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Datura innoxia is a medicinal plant from the Solanaceae family, having

medicinal properties and some toxic e�ects. It is widely distributed across

Asia, Africa, Europe, the Americas, and other tropical and subtropical

regions, where it is utilized by local pharmaceutical industries. In this study,

bioassay-guided fractionation and LC-MS/MS analysis were used for the

identification of secondary metabolites with anti-tuberculosis activity in

methanolic leaf extracts of D. innoxia. Bioassay-guided fractionation was

conducted using normal and reverse phase column chromatography, and

the fractions were assayed for antituberculosis activity in vitro by serial

dilution in Mycobacterium tuberculosis H37Ra cultures. The structures of

known secondary metabolites in the purified extracts were identified using

LC-ESI-MS/MS mass spectroscopy. A purified fraction of the methanolic

extract of D. innoxia leaves inhibited M. tuberculosis growth at concentrations

as low as 25µg/mL. Metabolic profiling with LC-ESI-MS/MS enabled the

identification of the purified extract of 16 known metabolites, including

loliolide, scopolamine, kuromanin, isoquercitrin, moupinamide, methyl

isoquinoline-3-carboxylate, trans-3-Indoleacrylic acid, tyramine, (3β,5ξ,9ξ)-

3,6,19-trihydroxyurs-12-en-28-oic acid, milbemycin A3 oxime, methyl

jasmonate, nicotinamide, methyl ferulate, trifolin, 2-[(1S,2S,4aR,8aS)-1-

hydroxy-4a-methyl-8-methylidene-decahydronaphthalen-2-yl]prop-2-enoic

acid, and methyl 4-hydroxycinnamate. These results indicate that D. innoxia is a

rich natural source of potential antitubercular secondary metabolites.
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Mycobacterium tuberculosis, Datura innoxia, antitubercular activity, LC-MS/MS,
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1 Introduction

Mycobacterium tuberculosis (Mtb) is a Bacillus bacterium that

causes the infectious disease tuberculosis (TB). TB ranks among

the top 10 diseases in the world in terms of both mortality and

morbidity (Rodriguez-Takeuchi et al., 2019). According to the

WHO global report, an estimated 10.6 million individuals have

active Mtb infections, resulting in approximately 1.30 million

reported deaths (Chunrong et al., 2023), whereas approximately

one-fourth of the world population (≈ 2 billion people) is estimated

to be latently infected with Mtb (Chin et al., 2023). Despite

significant treatment advances, TB remains a serious global health

concern (Sharifi-Rad et al., 2020). Approximately 40 years ago,

a standardized 6-month treatment regimen for tuberculosis was

established, based on the use of four first-line drugs: isoniazid,

rifampicin, ethambutol, and pyrazinamide. This regimen is widely

recommended and has been shown to cure approximately 85% of

patients with drug-sensitive tuberculosis (WHO, 2013). One of the

biggest obstacles to TB management worldwide is the rapid spread

of drug-resistant TB strains. These strains are currently present

in most nations and are growing alarmingly. Multidrug-resistant

(MDR) TB isolates that are resistant to isoniazid and rifampicin,

the two first-line medications for TB therapy, have been found in

every country surveyed (Cazzaniga et al., 2021).

Natural products have played a vital role in the discovery

of new drugs; today, more than 25% of conventional drugs on

the market are either directly or indirectly derived from plant

secondary metabolites (Marealle et al., 2023). Similarly, medicinal

plants and their extracts have served as valuable resources for

the discovery and development of alternative treatments for TB

(Mpeirwe et al., 2023; Tuyiringire et al., 2020; Karimi, 2023).

According to floral research, there are approximately 500,000 plant

species on the planet, and 120,000 of those species have biologically

active compounds that can be used to treat illnesses (Kallassy,

2017; Houghton, 2001), particularly in developing countries, where

the World Health Organization estimated that 70%−80% of the

population depends on traditional medicines for their primary

source of medication (Akinyemi et al., 2005; Maluleka and Ngoepe,

2018).

