomes of seafood and clinical isolates appeared similar, while 
the number of cloud genes for the seafood pangenome was about 
two-fold more than that for clinical pangenome, resulting in the 
drastic difference of the sizes of pangenome. The respective genes-per-
genome by isolate source were consistent with this observation, 
indicating much greater genomic diversity of V. parahaemolyticus 
isolated from seafood samples. These differences may be attributed to 
the broader geographic distribution of isolation locations of the 
isolates from seafood samples compared to clinical samples. 
Horizontal gene transfer (HGT) of mobile genetic elements is 
commonly found in V. parahaemolyticus and has been proven that 
could greatly contribute to its genetic diversity (Xu et al., 2022). To 
be more specific, seafood isolates from diverse locations could obtain 
various genes through HGT, which explains the massive number of 
cloud genes in its pangenome.

Although some models developed and used in this study could 
predict the isolation sources accurately and provide useful insights, 
certain limitations have been recognized. The limited availability of 
environmental isolates, which resulted in a severe class imbalance for 

our ES models, has constituted an obvious limitation and affected the 
robustness of the model greatly in this study. Though ROSE has been 
applied to overcome the bias caused by the imbalanced class and has 
significantly improved the model performance compared with models 
built based on data without ROSE, the obtained ES models were still 
not capable of providing accurate predictions. The scarcity of 
V. parahaemolyticus strains isolated from environmental samples has 
also been described in several other studies (Turner et  al., 2013; 
Ronholm et al., 2016; Obaidat et al., 2017; Yan et al., 2020). Therefore, 
in the future, times of sampling events and detections of 
V. parahaemolyticus in environmental samples should be increased to 
aid in comprehending the population features of environmental 
strains more representatively. Moreover, as the genome assemblies 
were downloaded from the NCBI database, potential bias or batch 
effects among different studies (e.g., sequencing platform, sequencing 
depth, assembler) may have contributed to variations we observed.

A great number of tools with different mechanisms are available 
for each bioinformatic analysis step in this study and alternative tools 
may be resourceful to find additional differences correlated with the 
metadata. Therefore, the choice of method for each step could 
potentially impact our results. Although Prokka and Panaroo were 
used in this study, future work will explore other bioinformatics tools, 
such as PGAP, Roary, and PIRATE, to better understand how method 
selection may impact the downstream analysis. Additionally, the 
cutoff values for query coverage and percent identity were set based 
on the number of predictors, potentially impacting the performance 
of our random forest models. To enhance the robustness of our 

FIGURE 5

Heatmap for the prevalence of twenty important genes identified by the SC-virulence model. SC, seafood vs. clinical.
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models, we systematically tested various BLASTp thresholds for query 
coverage and percent identity (as described in 2.2 Bioinformatics 
analysis), identifying the thresholds that yielded the most reliable 
predictions. In future studies, higher cutoff values should be applied 
when more datasets become available, as this may reduce noise 
associated with lower cutoff thresholds. Further research is needed to 
thoroughly assess how the choice of different bioinformatics tools 
influences downstream analysis and to develop a standardized and 
most optimal workflow for bioinformatics-ML studies.

Moreover, the prediction of gene function was greatly restrained 
by the size and accuracy of databases (COG, VFDB, and CARD) used 
for performing BLASTp analysis. It has been noticed that models for 
metabolism and virulence outperformed models for antibiotic 
resistance, which could be  explained by the relatively limited 
predictors available for antibiotic resistance models, as the size of 
CARD is smaller than COG and VFDB. Expanding and updating 
respective gene function databases when new genes and functions are 

identified could contribute to overcoming this bias in the future. On 
the other hand, combining multiple databases might improve the 
performance of our models as well by providing a more comprehensive 
input. However, the lack of standardization and the methodological 
discrepancies between databases hinder the application of the database 
combination. Improved harmonization across databases and a 
thorough evaluation of the associated analysis method in the future 
could help address these challenges and make the combined database 
a feasible approach for enhancing model performance.

5 Conclusion

In this study, the application of machine learning was used to 
analyze pangenomes of V. parahaemolyticus to identify important 
genes associated with different isolation sources (environmental, 
seafood, and clinical). Our study highlights the crucial role of the type 

FIGURE 6

Heatmap for the prevalence of genes used as predictors in the SC-antibiotic resistance model. SC, seafood vs. clinical.

TABLE 5 Summary table for the pangenomes of seafood and clinical isolates.

Pangenome Core genes Shell genes Cloud genes Total genes Genes per genome 
(mean ± SD)

Seafood 3,886 877 32,543 37,306 4,629 ± 195

Clinical 4,017 1,025 14,325 19,367 4,580 ± 84
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III secretion system in distinguishing metabolic and virulence 
accessory gene profiles of Vibrio parahaemolyticus seafood and clinical 
isolates. We also found that virulence-related genes encoding alpha-
hemolysins were key in differentiating these groups. Among the top 
three most important predictors from our SC-antibiotic resistance 
model, gene conferring to tetracycline resistance was more prevalent 
in seafood isolates while genes confer to elfamycin, and multidrug 
(phenicol antibiotic, diaminopyrimidine antibiotic, fluoroquinolone 
antibiotic) resistance were greatly enriched in clinical isolates. These 
findings can help enhance risk management strategies along the 
seafood-to-consumer chain. However, the limited availability of 
environmental isolates significantly impacted the performance of our 
environmental-seafood model. Future research should focus on 
expanding sequencing databases for environmental samples and 
evaluating the impact of genomics workflow selection on analysis 
outcomes, providing a stronger scientific basis for selecting 
appropriate genomics tools.
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