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Pediatric asthma is a common chronic airway inflammatory disease that begins 
in childhood and its impact persists throughout all age stages of patients. With 
the continuous progress of detection technologies, numerous studies have firmly 
demonstrated that gut microbiota and respiratory microbiota are closely related 
to the occurrence and development of asthma, and related research is increasing 
day by day. This article elaborates in detail on the characteristics, composition of 
normal gut microbiota and lung microbiota at different ages and in different sites, 
as well as the connection of the gut—lung axis. Subsequently, it deeply analyzes 
various factors influencing microbiota colonization, including host factor, delivery 
mode, maternal dietary and infant feeding patterns, environmental microbial 
exposure and pollutants, and the use of antibiotics in early life. These factors are 
highly likely to play a crucial role in the onset process and disease progression of 
asthma. Research shows that obvious changes have occurred in the respiratory 
and gut microbiota of asthma patients, and these microbiomes exhibit different 
characteristics according to the phenotypes and endotypes of asthma. Finally, 
the article summarizes the microbiota—related treatment approaches for asthma 
carried out in recent years, including the application of probiotics, nutritional 
interventions, and fecal microbiota transplantation. These treatment modalities 
are expected to become new directions for future asthma treatment and bring 
new hope for solving the problem of childhood asthma.
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1 Introduction

Bronchial asthma, a prevalent chronic inflammatory airway disorder in the pediatric 
population (Asher et al., 2021), emerges as a significant contributor to public health challenges, 
manifesting through elevated school absenteeism rates, increased emergency department 
utilization, and higher hospitalization frequencies (Naja et al., 2018).

The microbiota constitutes a complex and dynamic community of bacteria, viruses, and 
fungi, archaea, and other microorganisms, encompassing both commensal and pathogenic 
species, that colonize the surfaces or internal environments of hosts (humans, animals, plants) or 
external ecosystems. The microbiome primarily refers to the genomic repertoire of the microbiota, 
though these terms are frequently used interchangeably (Berg et al., 2020). Characterized by 
individual specificity, dynamic variability, and niche heterogeneity (Cho and Blaser, 2012), the 
human microbiota rapidly establishes colonization in the gastrointestinal tract, respiratory 
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system, and other anatomical microenvironments after birth, with its 
composition continuously shaped by host factors and environmental 
exposures. A growing consensus emphasizes that these microbial 
communities and their metabolites participate in critical host biological 
processes, including maintaining immune homeostasis and modulating 
metabolic pathways, which promote health under homeostatic 
conditions while driving disease pathogenesis during dysbiosis. Notably, 
microbiota dysbiosis, defined as an imbalance between beneficial and 
pathogenic species or aberrant abundance of specific commensals, 
demonstrates significant associations with pulmonary disorders, 
including asthma (Barcik et al., 2020), bronchopulmonary dysplasia 
(Pammi et al., 2019), cystic fibrosis (Françoise and Héry-Arnaud, 2020) 
and COVID-19 (Ancona et al., 2023).

In recent times, with the remarkable advancements in microbiome 
technology, our comprehension of the relationship between the 
human microbiota and health—disease states has been continuously 
enhanced (Escobar-Zepeda et  al., 2015; Davidson and Epperson, 
2018). The gut microbiota and respiratory microbiota, being crucial 
constituents of the human microbiota (Clavijo-Salomon and 
Trinchieri, 2025), play a pivotal role in maintaining the body’s immune 
equilibrium and fending off pathogen incursions. A growing body of 
evidence suggests that the dysbiosis of gut microbiota and respiratory 
microbiota might be a key potential factor precipitating childhood 
asthma (Thorsen et al., 2023; Henrick et al., 2021). Through the gut—
lung axis (Budden et  al., 2017), the metabolites and 
immunomodulatory signals of gut microbes can influence the 
immune status and inflammatory responses within the respiratory 
tract. Nevertheless, our current knowledge regarding the 
characteristics of microbiota at diverse age phases and in different 
anatomical sites, along with their precise mechanisms of action in the 
initiation and progression of asthma, still requires substantial 
improvement. In—depth investigations into the associations among 
gut microbiota, respiratory microbiota, and childhood asthma not 
only contribute to unravelling the pathogenesis of asthma but also 
hold the promise of opening up novel avenues for the prevention and 
treatment of childhood asthma. Consequently, a systematic review of 
the research progress in this domain bears significant theoretical 
implications and clinical application value.

2 Healthy gut and respiratory 
microbiota

The establishment of the normal microbiota is intricately linked 
to the development of various systems in children and the onset and 
progression of diseases, particularly respiratory allergic disorders. The 
gut microbiota and respiratory microbiota vary significantly with age 
and across different distribution sites. The gut—lung axis likely exerts 
a subtle and far—reaching influence on the body through mechanisms 
such as metabolism and immune circulation. Moreover, diverse 
microbiota, including bacteria, fungi, and viruses, interact with one 
another to jointly maintain a healthy micro—ecological environment.

2.1 Healthy gut microbiota

The human gut inhabits ~1014 bacteria (Bäckhed et al., 2005), as the 
body’s most densely colonized site (Sender et al., 2016). The dynamic 

development of the gut microbiota constitutes a central biological 
determinant in early-life programming, with its interaction mechanisms 
through the gut-lung axis with distal organs (e.g., pulmonary system) 
emerging as a critical frontier in host immunometabolic regulation. 
Following birth, the intestinal mucosal surface undergoes rapid 
microbial colonization (Leiby et  al., 2018), establishing itself as a 
primary site for microbiota development. Neonatal gut flora, dominated 
by Enterococcus, Escherichia, Streptococcus, and Rothia (Actinobacteria), 
reflects an aerobic environment. By 2–4 months, colonization shifts to 
Enterobacteriaceae, Bifidobacteriaceae, and Clostridiaceae, signaling 
oxygen reduction and lactic acid metabolism. These taxa gradually 
decline until 18 months under the “healthy microbiota maturation” 
framework (Ximenez and Torres, 2017), paralleling increased microbial 
diversity observed in neonatal fecal analyses (Casaburi et al., 2021). This 
dynamic developmental progression drives the establishment of unique 
gut microbial profiles during infancy. During this period, the gut 
microbiota exhibits lower microbial diversity, structural instability, and 
marked inter-individual variability. By approximately three years of age, 
this developmental trajectory transitions toward stabilization, 
converging with adult-like microbial composition while establishing a 
unique gut ecosystem characterized by host-specific features (Koenig 
et al., 2011; Solís et al., 2010). In humans, fecal microbiota maturation 
occurs predominantly within the first several years of life, marked by the 
dominance of Firmicutes and Bacteroidetes phyla typically observed by 
3 years of age (Teo et  al., 2018; Yatsunenko et  al., 2012). Emerging 
evidence suggests early microbial interactions may begin prenatally: 
placental bacteria in some preterm infants share origins with maternal 
oral microbiota (Ye et al., 2020), implying fetal-microbe crosstalk during 
embryogenesis (Casaburi et al., 2021).