Datura is a genus of medicinal herbs in the nightshade family

(Solanaceae), commonly known as jimsonweed or thornapple,

which have both toxic and medicinal properties (Sharma et al.,

2021). Datura species are widely cultivated in Asia, Africa,

Europe, America, and other tropical and subtropical regions

for use in herbal medicine preparations (Gaire and Subedi,

2013; Lakusic et al., 2017). Datura species have been reported

to possess antidiabetic, antimicrobial, anti-cancer, anti-asthmatic,

anti-inflammatory, analgesic, antioxidant, cytotoxic, insecticidal,

and neurological activities, and wound healing (Alam et al., 2021;

Al-Snafi, 2017).

2 Materials and methods

2.1 Plant collection and identification

Leaves of Datura innoxia (Figure 1) were collected

between March and June 2020, near Islamabad, Pakistan.

The plant material was identified and authenticated by

Professor Rahmatullah Quraishi, Department of Botany,

PMAS Arid Agriculture University, Rawalpindi, Pakistan.

A voucher specimen was submitted to the Herbarium

of Medicinal Plants and assigned a unique herbarium

number (PMAS-177).

2.2 Extraction of plant material

The leaves of D. innoxia were washed with tap water to

eliminate impurities and dried at room temperature. The dried

leaves were crushed into a powder. To obtain crude extracts

of the dried powder, successive extraction with maceration was

conducted as previously used (Ahmed et al., 2023). Briefly,

powdered plant material (200 g) was suspended in 1,000mL of

methanol (plant biomass to solvent ratio of 1:5 w/v) in an

Erlenmeyer flask and shaken for 48 h at room temperature.

The initial filtration was performed using a muslin cloth,

followed by fine filtration with Whatman No. 1 filter paper.

To increase the extract yield, an additional aliquot of methanol

(at a plant biomass to solvent ratio of 1:3 w/v) was added

to the extraction residue, which was then subjected to an

additional 72 h extraction and filtered. The combined filtrates were

evaporated using a rotary evaporator at lower pressure to yield a

crude methanolic extract (CME). This extract was subsequently

fractionated into the three samples: non-polar fraction (CME

extracted with n-hexane), moderately polar fraction (residue

from n-hexane extraction then extracted with ethyl acetate),

and highly polar fraction (residue from ethyl acetate extraction

then extracted with distilled water). A rotary evaporator was

used to evaporate the solvents at reduced pressure, and all

fractions were tested for anti-mycobacterial activity. The most

active crude fraction (ethyl acetate) was stored at 2–4◦C for

further analysis (Ahmed et al., 2023; Jabeen et al., 2022). The

D. innoxia extracts and their fractions demonstrated sufficient

stability, with no detectable changes in anti-TB activity observed

in repeated experiments.

2.3 Fractionation of ethyl acetate extract

Normal-phase column chromatography was used to fractionate

6.30 g of ethyl acetate extract using silica gel (60–120 mesh)

(Ahmed et al., 2023). The fractionation was carried out using

a stepwise gradient of n-hexane:ethyl acetate in the following

volume ratios: 100:0, 80:20, 60:40, 40:60, 20:80, and 0:100 (v/v).

This was followed by elution with ethyl acetate:methanol in

ratios of 100:0, 80:20, 60:40, 40:60, 20:80, and 0:100 (v/v).

The collected fractions were evaporated under reduced pressure.

The yield (%) of each fraction was calculated using the

following formula:

Yield (%) =
net weight of fraction

total weight of crude ethyl acetate extract
x 100
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FIGURE 1

Datura innoxia whole plant (left) and leaves (right).

0.2 0.5 0.4 1.2
3.05

16.15

3.6

10.43

28.26

20.06

12.88

5.7

0

5

10

15

20

25

30

35

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

Y
ie

ld
 (

%
)

Column Fractions of Ethyl Acetate Extract

FIGURE 2

Fractionation yield (%) was obtained from the ethyl acetate extract of the D. innoxia leaves.

2.4 Bacterial culture conditions

Mycobacterium tuberculosisH37Ra was grown in Middlebrook

7H9 broth medium supplemented with 0.2% (v/v) glycerol (Sigma

Chemical Co.), 10% (w/v) oleic acid, albumin, dextrose, catalase

(OADC; Difco), and 0.05% (w/v) tyloxapol (Sigma). Minimum

bactericidal concentration (MBC) measurements were performed

onMiddlebrook 7H10 agarmedia supplemented with 0.2% glycerol

and 10% (w/v) OADC (Martin et al., 2005).

