AUTHOR=Chen Qian , Cao Jianjie , Zhang Manyun , Guo Lei , Omidvar Negar , Xu Zhihong , Hui Chaomao , Liu Weiyi TITLE=The role of soil chemical properties and microbial communities on Dendrocalamus brandisii bamboo shoot quality, Yunnan Province, China JOURNAL=Frontiers in Microbiology VOLUME=Volume 16 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2025.1551638 DOI=10.3389/fmicb.2025.1551638 ISSN=1664-302X ABSTRACT=ObjectiveTo explore the effects of soil nutrients and microbial communities on the quality of Dendrocalamus brandisii shoots in different regions, providing a scientific basis for their development and utilization.MethodsUsing seven different geographic sources of D. brandisii from Yunnan Province as research subjects, this study employs chemical analysis and high-throughput sequencing to reveal the relationship between soil nutrients, microbial functional groups, and the nutritional quality of bamboo shoots.ResultsThe results indicate that there are significant differences in soil nutrient content among the regions (p < 0.05), with bamboo shoots from Baoshan Changning (CN) exhibiting the best overall nutritional quality. The key factors influencing bacterial community changes include pH, available phosphorus (AP), and available potassium (AK). In contrast, the main factors affecting fungal community changes are pH, soil organic matter (SOM), available potassium (AK), and total nitrogen (TN). This version maintains clarity and logical flow, making it easier for readers to understand the different factors influencing bacterial and fungal community changes. The diversity indices of soil microbial communities among different sources of Dendrocalamus brandisii show significant differences (p < 0.05). The dominant groups in the seven regions include Proteobacteria, Acidobacteriota, Actinobacteriota, Chloroflexi, Ascomycota, and Basidiomycota. The soil microbial community in Baoshan Changning (CN) shows significant structural differences compared to the other six regions, with the highest relative abundances of Chloroflexi and Acidobacteriota. In contrast, the highest relative abundance of Proteobacteria is found in Honghe Shiping (SP), while Actinobacteriota has the highest relative abundance in Yuxi Xinping (XP). RDA analysis indicates that soil nutrients (SOM, pH, AP, TN) affect the water content, soluble sugar, and crude fat of bamboo shoots. Additionally, the bacterial communities including Actinobacteriota, Chloroflexi, Patescibacteria, GAL15, and Cyanobacteria influence the water content, soluble sugar, ash content, protein, and lignin of bamboo shoots.DiscussionIn the fungal community, Basidiomycota, Kickxellomycota, Mucoromycota, unclassified-k-Fungi, and Glomeromycota affect the water content and tannin levels in bamboo shoots. In summary, soil nutrients and soil microorganisms are interconnected and work together to influence the quality of bamboo shoots.