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Epidemiological characteristics, 
virulence genes, and 
antimicrobial resistance analysis 
of Vibrio parahaemolyticus in 
diarrheal cases in Huzhou City 
from 2021 to 2023 

Xiaofang Wu, Liping Chen, Xiaojuan Zhu, Lei Ji and 
Fenfen Dong* 

Huzhou Center for Disease Control and Prevention, Huzhou, China 

Vibrio parahaemolyticus has emerged as a predominant cause of 
seafood-related infections globally. Despite this, a comprehensive analysis 
of its epidemiological traits and antimicrobial resistance patterns in Huzhou City 
remains lacking. Our study isolated 250 strains of V. parahaemolyticus from a 
total of 6,404 diarrhea patients sampled across six hospitals in Huzhou from 
2021 to 2023. Epidemiological analysis revealed higher infection rates in warmer 
seasons, with the majority of cases occurring in individuals aged from 25 to 
64. No significant gender-based difference was observed in the prevalence of 
V. parahaemolyticus. Serotype analysis identified O10:K4 as the predominant 
serotype. 93.20% (233/250) of clinical isolates harbored the tdh gene, while 
4.0% (10/250) carrying the trh. Antimicrobial sensitivity testing indicated a 
strikingly high resistance rate of 95.56% (172/180) to cefazolin among clinical 
isolates. The cgMLST-based minimum spanning tree analysis revealed that the 
O4:KUT clinical isolates segregated into two distinct clusters, ST3 and ST2516, 
with considerable evolutionary divergence between them. In contrast, the 
O10:K4 and O3:K6 serotypes exhibited closer phylogenetic proximity. This 
study comprehensively characterizes V. parahaemolyticus in Huzhou, revealing 
critical insights into its epidemiology, virulence factors, and antibiotic resistance 
patterns, thereby enhancing our knowledge of its public health risks. 

KEYWORDS 

V. parahaemolyticus, virulence genes, antibiotic resistance, serovars, epidemiological 
features 

1 Introduction 

Vibrio parahaemolyticus is a Gram-negative, spore-forming bacillus with halophilic 
properties (Preeprem et al., 2019), widely distributed in coastal areas, marine sediment, 
and seafood, and is prone to contaminate fish, shrimp, shellfish, and other aquatic 
products (Zhou et al., 2022). Consumption of undercooked or cross-contaminated food 
can lead to symptoms such as abdominal pain, diarrhea, acute gastroenteritis, and 
septicemia. V. parahaemolyticus is recognized as a major cause of foodborne disease 
outbreaks in many Asian countries (Letchumanan et al., 2014). In China, foodborne 
diseases are mainly caused by pathogenic microorganisms, with outbreaks primarily 
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caused by V. parahaemolyticus, Salmonella and Staphylococcus 
aureus (Geng et al., 2019). V. parahaemolyticus is one of the 
most common causative agents of foodborne illness associated 
with ready-to-eat (RTE) foods (Xie et al., 2016). It is reported 
that in Zhejiang Province, pathogenic bacteria constitute the 
primary causative agents of foodborne disease outbreaks, with V. 
parahaemolyticus being the most prevalent species (Chen et al., 
2023). Research indicates that V parahaemolyticus has emerged 
as the leading cause of foodborne diseases in Zhejiang Province, 
accounting for 58.4% of bacterial outbreaks (Chen et al., 2022). 
According to statistics, V. parahaemolyticus is also one of the main 
pathogens causing bacterial foodborne outbreaks and sporadic 
foodborne diarrhea cases in Huzhou City (Yan et al., 2024, 2020). 
This study selected 250 strains of V. parahaemolyticus isolated from 
sporadic diarrhea cases in at least, from six hospitals of Huzhou 
City from 2021 to 2023 and used real-time fluorescence PCR and 
microbroth dilution methods to detect virulence genes, serotypes, 
and drug sensitivity, in order to understand the epidemiological 
characteristics, presence of virulence genes, and the current status 
of antimicrobial resistance of V. parahaemolyticus in sporadic 
diarrhea cases in Huzhou City. 