2.5 Minimum inhibitory concentration and
minimum bactericidal concentration
determinations

3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

(MTT) assay was used to determine the MICs of the crude

plant extracts, with minor modifications to the method described

by Martin et al. (2005). Briefly, the fractions were evaporated

to dryness, and the residues were accurately weighed before

being dissolved in DMSO to prepare stock solutions of known

concentrations. Two-fold serial dilutions of the samples were

prepared to achieve final concentrations ranging from 200µg/mL

to 12.5µg/mL. Subsequently, 5µL of the diluted samples was added

to a 96-well plate, followed by 95 µL of the H37Ra culture (final

OD600 = 0.01). The cultures were incubated for 7 days at 37◦C, and

MICs were recorded by visual observations. Each concentration

above the visually observed MICs was serially diluted, and 10 µL

of each dilution was plated on Middlebrook 7H10 agar plates.

The agar plates were incubated at 37◦C for 3 weeks. The MBC

was recorded as the lowest concentration that resulted in a 99%

reduction in colony-forming units (CFUs) in the initial inoculum.

MTT solution (10 µL of 5 mg/mL) was added to all the wells of

the 96-well plate, followed by overnight incubation. Then, 50 µL of

formazan solubilization buffer (Abate et al., 1998) was added, and

incubation was continued for at least 4 h at 37◦C. A color change

from yellow to violet indicated bacterial growth, and MICs were

interpreted accordingly (Vilchèze et al., 2011).

2.6 Preparative thin layer chromatography

Preparative TLC was carried out on the most active fraction

(F10) of the crude extract of D. innoxia leaves (ethyl acetate) on

250-micron silica gel layers developed with chloroform: ethanol
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(75:25). Distinct bands were individually scraped from the plate,

transferred to mini-columns, and eluted with methanol. The eluate

was filtered through a paper and concentrated under reduced

pressure (Nimbeshaho et al., 2020).

2.7 Reverse phase column chromatography

Sample material eluted from the prep-TLC band (F10B5),

measuring 4mg, was dissolved in the minimum amount of MeOH

and applied to the column with 5 g of octadecyl-functionalized

silica gel to collect the effluent (Choudhari et al., 2009). Columns

were eluted sequentially with 10mL of the following percentages

of MeOH in water: 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,

90%, and 100%MeOH, and the effluents were collected as fractions.

The collected fractions were evaporated under reduced pressure,

and the residues were assayed for antituberculosis activity using the

MTT assay described above.

2.8 LC-ESI-MS/MS data acquisition and
analysis

LC-MS/MS phytochemical profiling of the extracted fraction

RC08 was carried out using an Orbitrap Fusion mass spectrometer

(Thermo Scientific, Waltham, MA, USA) connected to a Dionex

UltiMate 3000 RSLCnano UPLC system. The sample (5 µl)

injections were subjected to chromatographic separations using a

mobile phase of water with 0.1% formic acid (A) and acetonitrile

(B) on an Acquity HSS (Waters, Milford, MA) C18 reversed-

phase column (100 × 2.1 mm, 1.8 µm particle size). The initial

conditions were 2% B for 3min, followed by a linear gradient

to 95% B over 49min (long) and 12min (short) with a 2-min

hold at 95% B. The column was then re-equilibrated with 2% B

for the next run. Electrospray ionization was used to acquire MS

data, with full scan Orbitrap detection (m/z 100–1,000, resolution

120,000) and data-dependent HCD fragmentation (stepped 20%,

35%, and 60%) with a 1-s cycle time, 6 s dynamic exclusion, 1.6 Da

TABLE 1 Antitubercular activity of fractions obtained using normal phase

column chromatography.

