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Unraveling the bacterial 
composition of a coral and 
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a marginal coral environment
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The newly described bioeroding sponge Cliona thomasi, part of the Cliona viridis 
complex, is contributing to coral decline in the central eastern Arabian Sea, the 
West Coast of India. While its morphological and allelopathic mechanisms in 
coral invasion are well investigated, the role of its microbial communities in 
spatial competition is underexplored. This study focuses on the coral Turbinaria 
mesenterina and sponge C. thomasi, both known for their distinct symbiotic 
associations with Symbiodiniaceae. A 16S rRNA V3–V4 amplicon next-generation 
sequencing approach, followed by processing through the DADA2 algorithm, was 
used to analyze the bacterial composition. The results showed higher bacterial 
richness and diversity in coral samples, identifying 30 distinct phyla, compared 
to 14 in sponge samples. The coral samples were dominated by Proteobacteria, 
Actinobacteria, Firmicutes, Cyanobacteria, Planctomycetes, Chloroflexi, and 
Patescibacteria, while Proteobacteria, Cyanobacteria, Planctomycetes, and 
Actinobacteria were dominant in the sponge. Enrichment analysis revealed higher 
dominance of Acidobacteria, Actinobacteria, Chloroflexi, Dadabacteria, Firmicutes, 
Fusobacteriota, and Patescibacteria in the coral samples, while the sponge samples 
showed enrichment for Cyanobacteria, Planctomycetes, and Bdellovibrionota. 
Beta-diversity analysis (PERMANOVA and nMDS) showed significant differences, 
with an average dissimilarity of 81.44% between sponge and coral samples (SIMPER). 
These differences highlight variations in microbial profiles between sponges and 
corals, competing in the same vulnerable environment. Exploring the microbiome 
aspect, therefore, may elucidate physiological and ecological functions of the 
holobiont while also representing a health status biomarker for corals, supporting 
their conservation.
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Introduction

The host–microbe interaction is increasingly recognized as a key framework for 
understanding organismal function, co-evolution, ecosystem roles, and adaptation to climate 
change (LaJeunesse et al., 2010; Reveillaud et al., 2014; Parfrey et al., 2018). Marine holobionts, 
such as corals and sponges, harbor extensive, largely unexplored microbial diversity (Sunagawa 
et al., 2010; Roughgarden et al., 2017). Coral reefs, often described as the “rainforests of the 
ocean,” rank among the most diverse and productive ecosystems globally (Plaisance et al., 
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2011; Fisher et al., 2015) but have suffered severe declines from climate 
change and human impacts (Hughes et  al., 2003; Morrison et  al., 
2019). Rising sea surface temperatures have triggered mass bleaching 
events worldwide (Hughes et al., 2018; De et al., 2020, 2021), though 
some corals exhibit thermal tolerance (Williams and Patterson, 2020). 
Their persistence is further challenged by competitors, such as 
cyanobacterial mats, macroalgae, and sponges (Bell et  al., 2013; 
Horwitz et al., 2017; Cruz et al., 2018).

Sponges are important reef inhabitants. Some of the clionaid 
species have been identified as aggressive space competitors that 
significantly contribute to reef degradation (Holmes et al., 2009; Fang 
et al., 2014; Halperin et al., 2016; Schönberg et al., 2017). Both corals 
and sponges form strong holobionts with diverse microbial 
assemblages that support host adaptation to extreme environments 
(Bourne et al., 2016; Sacristán-Soriano et al., 2020; Reigel et al., 2024).

Like coral microbiomes (Wilson et  al., 2012; van Oppen and 
Blackall, 2019; Williams et al., 2024), sponges also host abundant and 
functionally important microbes, sometimes comprising up to 40% of 
sponge volume (Webster and Taylor, 2012; Thomas et al., 2016) with 
ecological and biomedical significance (Pita et al., 2018; Zhang et al., 
2022; Williams et al., 2024). Both corals and sponges are considered 
ecosystem engineers (Bourne et al., 2016; Pita et al., 2018; Camp et al., 
2020), and studying their microbial dynamics in shared reef habitats 
can reveal shifts in diversity and host-associated benefits, and 
ecological function (Ramsby et al., 2018b; Camp et al., 2020; Sacristán-
Soriano et al., 2020).