Although existing research has predominantly focused on 
bacterial components of the gut microbiome, it is crucial to recognize 
that the viral component also constitutes a significant member of this 
microbial community. During the initial months of life, bacteriophages, 
akin to bacteria, exhibit host-specific distribution within the gut and 
play a pivotal role in regulating bacterial growth through mechanisms 
such as lysis and lysogeny (Shah et al., 2023). In 2008, a groundbreaking 
study by Breitbart et al. (2008) on the infant gut virome first revealed 
that the intestinal viral community of neonates at one-week 
postpartum displays remarkably low biodiversity, with bacteriophages 
dominating the composition. This specific distribution pattern may 
regulate the population structure and quantitative dynamics of 
symbiotic microbiota through niche competition. Recent research, 
leveraging large-scale viral metagenomic analyses of fecal samples 
from 1-year-old infants, identified approximately 10,000 viral genomes 
spanning 248 viral family-level clades (VFCs). Notably, over half of 
these VFCs represent previously undocumented taxonomic units, 
predominantly classified under the Caudoviricetes class (Shah et al., 
2023). Nevertheless, significant gaps persist in understanding the 
assembly mechanisms of viral communities during critical 
developmental stages in early life. Combined with the limited coverage 
of viral genome databases, these challenges substantially hinder efforts 
to decode the organizational principles of the human virome.

2.2 The gut-lung axis

The gut-lung axis refers to a bidirectional communication 
network between the gut and the lungs (Budden et  al., 2017), 
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mediated by microbiota, metabolites, immune signals, and 
neuroendocrine pathways. The gut and lung microbiota collectively 
influence respiratory health and diseases [such as asthma (Kim et al., 
2021) and respiratory infections (Zhao et al., 2023) by regulating the 
host immune system, metabolic pathways, and 
inflammatory responses].

This intricate cross-talk is mechanistically underpinned by 
specific microbial-derived components and host signaling 
molecules that mediate bidirectional organ interactions. 
Imbalanced gut bacteria (e.g., low diversity or harmful 
overgrowth) disrupt lung immunity via blood or lymph, while 
lung microbes affect inflammation through immune cells like 
dendritic cells. Gut bacteria also boost regulatory T cells (Tregs) 
(Arpaia et al., 2013) and reduce harmful Th2/Th17 inflammation 
(Atarashi et  al., 2015). Key metabolites (e.g., SCFAs) balance 
immune responses by targeting receptors or enzymes [e.g., HDAC 
(Wang N. et  al., 2024)], linking gut health to lung diseases 
like asthma.

2.3 Healthy respiratory microbiota

Conventional microbiological dogma long maintained the sterility 
of pulmonary environments (lower respiratory tract), until paradigm-
shifting molecular analyses circa 2010 (Hilty et  al., 2010) 
fundamentally redefined our understanding of airway microbiota 
composition propelling respiratory microbiome research into 
scientific prominence. Building upon these revelations, this section 
critically examines the dynamic colonization mechanisms and 
signature microbial profiles within healthy respiratory ecosystems, 
including bacteria (bacteriome), virus (virome) and fungi 
(mycobiome).

2.3.1 Bacteria (bacteriome)
Respiratory bacterial colonization exhibits spatiotemporal 

heterogeneity across anatomical niches and age strata. Oropharyngeal 
specimens (via oral rinse sampling) demonstrate microbial 
predominance of Prevotella, Veillonella, and Streptococcus genera 
(Dickson et al., 2017). In contrast to the taxonomically rich ecosystems 
of gut and oropharyngeal microbiota, the lower respiratory tract 
(pulmonary microbiome) maintains reduced microbial biomass while 
exhibiting marked ecological heterogeneity. Developmental analyses 
reveal neonatal pulmonary colonization initiates with Staphylococcus 
or Corynebacterium predominance, undergoing successional 
displacement by Alloiococcus or Moraxella genera during microbiota 
maturation (Teo et al., 2015). The stabilized pulmonary microbiome 
in healthy individuals is characterized by tripartite dominance of the 
following bacterial phyla: Firmicutes (genus Streptococcus), 
Proteobacteria (genus Acinetobacter), and Actinobacteria (genus 
Corynebacterium) (Bassis et al., 2015; Segal et al., 2013; Venkataraman 
et al., 2015), with core genera (Streptococcus, Veillonella, Prevotella) 
maintaining trans-anatomical equilibrium (Dickson et  al., 2017). 
Dolosigranulum pigrum was more abundant in younger individuals 
while remaining present across all age groups. In contrast, the 
nasopharyngeal microbiota of adolescents and adults (≥15 years) was 
characterized by a consortium of less common taxa, including 
Anaerococcus (octavius), Corynebacterium, Finegoldia magna, 
Lawsonella clevelandensis, and Peptoniphilus (Odendaal et al., 2024).

2.3.2 Virus (virome)
The groundbreaking advances in NGS have enabled scientists to 

systematically unravel the complex ecology of the human lung virome. 
Studies reveal distinct characteristics of respiratory viral composition 
in healthy populations: viral diversity is markedly reduced (Willner 
et al., 2009), particularly in pediatric cohorts where Anapoviridae 
dominates, with minimal presence of human herpesviruses. In healthy 
lung tissues, this viral family persists as the core eukaryotic virome, 
occasionally coexisting with herpesviruses, papillomaviruses, and 
retroviruses (Willner et al., 2009). Intriguingly, latent viral phases may 
confer protective benefits to hosts—by persistently stimulating 
interferon-gamma (IFN-γ) secretion and activating macrophages, 
thereby establishing a foundational immune defense barrier (MacDuff 
et  al., 2015; Sun et  al., 2015). This mechanism is experimentally 
validated: mice latently infected with murine herpesvirus exhibit 
enhanced resistance to Listeria monocytogenes infections (Barton 
et  al., 2007). Notably, emerging evidence identifies a rich phage 
community within respiratory surfaces, hypothesized to comprise 19 
core species (Willner et  al., 2009; Lim et  al., 2013). These phages 
orchestrate microbial equilibrium through dual strategies—precisely 
eliminating competitor bacterial strains via prophage release while 
dynamically regulating proliferation balance among niche-sharing 
bacteria, revealing intricate cross-kingdom interactions. Future 
investigations must elucidate the mechanisms underlying viral 
interactions with other pulmonary microbes, which promise to unlock 
novel therapeutic avenues for respiratory disease prevention 
and treatment.