S. no Fractions of
ethyl acetate

extract

Antitubercular activity against
M. tuberculosis H37Ra

MICs (µg/mL)

1 F04 >200

2 F05 200

3 F06 200

4 F07 >200

5 F08 >200

6 F09 >200

7 F10
∗

200

8 F11 >200

9 F12 200

∗F10 was selected for further analysis due to its high yield. Bold values represent the most

active fractions, showing the lowest MIC and MBC values againstMtb.

quadrupole isolation width, exclusion mass width ±10 ppm, and

15,000 resolution Orbitrap detection. Each sample was performed

independently in the negative (M – H+) and positive (M + H+)

modes. Compound Discoverer 3.3 (Thermo Scientific, Waltham,

MA) was used for data processing, and analyte identification was

done by searching the Thermo Scientific mzCloud and NIST 2020

high-resolution mass spectral databases (Flamini, 2013).

3 Results

3.1 Bioassay-guided fractionation of the D.

innoxia leaf ethyl acetate extract

A total of 12 fractions were obtained from the column

chromatography of the ethyl acetate extract of Datura innoxia

TABLE 2 Antitubercular activity of PTLC fractions from fraction #10.

Antitubercular activity against M. tuberculosis H37Ra

Fraction MIC (µg/mL) MBC (µg/mL)

F10B1 >200 >200

F10B2 >200 >200

F10B3 200 >200

F10B4 50 >200

F10B5 25 100

F10B6 100 200

F10B7 200 200

F10B8 200 >200

F10B9 50 >200

F10B10 50 >200

F10B11 50 100

Bold values represent the most active fractions, showing the lowest MIC and MBC values

againstMtb.

TABLE 3 MICs and MBCs of RC fractions from fraction F10B5.

Reverse phase
column
fractionations

Antitubercular activity against
M. tuberculosis H37Ra

MIC (µg/mL) MBC (µg/mL)

RC01 >200 >200

RC02 >200 >200

RC03 >200 >200

RC04 >200 >200

RC05 >200 >200

RC06 >200 >200

RC07 >200 >200

RC08 50 100

RC09 100 100

RC10 100 200

Bold values represent the most active fractions, showing the lowest MIC and MBC values

againstMtb.
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FIGURE 3

LC-ESI-MS/MS chromatograms of fraction RC08 in positive ion mode were used for the detection of scopolamine. (a) Extracted ion chromatogram,

(b) high-resolution mass spectrum (MS1), and (c) fragmentation mass spectrum for the mass ion at m/z 304.15536 (MS2). RT, retention time.

leaves. The highest yield was obtained for fraction #F9 (28.26%),

followed by F10 (20.06%), F6 (16.15%), and others (Figure 2).

Fractions of extracts with a yield ≥1.23% (77.5mg) were

assayed for antitubercular activity in cultures of M. tuberculosis

H37Ra over a range of concentrations (200µg/mL to 3.15µg/mL).

Fractions F05, F06, F10, and F12 significantly inhibitedMtb growth

at 200µg/mL (Table 1).

3.1.1 Preparative TLC fractionation
Fraction F10, which had the highest total activity, was

further purified by preparative TLC, yielding 11 distant bands

under UV visualization (Supplementary Figure 15). All bands

were individually scraped from the plates, extracted with

methanol, the solutions were evaporated, and the residues

were assayed for antitubercular activity in M. tuberculosis

H37Ra cultures. Fraction F10B5 exhibited the highest

antitubercular activity (MIC = 25µg/mL; MBC = 100µg/mL)

(Table 2).

3.1.2 Reverse-phase column fractionation
Fraction F10B5 was purified on a reverse-phase column,

resulting in 10 sub-fractions, which were assayed for antitubercular

activity. Fraction RC08 exhibited the most active MIC and

MBC values at 50µg/mL and 100µg/mL, respectively (Table 3).

The lower specific activity of RC08 relative to F10B5 may

represent assay variability or removal of a co-activator or other

active components.