This study was conducted on marginal patch reefs in the Eastern 
Arabian Sea, India, an understudied region experiencing high 
environmental variability and multiple stressors, such as thermal 
bleaching, sedimentation, eutrophication, and acidification (De et al., 
2017, 2020, 2021, 2022; Thinesh et  al., 2017). Such suboptimal 
conditions have favored stress-tolerant coral assemblages that may act 
as climate refuges (Hughes et al., 2017; Cruz et al., 2018; Lough et al., 
2018). The site is dominated by resilient genera such as Porites, 
Turbinaria, Goniopora, Siderastrea, and Pseudosiderastrea (Hussain 
and Ingole, 2020; Hussain et al., 2024), with Turbinaria mesenterina 
being especially abundant (De et al., 2022). This foliose coral thrives 
in turbid, low-light, and high-sedimentation environments (Sofonia 
and Anthony, 2008; Hoadley et al., 2016; Hussain et al., 2016) and has 
shown resistance to bleaching events, including in 2015, when it 
remained largely unaffected (De et al., 2020, 2022; Hussain and Ingole, 
2020). However, these reefs are also subject to disease, algal 
overgrowth, and bioeroding sponge encroachment (Manikandan 
et al., 2016; Hussain and Ingole, 2020; Mote et al., 2021a).

Therefore, this study examines the bacterial diversity of two 
ecologically important and stress-tolerant coral species, namely 
T. mesenterina and the bioeroding sponge Cliona thomasi, from this 
environment to better understand microbial assemblages in marginal, 
bleaching-impacted reefs.

Materials and methods

Study site

The study was conducted at the shallow water near-shore patch 
coral reef in the Grande Island archipelago, Goa, along the Central 
West Coast of India in the Eastern Arabian Sea (15,021′14.2′′N, 

73045′57.8″E). Additional data on the site and previous surveys 
revealing the thermal tolerance of corals and sponges are provided in 
the supplementary file of Mote et al. (2021a).

Sample collection

This sampling was part of our previously published study (Mote 
et al., 2021a), and a subset of those samples was utilized in the present 
study. Coral and sponge samples were collected from a depth of 
6–8 m, with each sponge-invaded coral colony separated by a distance 
of at least 5–10 m. At each sampling point, a small piece of coral and 
sponge tissue (approximately 10 g) was collected using a preautoclaved 
hammer and chisel. It was placed individually in a sterile plastic bag. 
Samples were immediately brought on board, fixed in liquid nitrogen, 
and transported to the laboratory for further processing. In the 
laboratory, each sample was stored at −70 °C until DNA extraction. A 
field photograph of sponge encrustation on coral is shown in Figure 1.

DNA extraction and high-throughput 
amplicon sequencing

The collected coral and sponge samples were homogenized in 
liquid nitrogen and processed for DNA extraction using a tissue DNA 
extraction kit, as directed by the manufacturer (Invitrogen, CA, USA). 
The 16S rRNA V3-V4 hypervariable region of the prokaryotic 16S 
rRNA gene was amplified by PCR for bacterial community analysis 
(Muyzer et al., 1993; Li et al., 2009). A standard approach was used to 
create Illumina MiSeq 16S rRNA amplicon libraries (New England 
Biolabs, Frankfurt, Germany). The libraries were tested for quality 
using an Agilent 2,100 Bioanalyzer, and the samples were sequenced 
using 2 × 300 paired-end chemistry (MiSeq Reagent Kit, San Diego, 
CA, USA).