2.3.3 Fungi (mycobiome)
Current mycological research primarily employs targeted 

sequencing approaches, including analysis of the internal transcribed 
spacer (ITS) region and 18S rRNA genes, complemented by shotgun 
metagenomic sequencing (Carney et  al., 2020). Despite growing 
research interest in this field (Cui et al., 2013; Huffnagle and Noverr, 
2013), pulmonary fungal studies face persistent technical challenges: 
extremely low biomass, limited taxonomic diversity, inefficient DNA 
extraction, 18S rRNA amplification bias, and inconsistent 
nomenclature standards, collectively hampering accurate fungal 
database annotation (Iliev et al., 2012; Marsland and Gollwitzer, 2014; 
Carmody et  al., 2013). Compared to the well-characterized 
bacteriome, the functional significance of fungi in pulmonary 
ecosystems remains underexplored.

Emerging evidence reveals distinct diversity patterns in healthy 
pulmonary mycobiomes that significantly differ from pathological 
states (Fodor et al., 2012; Lim et al., 2014; Delhaes et al., 2012). Core 
fungal communities are dominated by Ascomycetes (phylum level) 
and Streptomyces (genus level), followed by Candida, Saccharomyces, 
Penicillium, Dictyostelium, and Fusarium (Huang et al., 2020; Sharma 
et  al., 2019), with Candida demonstrating the highest relative 
abundance (Delhaes et al., 2012; Charlson et al., 2012; Ghannoum 
et  al., 2010). Additional commensal species include Aspergillus, 
Davidiellaceae (family level), and Eurotium (Charlson et al., 2012). 
Notably, cross-kingdom interactions between fungi and bacteria 
exhibit regulatory mechanisms: Candida shows positive correlation 
with Lactobacillus but negative association with Helicobacter pylori. 
Experimental evidence confirms that Lactobacillus suppresses the 
epithelial adhesion capacity of both H. pylori and Candida  
albicans, thereby modulating their colonization dynamics  
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(Dohlman et  al., 2022). Previous studies have systematically 
delineated the colonization dynamics and characteristic microbiota 
composition of the gut and respiratory tract during early life, 
demonstrating the pivotal role of these symbiotic microorganisms in 
maintaining homeostasis for proper immune system development. 
Importantly, emerging evidence suggests that disruption of this 
delicate microbial equilibrium by various factors—including prenatal, 
perinatal, and postnatal influences—may compromise immune 
regulatory pathways, thereby substantially elevating the susceptibility 
to childhood asthma.

3 The factors that trigger changes in 
the microflora and trace asthma origin

The colonization process and change in species composition of 
respiratory and gut microbiome in early life are significantly associated 
with asthma susceptibility. This dynamic process is jointly regulated 
by the host’s age and multiple factors spanning prenatal to postnatal 
stages, including biological elements such as delivery mode, maternal 
dietary and infant feeding patterns; ecological components like 
environmental microbial exposure and pollutants; as well as critical 
regulatory factors including early life antibiotic use. These multifaceted 
influences collectively shape microbial colonization and immune 
development, ultimately affecting asthma risk.

3.1 Host

Recent studies have revealed significant variations in the 
composition of respiratory microbiota based on the host’s age 
(gestational age). Comparative studies have demonstrated gestational 
age-dependent variations in microbial community composition, 
revealing developmental-stage-specific differences (Bargheet et al., 
2023). Extremely preterm infants exhibit delayed gut microbiota 
maturation with higher abundances of potentially pathogenic 
bacteria like Escherichia coli and Staphylococcus epidermidis 
compared to full-term infants, who are dominated by beneficial 
Bifidobacterium and Bacteroides species. Very preterm infants show 
intermediate microbiota profiles, characterized by reduced diversity 
and delayed colonization of symbiotic bacteria, influenced by 
gestational age. The nasopharynx of younger individuals is dominated 
by Dolosigranulum pigrum (D. pigrum), a species universally present 
across all age groups but exhibiting significantly higher abundance in 
pre-adolescent populations.

3.2 Delivery mode

The mode of delivery significantly influences the early colonization 
and developmental trajectory of both respiratory and gut microbiota 
in infants. Systematic reviews have demonstrated that vaginally 
delivered newborns exhibit significantly higher gut abundance of 
Actinobacteria, Bacteroides, and Bifidobacterium compared to 
cesarean-delivered counterparts (Rutayisire et  al., 2016). Recent 
studies further reveal distinct gut microbial profiles at one week of age: 
cesarean-born infants predominantly harbor Citrobacter freundii, 
Clostridium spp., and Staphylococcus aureus, whereas vaginal delivery 

promotes preferential colonization by Escherichia coli (Stokholm 
et al., 2020).

The mode of delivery also influences the types of respiratory 
microbiota. In the respiratory tract, vaginally delivered neonates 
display early colonization with Corynebacterium and Dolosigranulum 
pigrum. The sustained presence of these commensal bacteria is 
associated with enhanced microbial maturity and a marked 
reduction in long-term asthma risk (Chen et al., 2023). Longitudinal 
studies further show that vaginally born infants maintain higher 
abundance of Bacteroides by one year of age, with its deficiency being 
strongly correlated with asthma susceptibility and delayed microbial 
development (Chen et  al., 2023). Conversely, cesarean-delivered 
infants exhibit characteristic respiratory microbiota delays: early 
enrichment of Gemella and Streptococcus, followed by aberrant 
proliferation of oral bacterial genera such as Neisseria and Prevotella 
(Bosch et al., 2017). This dysbiotic profile, coupled with reduced 
colonization of health-associated commensals (e.g., 
Corynebacterium), may increase susceptibility to respiratory diseases 
through immune dysregulation (Bosch et al., 2016). Although the 
impact of delivery mode on respiratory microbiota is less 
pronounced than on gut microbiota (Chu et al., 2017; Biesbroek 
et  al., 2014), their interplay remains clinically significant. For 
instance, early asymptomatic colonization of the respiratory tract 
with Streptococcus during infancy has been identified as a strong 
predictor of asthma development, likely mediated by disrupted 
immune education through host-microbial interactions in early life 
(Teo et al., 2015).