2 Materials and methods 

2.1 Sample collection and V. 
parahaemolyticus serotyping 

From January 2021 to December 2023, six hospitals including 
Wuxing District People’s Hospital, Deqing County People’s 
Hospital, Changxing County People’s Hospital, Nanxun District 
People’s Hospital, Anji County People’s Hospital, and Huzhou First 
People’s Hospital for foodborne disease surveillance in Huzhou 
City tested 6,404 diarrhea case specimens defined by having a 
daily bowel movement frequency of ≥3 times and abnormal 
stool characteristics (loose stools, watery stools, mucoid stools, 
or bloody stools, etc.) for V. parahaemolyticus (https://www.who. 
int/news-room/fact-sheets/detail/diarrhoeal-disease), and a total 
of 250 V. parahaemolyticus strains were isolated. These included 
88 isolations from 2021, 86 isolations from 2022, and 76 isolations 
from 2023. The number of isolates from each hospital per year 
was detailed in Table 1. The isolation, identification and serotyping 
of V. parahaemolyticus were performed as previously described 
(Zhang et al., 2024a). The serotyping of V. parahaemolyticus isolates 
was conducted using standardized slide agglutination assays with 
commercially available antisera (Denka Seiken Ltd., Tokyo, Japan). 
The complete serotyping scheme included 11 O (somatic) and 
65 K (capsular) antigenic determinants. Isolates were classified into 
serotypes based on their unique O:K antigen combinations. Isolates 
that failed to demonstrate K-antigen agglutination were classified as 
K-untypeable (KUT) serotypes (Jones et al., 2012). 

2.2 Statistical analysis of temporal 
distribution of cases 

Strain distribution analysis was conducted in Excel 
according to specimen collection timelines, with data 

presentation optimized through bar chart visualization 
using KaleidaGraph 4.5. The tables were prepared using 
Microsoft Word. 

2.3 Virulence gene detection 

A fresh bacterial colony was suspended in 200 μL sterile water, 
heat-lysed at 100 ◦C for 10 min, and centrifuged at 10,000 × g 
for 5 min. The DNA-containing supernatant was collected and 
stored at −80 ◦C until further use (Yan et al., 2020). Pathogenic 
V. parahaemolyticus can produce either TDH, TRH, or both 
(Nishibuchi and Kaper, 1995). The gene tlh is widely considered 
to be a marker for V. parahaemolyticus (Bej et al., 1999; DePaola 
et al., 2003). The detection of tlh/tdh/trh virulence genes were 
performed according to the instructions of the V. parahaemolyticus 
(TLH, TDH, TRH) triplex real-time fluorescent PCR detection 
kit (Biogen Biological Co., Ltd., Shenzhen, China). The detailed 
method was performed as previously described (Zhang et al., 
2024b). Quality control was performed using the manufacturer-
provided negative and positive controls included in the kit to verify 
test accuracy. 

2.4 Susceptibility test 

In accordance with the Clinical and Laboratory Standard 
Institution guidelines (CLSI M100-S23) and ChinaPIN-
2022-TYJS004, the microbroth dilution method was used 
to determine the minimal inhibitory concentration (MIC) 
of V. parahaemolyticus against antimicrobial agents. The 13 
antimicrobial agents included penicillins: ampicillin (AMP) 
(64, 32, 16, 8, 4, 2, 1 μg/mL), ampicillin/sulbactam (AMS) 
(64/32, 32/16, 16/8, 8/4, 4/2, 2/1, 1/0.5 μg/mL); cephalosporins: 
cefotaxime (CTX) (16, 8, 4, 2, 1, 0.5, 0.25 μg/mL), ceftazidime 
(CAZ) (32, 16, 8, 4, 2, 1, 0.5 μg/mL), cefuroxime (CFX) (32, 
16, 8, 4, 2, 1, 0.5 μg/mL), cefazolin (CFZ) (32, 16, 8, 4, 2, 1, 
0.5, 0.25 μg/mL); carbapenems: imipenem (IPM) (8, 4, 2, 1, 
0.5, 0.25 μg/mL); aminoglycosides: gentamicin (GEN) (32, 
16, 8, 4, 2, 1 μg/mL); tetracyclines: tetracycline (TET) (32, 
16, 8, 4, 2, 1 μg/mL); quinolones: nalidixic acid (NAL) (64, 
32, 16, 8, 4, 2 μg/mL), ciprofloxacin (CIP) (32, 16, 8, 4, 2, 
1, 0.5, 0.25, 0.12, 0.06, 0.03, 0.015 μg/mL); chloramphenicol: 
chloramphenicol (CHL) (64, 32, 16, 8, 4, 2 μg/mL); and 
sulfonamides: trimethoprim/sulfamethoxazole (SXT) (8/152, 
4/76, 2/38, 1/19, 0.5/9.5, 0.25/4.75 μg/mL). The results were 
expressed as sensitive (S), intermediate (I), and resistant 
(R). Escherichia coli ATCC 25922 was included as a quality 
control strain. 