Bioinformatics analysis

The sequencing data were processed in R using the DADA2 tool 
to assemble raw reads and microbial annotation (Bolyen et al., 2019). 
The primers and adapters were removed before processing the 
sequence data in Cutadapt (Martin, 2011). After demultiplexing and 
inspection of the read quality, reads were trimmed with trunclan = c 
(240, 180) with maxEE = c (2, 2). Reads were then dereplicated, 
merged, and filtered to remove chimeras and subsequently clustered 
into amplicon sequence variants (ASVs). The resultant ASVs were 
assigned to the bacterial taxonomy using a Bayesian classifier with a 
pretrained Silva-132 database with a minimum bootstrap confidence 
set to 80. After taxonomic assignments, the ASVs annotated to 
mitochondria, chloroplast regions, and also Archaea were removed.

Statistical analysis

The vegan package v.2.5–6 in R (Oksanen et al., 2013) was used to 
calculate the alpha-diversity indices such as ASV richness, Shannon, 
Chao1, and Simpson indices, and to prepare a rarefaction curve for 
the investigated samples. Furthermore, the beta-diversity measures to 
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test the statistical difference of bacterial community composition 
among the samples were determined by applying permutational 
multivariate analysis of variance (PERMANOVA) with 999 
permutations using the Bray–Curtis dissimilarity matrix in PRIMER 
v7 (Clarke and Gorley, 2015). The bacterial community composition 
was ordinated using non-metric multidimensional scaling (nMDS), 
as implemented in the vegan package in R using the metaMDS 
function (Oksanen et al., 2013). Differential abundance analysis was 
carried out using the linear discriminant analysis effect size (LEfSe) 
analysis. The distinct profiles of core bacterial abundances were 
selected based on an LDA score of >2 and a p-value of < 0.05 from the 
LEfSe. Predictive functional analysis was carried out using Tax4Fun2 
(Wemheuer et al., 2020), producing a Kyoto Encyclopedia of Genes 
and Genomes (KEGG) Orthology (KO) table that was further 
analyzed in MicrobiomeAnalyst for pathway annotation (Lu 
et al., 2023).

Results

A total of 2.89 million raw reads were generated from 10 samples 
(Supplementary Table 1). Following quality filtering, 654,529 reads 
were taxonomically classified, resulting in 7,613 ASVs after clustering 
and chimera removal (Supplementary Table 2). The ASV distribution, 
indicating sequencing depth and diversity for coral and sponge 
samples, is illustrated in the rarefaction curve 
(Supplementary Figure 1). The rarefaction curve indicated higher 
sequencing coverage and taxonomic assignments in coral samples 
compared to sponge samples (Supplementary Figure 1). The identified 
ASVs richness value ranging from 1,118 to 1,320 for corals and 

260–402 for sponges (Supplementary Table 2). The alpha diversity 
indices indicated greater diversity and richness in coral samples 
relative to sponge samples (Supplementary Table  2). Shannon’s 
diversity index for sponge samples ranged from 3.51 to 3.87, while 
coral samples exhibited a range of 5.11–5.70 (Supplementary Table 2). 
Simpson’s diversity values were found to be between 0.93 and 0.96 for 
sponge samples and between 0.98 and 0.99 for coral samples 
(Supplementary Table 2).