3.3 Maternal dietary and infant feeding 
patterns

Maternal dietary patterns during pregnancy, combined with 
postnatal feeding strategies, collectively shape offspring microbiota 
development trajectories, thereby influencing the risk of asthma and 
allergic diseases. A nested cross-sectional study (the MAMI cohort) 
demonstrated that maternal dietary patterns during pregnancy 
significantly influence neonatal gut microbiota development. 
Specifically, high intake of saturated fatty acids (SFAs) and 
monounsaturated fatty acids (MUFAs) leads to an abnormal 
enrichment of Firmicutes in the infant gut. This microbial dysbiosis is 
negatively associated with high consumption of fiber, proteins from 
vegetable sources, and vitamins during pregnancy (Selma-Royo et al., 
2021). Arpaia et al. further support the protective role of dietary fiber, 
which modulates the Firmicutes: Bacteroidetes ratio to influences 
allergic airway disease (Arpaia et al., 2013). These findings underscore 
the importance of optimizing maternal fatty acid intake and increasing 
fiber-rich foods during pregnancy to mitigate asthma risk.

Infant feeding patterns (postnatal nutrition) also plays a critical 
role in shaping microbial trajectories that influence disease 
susceptibility. Breastfeeding promotes the early colonization of 
beneficial respiratory commensals (e.g., Corynebacterium and 
Dolosigranulum pigrum) and enhances gut Bifidobacterium abundance 
(Chen et al., 2023; Bosch et al., 2017). In contrast, formula feeding is 
associated with enrichment of Gemella, Streptococcus in the infant 
respiratory microbiota and oral-type anaerobic bacteria such as 
Prevotella and Neisseria species, disrupting microbial stability (Bosch 
et al., 2017). Moreover, breast milk-derived hereditary microbes may 
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further protect against pediatric asthma by enhancing intestinal 
immune tolerance (Fang et al., 2024).

3.4 Environmental microbial exposure and 
pollutants

Epidemiological evidence demonstrates that residential microbial 
exposure critically modulates pediatric asthma risk, with cohort 
studies revealing an inverse correlation between indoor microbial 
diversity and asthma incidence across distinct living environments 
such as traditional farms versus urban communities (Sun et al., 2023; 
Ege et  al., 2011). This protective effect may stem from dynamic 
microbial colonization during immune system maturation, where gut 
microbiota play a pivotal role in immune education (Abt et al., 2012). 
However, environmental pollutants can disrupt this balance. For 
instance, PM2.5 alters gut microbiota composition by increasing 
Bacteroidetes and decreasing Firmicutes, a shift mechanistically linked 
to asthma development (Zhao et al., 2023). Animal studies further 
demonstrate that chronic PM2.5 exposure induces persistent gut-lung 
microbiota dysbiosis, contributing to late-onset asthma progression 
(Zhao et al., 2023). Similarly, prenatal and postnatal tobacco smoke 
exposure elevates Enterobacteriaceae abundance, exacerbating 
respiratory symptom risks in infancy (Vardavas et al., 2016). Notably, 
urban microbial diversity may counteract allergic risks. High-allergen 
environments combined with indoor dust microbial richness—
particularly the presence of protective taxa such as Prevotellaceae and 
Lachnospiraceae—attenuate wheezing, suggesting a potential buffering 
effect against asthma-related outcomes (Lynch et  al., 2014). 
Conversely, crowding conditions, including the presence of young 
siblings or daycare attendance, reduce respiratory microbiota stability 
and promote Pasteurellaceae (e.g., Haemophilus) dominance (Bosch 
et al., 2017). These findings collectively highlight the delicate balance 
between protective microbial exposures and pollutant-driven 
dysbiosis in shaping asthma pathogenesis.

3.5 Early life antibiotic use

Recent studies have revealed that early-life antibiotic exposure 
profoundly influences asthma development by altering microbiome 
composition. The widespread use of antibiotics during pregnancy and 
infancy not only promotes the emergence of multidrug-resistant 
pathogens (Alfaqawi et al., 2021), complicating asthma treatment, but 
also directly disrupts the dynamic balance of respiratory and gut 
microbiota in affected individuals. Clinical evidence indicates that 
antibiotics significantly deplete key commensal bacteria in infant 
airways, such as Corynebacterium and Alloiococcus, leading to reduced 
microbial community stability (Bosch et al., 2017). This microbial 
dysbiosis extends to the gut, where antibiotic intervention promotes 
abnormal yeast proliferation, thereby exacerbating pulmonary allergic 
responses (Noverr et al., 2004). Animal studies provide direct evidence 
for the impact of early-life antibiotic exposure on asthma pathogenesis. 
Neonatal mice exposed to azithromycin or amoxicillin exhibited 
marked reductions in the diversity of core gut microbial taxa, 
including Lachnospiraceae and Muribaculaceae (Borbet et al., 2022). 
Such microbial disturbances have long-term consequences—when 
these mice were later exposed to house dust mite allergens, they 

displayed elevated IgE and IL-13 levels (hallmark biomarkers of 
allergic asthma), alongside hyperactivation of Th2/Th17 immune 
pathways and significantly enhanced airway hyperreactivity. Notably, 
microbiota transplantation experiments demonstrated that offspring 
of germ-free mice colonized with gut microbiota from antibiotic-
exposed mice developed hyperactive immune responses and asthma-
like symptoms despite no direct antibiotic exposure, suggesting that 
early-life microbial alterations can program immune development 
through transgenerational transmission. Animal studies have shown 
that antibiotic use not only causes intestinal bacterial dysbiosis 
increasing asthma risk, but also induces intestinal fungal dysbiosis. 
Kim et al. found that combined antibiotic use leads to overgrowth of 
the commensal fungus Candida in the gut. Candida promotes M2 
macrophage polarization in the lungs by elevating plasma 
prostaglandin E2 (PGE2) levels, thereby increasing airway 
inflammatory cell infiltration and exacerbating tissue pathological 
changes (Kim et al., 2014).