2.5 Statistical analysis 

Statistical processing was conducted using SPSS 23.0 
software, and data analysis was performed with the chi-square 
test, with a difference considered statistically significant at 
p < 0.05. 
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TABLE 1 Annual case numbers and positive detection rates from six hospitals in Huzhou City (2021–2023). 

Hospitals 2021 2022 2023 

Cases Number/ 
positive 

detection rate/% 

Cases Number/ 
positive 

detection rate/% 

Cases Number/ 
positive 

detection rate/% 

Huzhou First People’s Hospital 482 8/1.66 594 16/2.69 403 5/1.24 

Deqing County People’s Hospital 197 14/7.11 546 23/4.21 334 15/4.50 

Changxing County People’s Hospital 244 19/7.79 617 19/3.08 487 32/6.57 

Anji County People’s Hospital 374 9/2.41 277 9/3.25 238 6/2.52 

Wuxing District People’s Hospital 387 34/8.79 264 10/3.79 231 6/2.60 

Nanxun District People’s Hospital 229 4/1.75 254 9/3.54 246 12/4.88 

Summary 1,913 88/4.60 2,552 86/3.37 1,939 76/3.92 

TABLE 2 Detection of V. parahaemolyticus in Huzhou City from 2021 to 2023. 

Population Characteristics 2021 2022 2023 Summary 

Number Rate (%) Number Rate (%) Number Rate (%) Number Rate (/%) 

Gender 

Male 985 4.37 1,389 3.02 1,007 3.87 3,381 3.67 

Female 928 4.85 1,163 3.78 932 3.97 3,023 4.17 

Age 

<5 141 0.00 229 0.00 182 0.00 552 0.00 

5–14 79 1.27 121 1.65 117 0.85 317 1.26 

15–24 339 1.77 410 2.44 317 4.42 1,066 2.81 

25–44 788 5.71 993 3.12 797 4.52 2,578 4.34 

45–64 369 6.78 486 7.41 362 5.80 1,217 6.74 

≥65 197 5.58 313 2.24 164 2.44 674 3.26 

2.6 Core genome multilocus sequence 
typing (cgMLST) profiling and minimum 
spanning tree-based phylogenetic analysis 

We downloaded the 121 sequences of clinical isolates 
from 2021 to 2023, which were previously submitted to 
NCBI under BioProject accession numbers PRJNA1115946, 
PRJNA1072230, and PRJNA1071824 in our prior studies, for 
subsequent analysis. Detailed strain information was provided 
in Supplementary Table S1. For the characterization of V. 
parahaemolyticus, seven housekeeping genes (dnaE, gyrB, recA, 
dtdS, pntA, pyrC, and tnaA) were analyzed. A multilocus sequence 
typing (MLST) scheme was applied to the 121 genomes using 
mlst v2.23.0, generating an MLST profile for each isolate. The 
chewBBACA suite was employed for cgMLST analysis, beginning 
with schema construction using the CreateSchema module (Silva 
et al., 2018). Subsequently, allele identification was performed 
across 95% loci for each isolate through the AlleleCall module, 
producing a 95% allele profile matrix. To maintain analytical 
rigor, potential paralogous loci were systematically filtered 
using the RemoveParalogs module with default parameters, 
thereby eliminating sequences that could compromise cgMLST 

interpretation. The combination of alleles in each isolate formed 
an allelic profile that was used to generate minimum spanning 
trees (MSTs). The MSTs were constructed in BioNumerics using 
the cgMLST allele profiles as input data (Blanc et al., 2020). The 
unweighted pair group method with arithmetic mean (UPGMA) 
was used as the clustering algorithm. The pairwise distance was 
calculated by counting the number of pairwise allele differences. 