The affiliation of ASVs to bacterial taxa revealed 30 phyla in coral 
samples vs. 14 in sponge samples (Figure 2a). Dominant bacterial 
phyla in coral were identified as Proteobacteria (48.99 ± 11.51%), 
Actinobacteria (16.11 ± 4.64%), Firmicutes (8.06 ± 2.87%), 
Cyanobacteria (7.22 ± 5.76%), Planctomycetes (3.75 ± 1.75%), 
Chloroflexi (2.46 ± 0.75%), and Patescibacteria (1.32 ± 0.33%) 
(Figure 2a). Sponge samples exhibited less diversity with dominant 
phyla including Proteobacteria (63.44 ± 7.14%), Cyanobacteria 
(21.44 ± 4.66%), Planctomycetes (9.52 ± 2.32%), and Actinobacteria 
(3.64 ± 0.75%). Within Proteobacteria, Alphaproteobacteria 
(51.81 ± 11.71%) and Gammaproteobacteria (2.12 ± 0.52%) were 
predominant in coral samples (Figure  2b). Conversely, only 
Alphaproteobacteria (63.19 ± 7.28%) dominated sponge samples 
(Figure  2b). Following Alphaproteobacteria, coral samples also 
featured Actinobacteria (12.59 ± 4.62%), Cyanobacteria 
(7.95 ± 0.63%), Clostridia (7.83 ± 3.16%), Acidimicrobiia 
(4.20 ± 1.74%), Phycisphaerae (2.19 ± 0.70%), Planctomycetes 
(1.93 ± 0.38%), Dehalococcoidia (1.57 ± 0.74%), and Coriobacteriia 
(1.19 ± 0.76%) (Figure  2b). In sponge samples, Cyanobacteria 
(21.65 ± 4.65%) and Planctomycetes (9.50 ± 2.35%) followed 
Alphaproteobacteria as the dominant classes. Class-level bacterial 
diversity is illustrated on a heatmap (Figure 3). The dominant genera 

FIGURE 1

Field photograph of the eroding beta form of Cliona thomasi over live coral colonies of Turbinaria mesenterina at the study site of Grande Island. 
Adapted from “Differential Symbiodiniaceae Association With Coral and Coral-Eroding Sponge in a Bleaching Impacted Marginal Coral Reef 
Environment” by Mote et al. (2021a), licensed under CC-BY 4.0.
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in coral samples were Ruegeria (14.97 ± 3.62%), Rhodococcus 
(13.28 ± 4.18%), Chelatococcus (7.18 ± 3.97%), Paracoccus 
(4.89 ± 2.64%), Prochlorococcus (4.12 ± 1.83%), Candidatus 
Actinomarina (3.28 ± 1.06%), and Blastopirellula (2.95 ± 1.34%) 
(Figure 2c). In contrast, the sponge sample’s dominant genus was 
Synechococcus (44.33 ± 3.00%), followed by Blastopirellula 
(23.42 ± 2.36%) (Figure  2c). Species-level changes are depicted in 
Figure 2d.

Following ASV annotation, beta-diversity measures were assessed 
for sponge and coral samples. Beta-diversity analysis via 
PERMANOVA indicated significant differences between 
coral and sponge samples (p = 0.007, permutation N: 999) 
(Supplementary Table  3). Multivariate clustering through nMDS 
corroborated the distinct bacterial community distributions between 
coral and sponge samples (Figure 4). Further confirmation of bacterial 
diversity differences was provided by SIMPER analysis, revealing an 
average dissimilarity of 81.44% between sponge and coral samples 
(Supplementary Table 4).

The disparity in the bacterial communities between coral and 
sponge hosts was validated by LEfSe analysis (p < 0.05, LDA score = 2). 
Coral samples predominantly featured Acidobacteria, Actinobacteria, 
Chloroflexi, Dadabacteria, Firmicutes, Fusobacteriota, and 
Patescibacteria (Figure 5a). Sponge samples were mainly characterized 
by Cyanobacteria, Planctomycetes, and Bdellovibrionota (Figure 5a). 
Significant differences in bacterial genera between coral and sponge 
samples are illustrated in Figure  5b. Dominant genera linked to 
sponge samples include Synechococcus_CC9902, Blastopirellula, 
Clade_Ia, and Candidatus-Rhabdochlamydia (Figure 5b). In contrast, 
genera such as Rhodococcus, Chelatococcus, Paracoccus, 
Prochlorococcus_MIT9313, and Candidatus-Actinomarina were 
more prevalent in coral samples (Figure 5b). These findings indicate a 
reduced bacterial community abundance in sponges compared 
to corals.