4 Microbial alterations in pediatric 
asthma

Pediatric asthma demonstrates distinct gut-respiratory microbiota 
compositional differences compared to healthy controls. In this 
section, we review airway and gut microbial alterations in pediatric 
asthma, and microbial changes associated with asthma phenotypes 
and endotypes.

4.1 Intestinal microbita in pediatric asthma

The gut’s dysbiosis may disrupt immune homeostasis, and specific 
microbial shifts correlate with asthma development. Multicenter 
cohort studies revealed elevated Prevotella (P. bivia, P. disiens, P. oris) 
and Bacteroides fragilis colonization across oral-gut ecosystems, 
coupled with reduced Streptococcus thermophilus levels (Yan et al., 
2024). The dynamic changes in gut microbiota during early life are 
closely associated with the progression of asthma (Rautava and 
Walker, 2009; Simonyte Sjödin et  al., 2016). The Copenhagen 
Prospective Studies on Asthma in Childhood (COPSAC) (Stokholm 
et al., 2018) demonstrated that early-life gut microbial alterations in 
1-year-old infants born to asthmatic mothers, characterized by 
dysregulated relative abundances of Veillonella, Lachnospiraceae, 
Bifidobacterium, and Ruminococcus, served as significant predictors of 
asthma development by age 5. The Canadian Healthy Infant 
Longitudinal Development (CHILD) Study (Arrieta et  al., 2015) 
further identified the first 3 months of life as a critical window for gut 
microbiome-host interactions during which abnormal perturbations 
in gut microbiota structure exert profound long-term effects on 
airway health. Animal experiments using germ-free mice inoculated 
with stool from infants with atopic wheeze showed that 
supplementation with these depleted bacterial taxa reduced lung 
inflammation, elevated SCFA levels, and lowered proinflammatory 
cytokines in offspring (Cait et  al., 2018; Trompette et  al., 2014). 
SCFAs—produced through bacterial fermentation of dietary fiber —
promote Treg differentiation (Roduit et  al., 2019) via histone 
deacetylases (HDAC) inhibition, suppress M2 macrophage activation, 
and exert transgenerational protective effects (Calışkan et al., 2013; 
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Wang et al., 2023) when supplemented during pregnancy (Arpaia 
et al., 2013; Trompette et al., 2014; Roduit et al., 2019; Calışkan et al., 
2013; Huang et al., 2022). These findings collectively highlight the 
protective role of specific gut microbiota and their metabolites (e.g., 
SCFAs) in asthma pathogenesis.

Compared to the well-established gut microbiota-asthma 
research, studies on gut viruses and fungi are both fewer in number 
and more preliminary in nature. The virome comprises a small 
proportion of the overall gut microbiome. Recent study revealed 
associations between the infant gut virome composition and the risk 
of developing asthma (Leal Rodríguez et al., 2024). Bacteriophages, 
also known as phages, are viruses that infect and replicate within 
bacterial cells and are important determinants due to their ability to 
infect other bacteria, while they serve as mediators between 
pathogenic and nonpathogenic bacteria (Sweere et al., 2019). Specific 
temperate bacteriophage taxa, particularly 19 caudoviral families, 
were found to contribute to asthma risk. Children who later developed 
asthma exhibited lower relative abundances of these temperate phage 
families, which predominantly infect bacterial genera such as 
Faecalibacterium and Ruminococcus. Intriguingly, the virome-asthma 
association was independent of bacterial communities, with additive 
effects observed when combining virome and bacteriome signatures. 
The study also identified a potential interaction between the virome 
and the host immune system via the TLR9 rs187084 genetic variant, 
suggesting phage DNA may directly modulate immune responses. 
This study represents one of the few published investigations focusing 
on the intestinal virome in pediatric asthma pathogenesis. Although 
this is an observational study, its findings provide evidence for 
regulating gut phages through phage therapy or perinatal intervention 
and restoring the balanced temperate virome required for immune 
maturation as a novel preventive strategy for asthma. Future research 
should explore the diversity of gut viruses and fungi, their microbial 
interactions, and the underlying mechanisms in asthma development.

4.2 Respiratory microbiota in pediatric 
asthma

Significant differences exist in respiratory microbial composition 
between healthy children and asthma patients. In asthmatic children 
exhibit nasal microbiota enriched with Moraxella species [e.g., 
Moraxella catarrhalis (Raita et al., 2021)], whose relative abundance 
positively correlates with increased asthma exacerbation frequency 
(Zhou et  al., 2019; McCauley et  al., 2019; Durack et  al., 2018). 
Conversely, enrichment of Corynebacterium and Dolosigranulum is 
associated with improved asthma control, reduced BAL eosinophil 
percentages, and decreased levels of pro-inflammatory factors such as 
IL-17 and IL-121 (McCauley et al., 2019; Durack et al., 2018). This 
microbial dysbiosis interacts closely with host immune responses: 
rhinovirus (RV) infection combined with colonization by 
M. catarrhalis or Streptococcus pneumoniae synergistically exacerbates 
asthma symptoms (Kloepfer et  al., 2014), while early-life 
(1-month-old) upper respiratory colonization with S. pneumoniae, 
Haemophilus influenzae, or Moraxella significantly elevates asthma 
risk by age 5 (Thorburn et  al., 2015). This effect exhibits atopy 
dependency—children with early atopic sensitization are more prone 
to developing “persistent wheeze” (Teo et  al., 2018). Longitudinal 
studies demonstrate that seasonal fluctuations in nasal microbiota 

linked to virus-induced asthma exacerbations are further associated 
with the RV-C endotype, characterized by Moraxella-dominant 
communities, which significantly elevates recurrent wheeze risk (Raita 
et al., 2021; McCauley et al., 2022). In the lower respiratory tract, 
protective associations are observed in healthy children, where 
bronchial Actinomyces and nasal Corynebacterium negatively correlate 
with pro-inflammatory gene expression (Chun et al., 2020).