3 Results 

3.1 Basic case information 

From 2021 to 2023, a total of 6,404 foodborne diarrhea 
case specimens were collected from six hospitals, yielding 250 
isolates of V. parahaemolyticus, with an overall positive detection 
rate of 3.90%. Specifically, in 2021, 1,913 specimens were 
collected with a positive detection rate of 4.60%. The positive 
detection rates of Huzhou First People’s Hospital, Deqing County 
People’s Hospital, Changxing County People’s Hospital, Anji 
County People’s Hospital, Wuxing District People’s Hospital, 
and Nanxun District People’s Hospital were 1.66%, 7.11%, 
7.79%, 2.41%, 8.79%, and 1.75%, respectively. In 2022, 2,552 
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FIGURE 1 

Distribution of V. parahaemolyticus positive cases in different months of Huzhou City from 2021 to 2023. Different colors represent different years. 

specimens were collected with a rate of 3.37%. The positive 
detection rates for the six hospitals mentioned above were 
2.69%, 4.21%, 3.08%, 3.25%, 3.79%, and 3.54%, respectively. In 
2023, 1,939 specimens were collected with a rate of 3.92%. 
The six hospitals reported positive detection rates of 1.24%, 
4.50%, 6.57%, 2.52%, 2.60%, and 4.88%, respectively (Table 1). 
The annual case numbers and positivity rates for the six 
specific hospitals from 2021 to 2023 are detailed in Table 1. The  
variation in the detection rate of V. parahaemolyticus across 
the different years was statistically significant (χ2 = 4.413, 
p < 0.05). 

3.2 Case population distribution 

Among the 6,404 diarrhea infection cases, there were 3381 
males and 3023 females. 

Positive detection rates of V. parahaemolyticus in males 
and females were 3.67% and 4.17%, respectively, with no 
statistically significant difference between genders (χ2 = 
0.936, p > 0.05). The age distribution of infected cases 
ranged from 5 months to 97 years, with the highest infection 
rates in the 45–64 and 25–44 age groups at 6.74% and 
4.34%, respectively, and no detection in the age group 
under 5 years (Table 2). The distribution of detection across 
different age groups was statistically significant (χ2 = 59.822, 
p < 0.05). 

3.3 Temporal distribution of cases 

From 2021 to 2023, the detection rate of V. parahaemolyticus 
among foodborne diarrhea patients exhibited a clear seasonal 

trend. From March to May (spring), 28 positive cases of 
V. parahaemolyticus were identified from a total of 1,463 
samples, resulting in a positive rate of 1.91%. From June 
to August (summer), 143 positive cases were identified 
from 2,136 samples, yielding a positive rate of 6.69%. From 
September to November (autumn), 78 out of 1,709 samples 
tested positive, with a positive rate of 4.56%. From December 
to February (winter), only 1 out of 1,096 samples tested 
positive, with the lowest positive rate of 0.091%. Positive 
cases were fewer during the winter and spring seasons, peaking 
in summer and autumn, especially from July to September 
(Figure 1). 

3.4 Serovar distribution 

Among the 250 V. parahaemolyticus strains, 9 O serogroups 
and 28 serotypes were identified. The most prevalent serovars 
were O10:K4, constituting 60.00% of the strains (150 out of 250), 
followed by O3:K6 at 13.20% (33 out of 250), and O4:Kut at 11.20% 
(28 out of 250). A small fraction, 1.60% (4 out of 250), could not 
be typed. 

In 2021, the strains were distributed across 6 O serogroups and 
11 serotypes, with O10:K4 being the most dominant at 81.82% 
(72 out of 88), followed by O3:K6 at 5.69% (5 out of 88), and 
O4:Kut at 3.41% (3 out of 88). In 2022, the strains belonged to 
5 O serogroups and 12 serotypes, with O10:K4 remaining the 
most prevalent at 40.70% (35 out of 86), O4:Kut at 27.91% (24 
out of 86), and O3:K6 at 13.95% (12 out of 86). In 2023, the 
strains were categorized into 7 O serogroups and 15 serotypes, 
with O10:K4 continuing to dominate at 56.68% (43 out of 76), 
O3:K6 at 21.05% (16 out of 76), and O3:K4 at 3.95% (3 out of 76) 
(Table 3). 
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TABLE 3 Serovar distribution of V. parahaemolyticus in diarrhea cases in Huzhou city from 2021 to 2023. 

O Serogroup Serotype 2021 (N = 88) 2022 (N = 86) 2023 (N = 76) Summary 

Number Rate (%) Number Rate (%) Number Rate (%) Number Rate (%) 