3.2 Characterization and metabolomic
profiling of the RC08 fraction of D. innoxia
leaf extract

Fraction RC08 was subjected to metabolic profiling using LC-

MS/MS. The reverse-phase LC column and gradient conditions

used in LC-MS/MS resulted in much better separation and

resolution than the step gradient open column used in the previous

fractionation step. An example of a chromatogram obtained in
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FIGURE 4

LC-ESI-MS/MS chromatograms of fraction RC08 in negative ion mode for the detection of methyl ferulate. (a) Extracted ion chromatogram, (b) high

resolution mass spectrum (MS1), and (c) fragmentation mass spectrum for the mass ion at m/z 207.06625 (MS2). RT, retention time.

positive ion mode is given in Figure 3, and one in negative ion

mode is given in Figure 4. Additional chromatograms are provided

in Supplementary Figures 1–14. The data analysis in this study

identified 16 known compounds, including 12 compounds in the

positive ion mode spectrum (Table 4) and four compounds in the

negative ion spectrum (Table 5) based on the high-resolution mass

spectrum (which identifies the molecular weight and elemental

composition) and the electron impact spectra by comparison with

available databases. The structures of the identified metabolites are

given in Figure 5.

4 Discussion

Natural products have a proven record for the development

of new drugs, including potential anti-TB agents (Oosthuizen

et al., 2019). In the present research, Datura species were screened

for antimycobacterial potential in cultures of Mycobacterium

tuberculosis H37Ra (Vilchèze et al., 2011). Numerous secondary

metabolites with pharmaceutical potential have been found in

Datura species (Alam et al., 2021; Al-Snafi, 2017). The most

active of the Datura species extracts included in the study, that of

D. innoxia, was subjected to bioassay-guided fractionation using

solvent extraction and chromatographic techniques to reduce the

number of inactive components and to reduce the potential for

masking biological activity with impurities (Sytar and Smetanska,

2023).

Among the known compounds identified as secondary

metabolites in D. innoxia was loliolide, a monoterpene lactone and

benzofuran found in many plants, which exhibits various biological

activities, including antifungal, antitumor, cytoprotective,

antibiotic, antioxidant, antimalarial, and anticancer properties

(Silva et al., 2021; Yang et al., 2011; Grabarczyk et al., 2015).

Scopolamine is a tropane alkaloid belonging to the Solanaceae
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TABLE 4 Secondary metabolites identified in the RC08 fraction of Datura innoxia leaves by positive ion mode LC-MS/MS analysis.

Metabolites identified Retention time (min) Chemical formula Molecular weight [M+H]+1 m/z

Loliolide 9.63 C11H16O3 196.1105 197.1177

Scopolamine 7.96 C17H21NO4 303.1480 304.1552

Kuromanin 8.96 C21H20O11 448.1014 449.1086

Isoquercitrin 9.34 C22H21O11 462.1177 463.1249

Moupinamide 8.65 C18H19NO4 313.1325 314.1397

methyl isoquinoline-3-carboxylate 11.22 C11H9NO2 187.0636 188.0708

trans-3-Indoleacrylic acid 7.47 C11H9NO2 187.0641 188.0713

Tyramine 1.13 C8H11NO 137.0845 138.0917

(3β,5ξ,9ξ)-3,6,19-Trihydroxyurs-12-en-

28-oic acid

10.38 C30H48O5 488.3521 489.3593

Milbemycin A3 oxime 11.27 C31H43NO7 541.3051 542.3123

Methyl jasmonate 12.19 C13H20O3 224.1418 225.149

Nicotinamide 1.81 C6H6N2O 122.0485 123.0557

TABLE 5 Secondary metabolites identified in the RC08 fraction of Datura innoxia leaves by negative ion mode LC-MS/MS analysis.

Metabolites identified Retention time (min) Chemical formula Molecular weight [M-H+]−1 m/z