The predictive functional analysis identified 3,434 KO terms 
across the investigated sponge and coral samples. These KO terms 
were categorized into 23 primary COG functional categories 
(Figure  6a). The PCA of KO term abundances demonstrated a 

distribution pattern consistent with ASV analysis (Figure  6b). 
Differential KO distribution analysis revealed 3,312 KOs varying 
between the samples. LEfSe analysis identified 202 KOs with 
significant enrichment (LDA score >2, p < 0.05). Sponge samples 
showed enrichment for 124 KO terms, while coral samples had 78. 
Despite having fewer enriched KO terms, coral annotations exhibited 
greater pathway diversity than sponge (Figure 6c). The predominant 
predictive pathways in sponge samples included glycan biosynthesis, 
oxidative phosphorylation, porphyrin metabolism, and nicotinamide 
adenine dinucleotide phosphate (NADPH) metabolism, primarily 
associated with energy metabolism. Conversely, coral samples 
displayed a diverse array of enriched predictive pathways 
encompassing primary and secondary metabolism, such as 
carbohydrate and lipid metabolism.

Discussion

In this study, the bacterial communities associated with 
T. mesenterina and C. thomasi showed significant differences, despite 
both organisms inhabiting the same marginal reef environmental 
conditions. The coral-associated bacteria displayed greater taxonomic 
richness and diversity, with a broader representation of bacterial phyla 
and functional pathways. In contrast, the sponge microbiome was less 
diverse. The lower microbial abundance (LMA) determined in the 
sponge in this study corroborates well with previous reports defining 
Cliona viridis complex species as having LMA (Jeong et al., 2015; 
Ramsby et al., 2018b; Easson et al., 2020; Sacristán-Soriano et al., 2020).

Coral bacterial diversity

The coral species T. mesenterina, a widely distributed reef-building 
coral in the Indo-Pacific region, is known for its stress tolerance and 
resilience (Veron, 2000; Sofonia and Anthony, 2008). In our analysis, 
T. mesenterina harbored a taxonomically rich community spanning 
30 bacterial phyla, with high alpha diversity. Proteobacteria dominated 

FIGURE 2

Relative abundances of bacterial communities associated with coral and sponge samples at four taxonomic levels: (a) phylum, (b) class, (c) genus, and 
(d) species. The plots display the top taxa (based on relative abundance) identified across all samples.
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the assemblage (~53% of total abundance), in line with reports from 
other reef-building and soft corals (Qi et al., 2022; Mohamed et al., 
2023). Within this phylum, Alphaproteobacteria were found to 
be dominant and are consistent with previous findings, where they 
contribute to growth support, nutrient cycling, and the production of 
bioactive compounds such as vitamin B₁₂ (Maire et al., 2021; Lin et al., 
2022; Shoguchi et al., 2024). Although many Alphaproteobacteria 
ASVs could not be  resolved at the genus level, Ruegeria (family 
Rhodobacteraceae) emerged as the dominant taxon. Members of this 
genus are recognized for their potential role in coral health, 
particularly under heat stress (Rosado et al., 2019).

Actinobacteria formed the second most abundant phylum (~17% of 
relative abundance), dominated by Rhodococcus. Several studies have 
highlighted the critical role of Actinobacteria in supporting coral survival 
under heat stress (Li et al., 2023; de Breuyn et al., 2025; Osman et al., 
2025). Other notable genera included Aeromicrobium and Streptomyces, 
which are known to produce antimicrobial and antifungal compounds 
in corals, making them promising sources of bioactive metabolites 
(Mahmoud and Kalendar, 2016; Betancur et al., 2017). Firmicutes were 
the next most abundant phylum detected in the coral samples, a group 
often reported to increase in corals experiencing elevated temperatures 
or in contact with turf and macroalgae (Rajasabapathy et al., 2020).