O1 O1:K17 0 0 0 0 1 1.32 1 0.40 

O1:K36 0 0 0 0 1 1.32 1 0.40 

O1:K56 0 0 0 0 1 1.32 1 0.40 

O1:Kut 0 0 2 2.33 0 0 2 0.80 

O2 O2:K59 1 1.14 0 0 0 0 1 0.40 

O3 O3:K4 0 0 0 0 3 3.95 3 1.20 

O3:K6 5 5.69 12 13.95 16 21.05 33 13.20 

O3:K7 0 0 1 1.16 0 0 1 0.40 

O3:K37 0 0 2 2.33 0 0 2 0.80 

O3:Kut 1 1.14 1 1.16 0 0 2 0.80 

O4 O4:K8 0 0 / / 1 1.32 1 0.40 

O4:K55 1 1.14 2 2.33 0 0 3 1.20 

O4:K61 0 0 0 0 1 1.32 1 0.40 

O4:K63 1 1.14 0 0 0 0 1 0.40 

O4:Kut 3 3.41 24 27.91 1 1.32 28 11.20 

O5 O5:Kut 1 1.14 0 0 0 0 1 0.40 

O8 O8:K4 0 0 1 1.16 0 0 1 0.40 

O8:K18 0 0 0 0 1 1.32 1 0.40 

O8:K21 0 0 1 1.16 0 0 1 0.40 

O8:Kut 0 0 3 3.49 0 0 3 1.20 

O9 O9:K1 0 0 0 0 1 1.32 1 0.40 

O10 O10:K4 72 81.82 35 40.70 43 56.58 150 60.00 

O10:K17 0 0 1 1.16 0 0 1 0.40 

O10:K60 1 1.14 0 0 0 0 1 0.40 

O10:K64 0 0 0 0 1 1.32 1 0.40 

O10:Kut 0 0 0 0 1 1.32 1 0.40 

O11 O11:K5 1 1.14 0 0 0 0 1 0.40 

O11:Kut 1 1.14 0 0 1 1.32 2 0.80 

Untypable 0 0 1 1.16 3 3.95 4 1.60 

Summary 88 100.0 86 100.0 76 100.1 250 100.0 

3.5 Virulence gene detection results 

All 250 strains of V. parahaemolyticus were identified as 
carrying the species-specific gene tlh. The most common virulence 
gene profile among these strains was tdh+, representing 93.20% 
of the total; trh+ was found in 4.00% of the strains; and the co-
presence of both tdh+ and trh+ was observed in 1.20% (Table 4). 
We identified four isolates that carried only the tlh gene. tdh+ 
strains were predominantly found in serotypes O3:K6, O10:K4, and 
O4:KUT, whereas trh+ and tdh+trh+ strains were less prevalent 
among these three major serotypes. trh+ strains were distributed 
across multiple serotypes, including O1:K17, O1:KUT, O2:K59, 
O4:K63, O8:KUT, O10:K4, O10:K60, O11:K5, and O11:KUT. In 

contrast, tdh+trh+ strains were only detected in O1:KUT, O5:KUT, 
and O11:KUT. 

3.6 Susceptibility test results 

A random selection of 180 V. parahaemolyticus strains were 
subjected to susceptibility testing. The resistance rate to CFZ was 
as high as 95.56% (172 out of 180). The resistance rates for other 
antibiotics were: AMP at 12.78% (23 out of 180), NAL at 3.89% (7 
out of 180), AMS and TET at 3.33% (6 out of 180), and CTX and 
CAZ at 1.11% (2 out of 180). In contrast, all strains were 100.0% 
sensitive to CFX, IPM, GEN, CHL, CIP, and SXT (Table 5). 
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TABLE 4 Virulence gene profiles across V. parahaemolyticus serotypes in Huzhou from 2021 to 2023. 

O 
serogroup 

Serovar Genotype Summary 

tdh+trh− Proportion 
(%) 

tdh−trh+ Proportion 
(%) 

tdh+trh+ Proportion 
(%) 

Number Proportion 
(%) 