The respiratory virome also plays a critical role in asthma 
pathogenesis. Extensive research has demonstrated a strong 
association between pediatric asthma and respiratory viruses, with 
respiratory syncytial virus (RSV) and RV identified as key pathogenic 
drivers of asthma exacerbations (Korten et al., 2016; Sigurs et al., 2000; 
Rosas-Salazar et al., 2023). A prospective cohort study of 1,946 healthy 
term infants in the United States revealed that children uninfected 
with respiratory syncytial virus (RSV) during infancy had a lower 
incidence of asthma at age 5 compared to the infected group, and 
preventing RSV infection could reduce approximately 15% of pediatric 
asthma cases (Rosas-Salazar et al., 2023). RV is the most frequently 
detected pathogen in wheezing children over 1 year old, and its early-
life infections (particularly repeated detection within the first 3 
postnatal weeks) increase pre-2-year wheezing risk by 16% (Takashima 
et al., 2023). Lower respiratory RV infections within the first 3 years 
of life elevate asthma risk by 40-fold before age 6, far exceeding the 
effects of RSV infection (Jackson et al., 2008; Kusel et al., 2007; Psarras 
et  al., 2006). Mechanistically, RV promotes airway remodeling by 
inducing growth factors (e.g., lumican, collagen I/V) and prolongs 
bronchial hyperreactivity via non-Th2-IFN pathways, with impaired 
Th1/IL-10 responses exacerbating this pathology in atopic individuals 
(Psarras et  al., 2006; Skevaki et  al., 2012; Spector et  al., 2023; 
Xepapadaki et al., 2005; Megremis et al., 2018; Georgountzou et al., 
2021). Additionally, asthmatic children display upper respiratory 
virome dysbiosis dominated by eukaryotic viruses and low 
bacteriophage abundance, while diminished antiviral cytokine 
responses correlate with high RV loads (Megremis et al., 2023; Rovira 
Rubió et al., 2023).

In fungal communities, the upper respiratory tract of asthmatic 
children is dominated by Malassezia globosa and Malassezia restricta. 
High baseline M. globosa abundance delays asthma control loss, 
whereas its reduced abundance during exacerbation correlates with 
heightened severe attack risk. Transition from well-controlled to 
uncontrolled asthma involves synchronized increases in fungal and 
bacterial diversity, suggesting fungal-bacterial interactions in disease 
progression (Yuan et al., 2023).

These findings highlight the multi-layered role of respiratory 
microbiota in asthma pathogenesis: bacterial dysbiosis modulates 
local immunity, viral colonization drives direct epithelial damage and 
immune remodeling, and fungal-bacterial crosstalk potentially shapes 
asthma phenotypes. These microbial signatures offer promising 
biomarkers for early prediction and targeted interventions in 
asthma management.

4.3 Gut and respiratory microbiota in 
pediatric asthma phenotypes and 
endotypes

Asthma, as a heterogeneous disease, encompasses different 
endotypic and phenotypic classifications (Akar-Ghibril et al., 2020), 

https://doi.org/10.3389/fmicb.2025.1550783
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fmicb.2025.1550783

Frontiers in Microbiology 07 frontiersin.org

with corresponding variations in its microbial ecosystem dynamics. 
Table 1 presents an example of current asthma phenotypes as they 
relate to inflammatory endotypes (type 2-high or type 2-low) and 
phenotypic characteristics. Based on immune characteristics, it can 
be categorized into T-helper lymphocytes 2 high (Th2-high) and 
non-T-helper lymphocytes 2 high (non-Th2 endotypes) (Agache 
et al., 2021; Liang et al., 2022; Svenningsen and Nair, 2017). Based 
on inflammatory cell infiltration in induced sputum, asthma can 
be classified into four distinct inflammatory phenotypes: eosinophilic 
asthma, neutrophilic asthma, mixed granulocytic asthma, and 
paucigranulocytic asthma (Svenningsen and Nair, 2017). Th2-high 
endotype (often referred as eosinophilic asthma), driven by IL-4, 
IL-5, and IL-13-mediated Th2 polarization (Castan et  al., 2020), 
exhibits selective enrichment of pathogenic genera within Firmicutes 
and Proteobacteria—including Haemophilus, Neisseria, 
Streptococcus, and Moraxella—alongside significant depletion of 
Lactobacillus (Durack et  al., 2017). These microbial alterations 
correlate with elevated blood and sputum eosinophil levels (Zhang 
et  al., 2016; Diver et  al., 2022), with exacerbations marked by 
Haemophilus and Staphylococcus expansion paralleling Th2 cytokine 
surges, while stable phases favor anti-inflammatory commensals like 
Corynebacterium and Prevotella (Diver et  al., 2022). Further 
investigations demonstrate seasonal variations in nasal microbiota 
linked to viral-induced asthma exacerbations, particularly 
highlighting that the RV-C endotype—characterized by Moraxella-
dominated microbial composition, heightened Th2 cytokine levels, 
and modified lipid metabolites—significantly elevates the likelihood 
of recurrent wheezing episodes (Raita et al., 2021; McCauley et al., 
2022). Experimental studies using Aspergillus fumigatus-induced 

allergic asthma models reveal that intestinal colonization by Candida 
albicans amplifies eosinophil and mast cell populations in 
bronchoalveolar lavage fluid (BALF), stimulates secretion of IL-5, 
IL-13, and interferon-gamma, and consequently intensifies 
pulmonary allergic immune reactions (Noverr et al., 2004).

Conversely, non-Th2 endotype, or non- eosinophilic asthma, 
encompassing neutrophilic asthma mediated through IL-6/IL-17-
driven Th1/Th17 pathways and paucigranulocytic asthma in which 
neither eosinophils nor neutrophils are increased (Tliba and Panettieri, 
2019; Hammad and Lambrecht, 2021). Neutrophilic asthma shows 
reduced microbial diversity with predominant Haemophilus and 
Moraxella enrichment in Proteobacteria, alongside dynamic 
Haemophilus-Staphylococcus fluctuations during exacerbations (Diver 
et  al., 2022). A Proteobacteria-dominant microbial profile was 
associated with sputum neutrophilia, but also a longer duration of 
disease (Diver et  al., 2022). The non-Th2 frequently displays 
corticosteroid resistance and severe clinical manifestations (Moore 
et  al., 2014). Phenotypically, the enrichment of Haemophilus and 
Neisseria (phylum Proteobacteria) in the respiratory tract of children 
with asthma is associated with reduced post-bronchodilator FEV1/FVC 
ratio, mixed granulocytic asthma, and activation of the PD-L1/Th2 
pathway (Kim et al., 2023). While nasal dominance of Moraxella and 
Alloiococcus coupled with bronchial Actinomyces-mediated anti-
inflammatory regulation (Chun et  al., 2020) further underscores 
microbial modulation of disease trajectories. Pediatric asthma highlights 
these interactions through heightened microbial-host crosstalk, where 
specific taxa influence inflammatory gene networks (Chun et al., 2020), 
collectively illustrating the respiratory microbiome’s multidimensional 
role in shaping asthma endotype-phenotype interrelationships.