FIGURE 3

Heatmap showing the taxonomic distribution of bacterial abundance at the class level across five sponge samples and five coral samples. The color 
gradient represents the relative abundance of each bacterial class, with darker shades indicating higher abundance. Hierarchical clustering was 
performed using the Bray–Curtis dissimilarity metric to group samples and taxa based on similarity in microbial community composition.
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Cyanobacteria represented approximately 7% of the total relative 
abundance, ranked after Actinobacteria. Although less abundant, 
this group plays key ecological roles in reef ecosystems, such as 
nitrogen fixation, calcification, and decalcification (Lesser et  al., 
2007; Charpy et  al., 2012). Other major phyla detected include 
Planctomycetes, which are found as the most common associates 

with corals, either in their healthy or diseased stage (Lage and 
Bondoso, 2014; Kaboré et al., 2020; Rajasabapathy et al., 2020). Since 
the corals from the investigated habitat had previously experienced 
multiple stresses, mainly heat stress (Hussain and Ingole, 2020; 
Arora et al., 2021; Mote et al., 2021a), the observed microbiome 
composition likely reflects the same.

FIGURE 4

Non-metric multidimensional scaling (NMDS) plots illustrate differences in bacterial community composition between sponge and coral samples. Each 
point represents a sample, with shapes or colors indicating sample type (sponge vs. coral).

FIGURE 5

Histogram plots of linear discriminant analysis (LDA) scores showing bacterial taxa differentially abundant between coral and sponge samples at (a) 
phylum and (b) genus level. Only taxa with LDA scores > 2 and p-value < 0.05 are shown, with positive LDA values representing bacterial groups 
enriched in coral samples, while negative values correspond to those enriched in sponge samples.
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Sponge bacterial diversity

Interestingly, the microbial community composition of C. thomasi 
closely resembled that observed in our previous study conducted at 
another site along the same coastline, located 100 km away from the 
current study area (Mote et al., 2021b). Furthermore, the determined 
bacterial community is comparable with the other reports from the 

C. viridis species complex (Jeong et al., 2015; Ramsby et al., 2018b; Easson 
et al., 2020; Sacristán-Soriano et al., 2020) and supports that this group 
has an LMA. Like coral, the investigated sponge samples were found to 
be dominantly associated with Alphaproteobacteria. Previous studies on 
the C. viridis complex species microbiome from different geographical 
locations, including those from the Pacific region, have also reported 
Alphaproteobacteria as a primary inhabitant (Jeong et al., 2015; Ramsby 

FIGURE 6

Predictive functional profiling of coral and sponge microbiomes based on amplicon sequencing data. (a) Bar chart representing 23 primary functional 
categories based on Clusters of Orthologous Groups (COG) functional attributes. (b) Sample distribution based on KEGG Ortholog (KO) terms using 
principal component analysis (PCA). (c) Differential functional enrichment using LEfSe from major KO terms (LDA score > 2; p < 0.05).
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et al., 2018b; Easson et al., 2020; Sacristán-Soriano et al., 2020; Mote et al., 
2021b). Various physiological processes of the sponge are known to 
be governed by the activity of Alphaproteobacteria (Hudspith et al., 2021; 
Sánchez-Suárez et al., 2022).

The Cyanobacteria were the second most abundant phylum in 
C. thomasi. The cyanobacteria had been reported for their photo-
protective effects against intermittent high-light exposure to the 
sponge (Steindler et  al., 2002; Pineda et  al., 2016) and are also 
known to produce cytotoxic secondary metabolites (Teruya et al., 
2004; Matthews et  al., 2020). Planctomycetes were another 
dominant bacterial group. This phylum is known to be  an 
important component of the sponge microbiome as well as the 
broader marine microbial community (Fuerst and Sagulenko, 
2011; Lage and Bondoso, 2014; Thomas et al., 2016). Notably, it 
may have a major role in host resource partitioning, as reported in 
corals (Turnlund et al., 2023).