O1 O1:K17 0 0 1 0.40 0 0 1 0.40 

O1:K36 1 0.40 0 0 0 0 1 0.40 

O1:K56 1 0.40 0 0 0 0 1 0.40 

O1:Kut 0 0 1 0.40 1 0.40 2 0.80 

O2 O2:K59 0 0 1 0.40 0 0 1 0.40 

O3 O3:K4 2 0.80 0 0 0 0 2 0.80 

O3:K6 33 13.20 0 0 0 0 33 13.20 

O3:K7 0 0 0 0 0 0 0 0 

O3:K37 1 0.40 0 0 0 0 0 0.40 

O3:Kut 2 0.80 0 0 0 0 2 0.80 

O4 O4:K8 1 0.40 0 0 0 0 1 0.40 

O4:K55 3 1.20 0 0 0 0 3 1.20 

O4:K61 1 0.40 0 0 0 0 1 0.40 

O4:K63 0 0 1 0.40 0 0 1 0.40 

O4:Kut 28 11.20 0 0 0 0 28 11.20 

O5 O5:Kut 0 0 0 0 1 0.40 1 0.40 

O8 O8:K4 1 0.40 0 0 0 0 1 0.40 

O8:K18 1 0.40 0 0 0 0 1 0.40 

O8:K21 1 0.40 0 0 0 0 1 0.40 

O8:Kut 2 0.80 1 0.40 0 0 3 1.20 

O9 O9:K1 1 0.40 0 0 0 0 1 0.40 

O10 O10:K4 149 59.60 1 0.40 0 0 150 60.00 

O10:K17 0 0 0 0 0 0 0 0 

O10:K60 0 0 1 0.40 0 0 1 0.40 

O10:K64 1 0.40 0 0 0 0 1 0.40 

O10:Kut 1 0.40 0 0 0 0 1 0.40 

O11 O11:K5 0 0 1 0.40 0 0 1 0.40 

O11:Kut 0 0 1 0.40 1 0.40 2 0.80 

Untypeable 3 1.20 1 0 0 0 4 1.60 

Summary 233 93.2 10 4.00 3 1.20 246 98.40 

3.7 Minimum spanning tree analysis 

We performed cgMLST analysis on 121 clinical isolates, 
comprising 85 O10:K4, 15 O3:K6, and 21 O4:KUT strains, 
and constructed a minimum spanning tree. The results 
demonstrated that these isolates clustered into two major ST 
types (ST3 and ST2516) with significant genetic divergence. 
The O4:KUT serotype was distributed across both ST types. 
Interestingly, the O10:K4 serotype also separated into two 
distinct clusters, potentially evolving from O3:K6 strains 
(Figure 2). 

4 Discussion 

This study analyzed the infection status of V. parahaemolyticus 
in foodborne diarrhea cases in Huzhou City from January 2021 
to December 2023, with a positive detection rate of 3.90% among 
6,404 diarrhea cases. The detection rate is higher than the average 
found in Mainland China (2.08%) (Wang et al., 2021), likely 
attributed to Huzhou’s geographic location and dietary customs. 
Huzhou City is rich in aquatic products, and its residents have 
a tradition of consuming raw or undercooked aquatic products. 
With the development of logistics, various live seafood products 
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TABLE 5 Antibiotic resistance of V. parahaemolyticus in Huzhou from 2021 to 2023. 

Categories Antibiotics R I S 

Number/Rate (%) Number/Rate (%) Number/Rate (%) 

Penicillins AMP 23/12.78 56/31.11 101/56.11 

AMS 6/3.33 2/1.11 172/95.56 

Cephalosporins CTX 2/1.11 2/1.11 176/97.78 

CAZ 2/1.11 0/0.00 178/98.89 

CFX 0/0.00 0/0.00 180/100.00 

CFZ 172/95.56 8/4.44 0/0.00 

Carbapenems IPM 0/0.00 0/0.00 180/100.00 

Aminoglycosides GEN 0/0.00 0/0.00 180/100.00 

Tetracyclines TET 6/3.33 0/0.00 174/96.67 

Quinolones NAL 7/3.89 0/0.00 173/96.11 

CIP 0/0.00 0/0.00 180/100.00 

Chloramphenicol CHL 0/0.00 0/0.00 180/100.00 

Sulfonamides SXT 0/0.00 0/0.00 180/100.00 

AMP, Ampicillin; AMS, Ampicillin/sulbactam; CTX, Cefotaxime; CAZ, Ceftazidime; CFX, Cefuroxime; CFZ, Cefazolin; IPM, Imipenem; GEN, Gentamicin; TET, Tetracycline; NAL, Nalidixic 
acid; CIP, Ciprofloxacin; CHL, Chloramphenicol; SXT, Trimethoprim/sulfamethoxazole. R, Resistant; I, Intermediate; S: Susceptible. 

are increasingly sold in inland areas. According to the report, the 
contamination rate of V. parahaemolyticus in inland provinces 
has reached 23.14% (Pang et al., 2020). Therefore, there is a 
possibility of cross-contamination between seafood and freshwater 
products during sales and processing (Chen et al., 2021; Liao et al., 
2015), leading to infections when people consume contaminated 
aquatic products. 