TABLE 1 Endotypes and phenotypes of asthma.

Endotype Phenotypic characteristics Phenotype※ Clinical characteristics

Type 2 (T2)-high asthma IL-4, IL-5, 

IL-14

Blood eosinophilia (≥150 cells·μL-1) 

(Kuruvilla et al., 2019)
Atopic Well defined, early onset, steroid sensitive

Elevated tissue eosinophilia Late onset ±concomitant CRSwNP, steroid refractory

Elevated serum IgE (surpassing the normal 

range of 1.5-114kU·L-1) (Zetterström and 

Johansson, 1981; Françoise and Héry-

Arnaud, 2020)

AERD Adult onset

Elevated FeNO (>19.5 ppb) (Holguin et al., 

2020)

Upper airway comorbidities, including AR 

and CRSsNP/CRSwNP

Other type 2 comorbidities, including EoE 

and AD

Responsive to corticosteroids

Type 2 (T2)-low asthma

Low blood eosinophil counts (<150 

cells·μL-1#)
Non-atopic

Adult onset-paucigranulocytic or 

neutrophilic

Sputum neutrophilia (>40% of total cells) 

(Kuruvilla et al., 2019; Arron et al., 2014; 

Carr et al., 2018)

Smokers Older adults

Obesity associated Obesity-related Female sex

Poor response to corticosteroids elderly > 50 to > 65 years at onset

IL: interleukin; Ig: immunoglobulin; FeNO: fraction of exhaled nitric oxide; AR: allergic rhinitis; CRSsNP: chronic rhinosinusitis without nasal polyps; CRSwNP: chronic rhinosinusitis with 
nasal polyps; EoE: eosinophilic oesophagitis; AD: atopic dermatitis. #: value within the normal range does not exclude atopy (Françoise and Héry-Arnaud, 2020).
※: The phenotypic classification in this table is based on the article by Kuruvilla et al. (2019).
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Finally, we present Figure 1 to summarize key gut-respiratory 
microbiota dynamics in pediatric asthma. It delineates healthy 
colonization patterns, multifactorial influences (e.g., diet, antibiotics), 
and asthma-associated dysbiosis linked to phenotypes, emphasizing 
gut-lung crosstalk via immune-metabolic pathways.

5 Microbiota-modifying treatments of 
pediatric asthma

In recent years, groundbreaking advances in microbiome research 
have made the joint analysis of gut and respiratory microbiomes an 
important tool for identifying endotypes and patient subgroups in 
respiratory diseases, paving new avenues for personalized medicine. 
Based on the theory of the gut-lung axis, current microbiota intervention 
strategies focus on the regulation of gut microbiota, ranging from 
traditional probiotics and prebiotics to innovative approaches such as 
fecal microbiota transplantation (FMT), helminth immunoregulation, 
phage-targeted therapies, and CRISPR-Cas gene editing technology. 
These interventions remodel the balance of gut microbiota to regulate 
pulmonary immune responses, opening up a new path for precise 
treatment of respiratory diseases while laying a significant foundation 
for the future development of more targeted therapeutic options.

5.1 Probiotics

Probiotics, as foundational interventions, influence asthma 
progression by modulating gut microbiota balance through the 
bidirectional gut-lung axis. Representative probiotics such as 
Lactobacillus and Bifidobacterium exhibit dual efficacy in preclinical 
models. For instance, Lactobacillus species—particularly 
L. rhamnosus—prevent airway hyperreactivity by reducing eosinophil 
infiltration (a core pathological feature of asthma) while suppressing 
type 2 inflammation (Spacova et al., 2020). These effects align with the 
broader mechanisms by which probiotics (including Lactobacillus, 
Bifidobacterium, and Saccharomyces spp.) regulate gut-respiratory 
interactions (Ozdemir, 2010; Sanders et  al., 2019). Bifidobacteria 
regulate early immune system development in infants by metabolizing 
human milk oligosaccharides (HMOs). Deficiency in 
HMO-metabolizing capacity within the gut microbiota correlates with 
heightened Th2- and Th17-driven inflammation (Henrick et al., 2021). 
Dairy products like yogurt, which enhance probiotic colonization in 
the gastrointestinal tract, serve as ideal delivery vehicles. Thus, it is 
recommended that expectant mothers increase their intake of 
fermented dairy products and prioritize breastfeeding to strengthen 
probiotic colonization and provide early protection for infant 
respiratory health.

FIGURE 1

Characteristics of healthy and asthmatic gut-respiratory microbiota and associated influencing factors. This schematic illustrates the interplay between 
early-life microbial colonization, host-environment interactions, and asthma susceptibility. (A) Healthy gut microbiota (e.g., Firmicutes, Bacteroidetes) 
and respiratory microbiota (e.g., Streptococcus, Corynebacterium) undergo dynamic compositional shifts in early life, influencing immune 
development. (B) Multifactorial regulation spans prenatal to postnatal stages: biological factors (delivery mode, maternal diet, infant feeding), 
ecological exposures (microbial diversity, pollutants), and critical interventions (early antibiotic use), collectively shaping microbiota trajectories. 
(C) Microbial alterations in pediatric asthma and phenotypes and endotypes (Th2-high/non-Th2) correlate with microbial signatures and virome 
alterations. Bidirectional gut-lung crosstalk (arrows) via metabolic and immune pathways underlies asthma risk. This figure was created by the authors 
using Adobe illustrator.
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5.2 Nutritional interventions

Nutritional interventions serve as a critical strategy for 
modulating the development and progression of asthma, 
encompassing two primary approaches: dietary fiber and nutritional 
supplements. Dietary fiber intake promotes the production of gut 
microbiota-derived metabolites, enhancing epithelial barrier 
function, driving regulatory T cell (Treg) differentiation, and 
suppressing Th2 polarization and mast cell hyperactivation, thereby 
synergistically alleviating asthma pathogenesis (Venter et al., 2022). 
Animal models further demonstrate that dietary fiber 
supplementation restructures the gut microbiota in asthmatic mice, 
accompanied by reduced eosinophilic inflammation, decreased 
Immunoglobulin E (IgE) levels, diminished Th2-associated 
mediators, and improved pulmonary function (Manni et al., 2021). 
Notably, maternal dietary fiber intake before and during pregnancy 
regulates offspring allergic sensitization and airway hyperreactivity 
through transgenerational microbial programming mechanisms 
(Thorburn et al., 2015). This vertical microbiota transmission effect 
provides innovative insights for early-life asthma prevention.