Methyl ferulate 11.19 C11H12O4 208.0735 207.0663

Trifolin 8.95 C21H20O11 448.1008 447.0936

2-[(1S,2S,4aR,8aS)-1-hydroxy-4a-methyl-

8-methylidene-decahydronaphthalen-2-

yl]prop-2-enoic acid

11.51 C15H22O3 250.1569 249.1497

Methyl 4-hydroxycinnamate 11.01 C10H10O3 178.0629 177.0557

family of plants, including angel’s trumpet, devil’s trumpet,

henbane, mandrake, deadly nightshade, and corkwood (Isopencu

et al., 2023). Scopolamine, first approved by the U.S. Food and

Drug Administration in 1979, is used to prevent motion sickness

and postoperative nausea, acting by an anticholinergic mechanism

(Swaminathan et al., 2020; Palazón et al., 2008). Moupinamide

(N-trans-feruloyltyramine), which has been found in a variety of

plants, including eggplant (Song et al., 2021), has some potential

therapeutic activities, including inhibition of COX 1 and COX 2

(Park, 2009), stimulation of lipophagy by dihydroceramides (Lee

et al., 2021) making it a possible non-alcoholic fatty liver disease

therapeutic and cytotoxicity with SW480 cells (Villada Ramos

et al., 2023). Kaempferol 3-O-galactoside (trifolin), a member

of the flavonol group, has been extracted from medicinal plants

and reported to have anticancer effects against promyelocytic

leukemia, histiocytic lymphoma, skin melanoma, and lung cancer

(Imran et al., 2019). Tyramine has peripheral cardiovascular effects

when orally ingested, making it potentially useful for treating

hypotension (Blob et al., 2007). Methyl 4-hydroxycinnamate

is found in a variety of plants and has potential therapeutic

applications as a melanin synthesis inhibitor, anti-inflammatory

agent, and antifungal agent (Roulier et al., 2020). Trans-3-

indoleacrylic acid is found in a wide variety of plant sources,

such as canola straw, and is of interest as an algaecide (Effiong

et al., 2022). Trans-3-indoleacrylic acid is also produced by gut

bacteria, which facilitates the development of colorectal cancer

(Cui et al., 2024). Other metabolites identified in the D. innoxia

extract were primary plant metabolites, including nicotinamide,

methyl jasmonate, and methyl ferulate. Primary plant metabolites

that co-purify with the antitubercular activity in D. innoxia extract

would be expected to be detected and identified.

The only secondary metabolite identified in the D. innoxia

extract with reported antitubercular activity is milbemycin oxime

(Muñoz-Muñoz et al., 2021). Milbemycin oxime has been reported

to be more active againstM. tuberculosis and otherMycobacterium

species than other milbemycins or closely related avermectins,

with an MIC lower than 8µg/mL (Lim et al., 2013). Milbemycin

oxime is produced by Streptomyces hygroscopicus subspecies

aureolacrimosus (Takiguchi et al., 1983) and has not been reported

to be produced by D. innoxia. Examination of the total ion flow

in the chromatogram at the milbemycin oxime peak indicated

that it was present only in trace amounts in the D. innoxia

extracts. Assessment of the antitubercular activity of a series of

pure, commercially available authentic standards for components

identified in theD. innoxia extract and their amounts in the various

purification fractions indicated that antitubercular activity was

co-purified primarily with trans-3-indoleacrylic acid (manuscript

in preparation). The origin of milbemycin oxime in D. innoxia

extracts is unknown. Antibiotic production by endophytes has been

widely observed (Martinez-Klimova et al., 2017), and milbemycin
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(k)   (l)       (m)  

(n)   (o)  (p)

 

FIGURE 5

Structures of secondary metabolites identified by LC-ESI-MS/MS. (a) Loliolide, (b) scopolamine, (c) isoquercitrin, (d) moupinamide, (e) methyl

isoquinoline-3-carboxylate, (f) trans-3-Indoleacrylic acid, (g) tyramine, (h) nicotinamide (i) milbemycin A3 oxime, (j) methyl jasmonate, (k) methyl

ferulate, (l) trifolin, (m) methyl 4-hydroxycinnamate and (n)

2-[(1S,2S,4aR,8aS)-1-hydroxy-4a-methyl-8-methylidene-decahydronaphthalen-2-yl]prop-2-enoic acid, (o) kuromanin, and (p)

(3β,5ξ,9ξ)-3,6,19-trihydroxyurs-12-en-28-oic acid.

has been reported to be produced by the endophytic fungus

Penicillium citrinum in the Indian medicinal plant, Azadirachta

indica (Kumari et al., 2021). Extensive additional studies would

be required to determine if milbemycin oxime could have been

produced in sufficient amounts by an endophytic microbe with

the required biosynthetic gene cluster; by the D. innoxia plant
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(if its genome includes the required biosynthetic gene cluster);

or as a contaminant on the leaf surface before collection or

during drying.
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