The temporal distribution shows that V. parahaemolyticus 
infections can occur throughout the year except for January and 
February, with the majority of cases concentrated in July to 
September (Huang et al., 2023), which is consistent with the 
characteristic of high incidence in summer and autumn. According 
to Zhejiang Meteorological Bureau or Huzhou Meteorological 
Station reports, from 2021 to 2023, Huzhou experienced significant 
climatic variability driven by the alternating influences of El 
Niño-Southern Oscillation (ENSO) phenomena. The extended La 
Niña conditions (2020–2022) resulted in distinct seasonal patterns, 
characterized by colder-than-average winter temperatures and 
increased precipitation variability. Conversely, the emerging El 
Niño phase in 2023 contributed to intensified summer heatwaves 
and altered precipitation regimes, consistent with broader warming 
trends observed across eastern China (https://epmap.zjol.com.cn/ 
jsb0523/202303/t20230310_25510472.shtml). High temperatures 
during these months facilitate bacterial growth and reproduction 
(Neil et al., 2023; Cantet et al., 2013; Fernandez-Velez et al., 2023). 
Our study has shown that sporadic diarrhea cases are mainly 
concentrated in middle-aged and young people (aged 25 to <65 
years), which was consistent with previous research (Wang et al., 
2021), possibly because this age group has more opportunities to 
dine out compared to other age groups, and the abundance of night 
markets in summer and autumn increases the risk of infection 
when consuming undercooked or raw aquatic products (Li et al., 
2020). Consistent with previous findings, the patients aged ≥65 

years were the least likely to get infectious diarrhea (Gong et al., 
2018). This diversity of age distribution might reflect a natural 
change in host immunity (Simon et al., 2015) and/or dietary habits 
that are related to age (Jiang et al., 2024). These findings of the effect 
of age on the pathogen detection might provide scientific evidence 
for finding the optimal timing to enhance prevention measures for 
V. parahaemolyticus. 

V. parahaemolyticus produces thermolabile hemolysin (TLH), 
thermotolerant direct hemolysin (TDH), and thermotolerant direct 
hemolysin-related hemolysin (TRH), encoded by the tlh/tdh/trh 
genes are considered to be key indicators of V. parahaemolyticus 
pathogenicity (Lee et al., 2019; Broberg et al., 2011; Gutierrez West 
et al., 2013; Shirai et al., 1990). TDH and TRH are considered the 
most critical virulence factors of V. parahaemolyticus (Ceccarelli 
et al., 2013), with most clinical isolates producing one or both 
of these hemolysins (Letchumanan et al., 2014). The results of 
this study show that the positive rate of the tdh virulence gene 
is 93.20%, the trh virulence gene is 4.00% and the simultaneous 
positivity of tdh and trh virulence genes is 1.20% which was 
consistent with other study (Sun et al., 2022). Several studies 
have also reported that around 2.0% of the clinical strains do not 
contain tdh and/or trh (Li et al., 2014; Pazhani et al., 2014). Even 
in the absence of these hemolysins, V. parahaemolyticus remains 
pathogenic indicating that other virulence factors exist (Jones 
et al., 2012; Mahoney et al., 2010). It was reported that beyond 
hemolysins, the virulence mechanisms of V. parahaemolyticus 
critically depend on specialized secretion systems that mediate 
effector delivery into host cells (Orlova, 2015). Notably, the 
bacterium employs two functionally distinct type III secretion 
systems (T3SS): T3SS1 facilitates host cell death through the 
translocation of cytotoxic effectors (VopQ, VopS, VPA0450, 
and VopR/VP1638), while T3SS2 secretes a distinct repertoire 
of effectors (VopC, VopT, VopZ, VopA/P, VopV, VopL, and 
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FIGURE 2 

cgMLST based minimum spanning tree of 121 clinical V. parahaemolyticus isolates. Circle colors denote different serotypes (O3:K6, O4:KUT, 
O10:K4), while circle sizes reflect the number of isolates in each node. 

VPA1380) that collectively suppress host cell proliferation and 
induce cytotoxicity (Chatterjee et al., 2013). Additionally, the type 
VI secretion system (T6SS) contributes to pathogenicity through 
dual functionality—delivering virulence effectors not only into 
eukaryotic host cells but also competing bacterial cells (Sha et al., 
2013; Li et al., 2019). 