Comparative microbiome analysis of corals 
and bioeroding sponges from marginal reef

Bioeroding sponges represent a growing concern for coral reef 
ecosystems, as their abundance over live corals has been reported 
to increase in many reef regions, largely in response to climate 
change and other cumulative environmental stressors (Bell et al., 
2013, 2018; Carballo et  al., 2017). Both the coral and sponge 
samples were dominated by Proteobacteria, with 
Alphaproteobacteria accounting for the largest proportion of 
ASVs. Both the coral species T. mesenterina and the sponge 
C. thomasi are known for their symbiotic associations. Our 
previous study highlighted their distinct endosymbiotic 
dinoflagellate clades Durusdinium and Gerakladium in 
T. mesenterina and C. thomasi, respectively, within the same habitat 
(Mote et al., 2021a). Notably, the dominance of Alphaproteobacteria 
alongside Symbiodiniaceae has been reported as a crucial tripartite 
interaction involving the coral–sponge host, their algal symbionts, 
and associated bacterial communities (Matthews et al., 2020).

Cyanobacteria were the second most abundant phylum in sponge 
samples, with a higher abundance compared to coral tissues. Sponge 
species with photosymbiotic dinoflagellates from the Pacific region are 
typically dominated by cyanobacteria (Biggerstaff et al., 2015; Pineda 
et al., 2017; Ramsby et al., 2018a, 2018b). There is strong evidence that the 
cyanobacterial symbionts in the sponge support an energy trade-off for 
the sponge host by facilitating photoacclimatization to site-specific 
turbidity (Biggerstaff et al., 2015). Another study from the Pacific region 
showed an increase in cyanobacterial abundance with the bioeroding 
sponge Cliona orientalis as an opportunistic proliferation, supporting the 
host’s energy requirements. The other dominant phylum in the sponge 
was Planctomycetes, with significantly higher abundance than in coral, 
whereas Actinobacteria and Firmicutes were relatively enriched in coral 
tissues. Such compositional differences may reflect variations in surface 
morphology, microhabitat conditions, and nutrient utilization strategies.

Predicted functional profiles based on KEGG Orthology (KO) 
annotations mirrored the taxonomic patterns and revealed distinct 
clustering of coral and sponge samples (Figure  6b). The coral-
associated microbial communities showed a greater diversity of 
predicted pathways, contributing to their metabolic versatility and 
rapid responsiveness to environmental changes. However, these 

microbial communities may also facilitate shifts toward 
opportunistic states under stress. In contrast, sponge-associated 
microbes exhibited higher predicted abundances of functions 
related to structural integrity, redox balance, and resilience to 
environmental fluctuations, potentially underpinning microbial 
stability in turbid reef environments (Figure 6a). These functional 
attributes suggest that sponge-associated microbial communities 
confer greater stability than those of corals at the studied marginal 
reef site. This interpretation is supported by field observations 
indicating an increase in sponge cover relative to coral at the 
investigated site (Mote et al., 2021a).

Conclusion

This study demonstrates significant differences in bacterial 
diversity, composition, and predicted functional potential between 
T. mesenterina and C. thomasi inhabiting a marginal, turbid, and 
bleaching-impacted reef system. Coral-associated microbiomes 
exhibited higher taxonomic richness, greater alpha diversity, and 
broader functional potential. In contrast, sponge microbiomes 
were less diverse but strongly dominated by a few taxa. Significant 
beta-diversity differences and distinct biomarker taxa revealed by 
LEfSe confirm that corals and sponges support distinct bacterial 
assemblages. Although both organisms experience similar 
environmental conditions, differences in host physiology, surface 
chemistry, and resource availability are likely key drivers of these 
differences in bacterial diversity. Understanding such host-specific 
microbiome signatures can inform predictions of benthic 
community shifts in marginal reefs and aid in the development of 
microbial indicators of reef health.
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