Another category of nutritional interventions—nutritional 
supplements (defined as bioactive components with health benefits 
beyond basic nutritional requirements)—exerts antioxidant and anti-
inflammatory properties that are closely associated with pulmonary 
function maintenance (Tuna and Samur, 2025). For instance, prenatal 
supplementation with vitamin D or polyunsaturated fatty acids (PUFA) 
has been shown to reduce childhood croup incidence (Brustad et al., 
2023), indicating their potential protective role against respiratory 
disorders. These interventions may indirectly influence asthma 
trajectories by modulating immune balance and inflammatory 
responses. Building on existing evidence, future research should 
further explore the application potential of targeted nutritional 
interventions, such as specific dietary fiber combinations or precision-
based nutritional supplementation protocols, in primary prevention 
and clinical management of pediatric asthma. This approach aims to 
establish novel paradigms for asthma prevention and treatment 
grounded in nutritional regulation.

5.3 Fecal microbiota transplantation

In the realm of precision interventions, microbiota transplantation 
technologies show transformative potential. Fecal microbiota 
transplantation (FMT) enhances microbial diversity, reshapes gut 
microbiota composition by increasing Bacteroidetes (symbiotic 
bacteria) and reducing Proteobacteria (potential pathogens) (Seekatz 
et al., 2014; Zheng et al., 2025), and elevates SCFA levels, effectively 
alleviating airway inflammation in animal models (Lai et al., 2025). A 
novel whole-intestinal microbial intervention strategy combining 
healthy donor-derived intestinal fluid transplantation (HIFT) with 
FMT demonstrates translational potential for pediatric asthma, 
supported by clinical improvements observed in autism spectrum 
disorder (Ye et  al., 2022). Additionally, emerging virome-targeted 
strategies reveal that specific temperate bacteriophage taxa in infant 
guts independently correlate with asthma risk via TLR9-mediated 
immune interactions (Leal Rodríguez et al., 2024), suggesting that 
phage therapy to restore temperate virome balance may become an 
innovative preventive approach.

5.4 Emerging microbiota-based therapies

Multiple lines of evidence suggest that helminth infections alter 
the composition of the intestinal microbiota (Rausch et al., 2018; Pillai 
et  al., 2005). Studies have demonstrated that mice infected with 
Heligmosomoides polygyrus bakeri (a typical parasitic helminth) alter 
gut microbiota composition by increasing short-chain fatty acids 
(SCFAs), ultimately alleviating inflammatory responses in dust mite-
induced asthma models (Zaiss et al., 2015). Studies have demonstrated 
that Heligmosomoides polygyrus bakeri infection alters gut microbiota 
composition by selectively promoting the proliferation of SCFA-
producing Clostridiales while reducing the relative abundance of 
Bacteroidales and Lactobacillales, ultimately alleviating inflammatory 
responses in dust mite-induced asthma models (Zaiss et al., 2015). 
However, recent research highlights the direct immunomodulatory 
role of helminths rather than microbiota-dependent mechanisms. 
Specifically, helminths secrete specific proteins to establish an 
inhibitory microenvironment within the host, balancing the immune 
system to attenuate hypersensitivity to allergens (Sun et al., 2019). 
Therefore, helminth therapy not only provides novel insights into 
respiratory benefits via gut-lung axis microbiota modulation but also 
emerges as a promising avenue for asthma prevention and treatment.

As naturally occurring bacterial predators, bacteriophages and 
their lytic enzymes demonstrate targeted antimicrobial activity with 
minimal host toxicity, positioning them as viable alternatives against 
multidrug-resistant pathogens (Guo et al., 2023; MacNair et al., 2024; 
Wang H. et al., 2024). Research findings on the reduced bacteriophage 
abundance in asthma patients (Megremis et al., 2023; Choi et al., 2021) 
suggest that supplementation strategies hold promise for reestablishing 
microbiome homeostasis in affected individuals. The bacteriophage 
CRISPR-Cas system, as a defense mechanism against phages and other 
nucleic acids that invade bacteria and archaea (Dion et  al., 2024), 
demonstrates unique potential through precise editing of bacterial or 
fungal genomes and targeted elimination of respiratory pathogens. Its 
delivery system has established a technical paradigm in gut microbiome 
research, exemplified by the bacteriophage-mediated CRISPR-Cas9 
achieving in situ knockout of specific genes in Escherichia coli (Gencay 
et  al., 2024). For chronic respiratory diseases such as asthma, this 
system could intervene in disease progression by modifying pathogen 
virulence genes or regulating host immune responses. Precision 
strategies combining bacteriophage-CRISPR technologies with patient-
specific microbial profiles will advance personalized regulation of 
respiratory and gut microbiota, pioneering innovative pathways for 
asthma prevention and treatment.

These interventions collectively establish a microbiota-centric 
framework for asthma management, offering multi-target 
immunomodulation with minimal side effects. Future research should 
focus on optimizing probiotic formulations, advancing clinical 
translation of microbiota transplantation, elucidating virome 
regulatory mechanisms, and longitudinally tracking the impact of 
microbial interventions on disease progression, thereby strengthening 
the scientific foundation for personalized asthma therapies.

6 Conclusion

This study systematically elucidates the critical role of the 
gut-respiratory microbiome in the pathogenesis of pediatric asthma. It 
reveals the microbial colonization patterns in normal gut and 
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respiratory tracts and their influencing factors (including host, delivery 
mode, feeding patterns, antibiotic use, and environmental exposures). 
The study further analyzes in depth the association mechanisms 
between specific gut and respiratory microbial dysbiosis and different 
asthma phenotypes/endotypes. Building on these findings, the study 
explores innovative microbiome-modulating therapeutic strategies, 
including probiotic interventions, dietary regulation, and microbiota 
transplantation. Additionally, it highlights the need for future research 
to focus on elucidating the precise molecular mechanisms of microbe-
immune interactions, providing key insights for developing precision 
microbiome-based therapies for pediatric asthma.
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