In 1996, the O3:K6 serotype of V. parahaemolyticus caused 
a large-scale food poisoning outbreak in India and subsequently 
became pandemic globally. O3:K6, along with 21 other serotypes, 
is known as the “pandemic clone” of V. parahaemolyticus and is 
the most frequently reported serotype worldwide (Okuda et al., 
1997). Before 2021, the O3:K6 serotype was the main serotype 
in foodborne diarrhea cases in this region (Zhang et al., 2022). 
The results of this study show that from 2021 to 2023, the 

O10:K4 serotype accounted for 60.00% of foodborne diarrhea 
cases in Huzhou across all seasons, replacing O3:K6 as the 
dominant serotype in the region. In fact, in 2020, O10:K4 serotype 
was detected for the first time in Huzhou City. Afterwards, 
O10:K4 serotype surpassed O3:K6 as the new dominant serotype 
(Zhang et al., 2022). In recent years, the O10:K4 serotype 
has dominated in acute gastroenteritis outbreaks caused by V. 
parahaemolyticus in other provinces in China (Wu et al., 2024; 
Huang et al., 2022a,b). The emergence of serotype O10:K4 may 
be the response to host immunologic pressure (Huang et al., 
2022a). A previous study indicates that O10:K4 strains and the 
genetic variant O3:K6 were placed in the same cluster, suggesting 
a possibility of transfer of the pathogenic genes (Huang et al., 
2022b). 
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With the widespread and extensive use of antibiotics in 
clinical and breeding fields, the issue of bacterial resistance is 
becoming increasingly severe. The results of this study show 
that the resistance rate of V. parahaemolyticus to CFZ in 
Huzhou from 2021 to 2023 was as high as 95.56%; some 
strains exhibited resistance to AMS, CTX, CAZ, TET, and 
NAL. The resistance rate of local V. parahaemolyticus to CFZ 
was similar to that of clinical isolates from Nantong (99.1%) 
and from isolates from Nanjing (99.2%) (Zhou et al., 2022; 
Huang et al., 2023). However, it was significantly higher than 
the resistance rate reported for domestic clinical isolates a 
decade ago (50.4%) (Chen et al., 2016). A previous research 
has indicated that V. parahaemolyticus exhibits a notably 
high resistance to AMP in recent years (Dahanayake et al., 
2020; Lopatek et al., 2018; Mok et al., 2021; Nishino et al., 
2021; Vu et al., 2022). However, our study reveals that 
the organism demonstrates the highest resistance to CFZ, 
with resistance to AMP at a comparatively lower rate of 
12.78%, aligning with previous findings (Zhang et al., 2024a), 
which may be related to the types of antibiotics used in 
aquaculture or clinical practice, leading to a decrease in ampicillin 
resistance. Currently, tetracycline, cephalothin, and quinolone 
drugs are considered first-line options for the treatment of V. 
parahaemolyticus infections (Elmahdi et al., 2016; Han et al., 
2007; Tan et al., 2017). Earlier study reported 100% sensitivity 
of V. parahaemolyticus to the AMS (da Silva et al., 2021), our 
findings show a concerning development, with 3.33% of strains 
exhibiting resistance to this antibiotic regimen. The results of this 
study indicate that, apart from penicillins and cephalosporins, 
other antibiotics can be used as first-line treatments for V. 
parahaemolyticus. Therefore, continuous resistance monitoring of 
V. parahaemolyticus in foodborne diarrhea cases can timely grasp 
the trend of resistance changes, which is helpful for guiding rational 
clinical medication. 

In this study, we identified two sequence types (ST3 and 
ST2516) among 121 clinical V. parahaemolyticus isolates (Figure 2). 
MLST analysis revealed that serotypes O10:K4, O3:K6 and 
O4:KUT belonged to these two STs, with O4:KUT strains 
distributed across both ST types and showing significant genetic 
divergence—a finding consistent with previous reports (Zhang 
et al., 2024b; Huang et al., 2022a). ST3 emerged as the predominant 
clinical type, aligning with prior studies that established its 
clinical significance as an epidemic clone circulating in Asia 
and America (Chen et al., 2016; Turner et al., 2013). These 
observations collectively demonstrate the crucial role of ST3 
in human infections. Additionally, the O4:KUT strains of 
ST2516 warrant further investigation due to their potential 
clinical importance. 

In summary, our analysis of V. parahaemolyticus 
infections across six hospitals in Huzhou (2021–2023) 
revealed that most cases occurred among middle-aged 
and young adults, with a distinct seasonal concentration 
during summer months. The predominant serotypes 
among clinical isolates were O10:K4, O3:K6, and O4:KUT. 
CgMLST analysis demonstrated significant phylogenetic 
divergence between some O4:KUT strains and the 
O10:K4/O3:K6 clusters. 
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