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Introduction: Soil health is critical for sustainable agriculture and food 
security, however, the accumulation of agricultural mulch film residues in 
soil raises environmental concerns. The effects of conventional polyethylene 
(PE) and biodegradable (PBAT and PLA) film residues on soil health, microbial 
communities, and crop productivity under field conditions have not been 
adequately investigated.

Methods: This study simulated the accumulation of PE film residues from over 
30 years of continuous mulching and evaluated PBAT and PLA film residues 
under field conditions, examining their effects on soil physicochemical 
properties, microbial communities and rapeseed performance.

Results: The results revealed that PE residues significantly altered microbial 
community composition, enhancing the relative abundance of core genera, 
including Sphingomonas, Acidibacter, and Flavisolibacter, while suppressing 
other genera, such as Burkholderia-Caballeronia-Paraburkholderia. PE residues 
also inhibited organic matter decomposition and ureolysis, while limiting nitrate 
availability and soil fertility, although rapeseed yields remained unaffected. In 
contrast, biodegradable film residues enhanced soil moisture retention and 
ammonium content, boosted soil functions such as plastic degradation, nutrient 
cycling, and chitinolysis, and enriched beneficial genera such as Candidatus 
Udaeobacter, Acidibacter, and Flavisolibacter, although weakened ureolysis 
activity. However, both residue types reduced the complexity and stability of the 
bacterial co-occurrence network, suggesting potential risks to the soil microbial 
habitats.

Conclusion: These findings demonstrate that conventional film residues had 
no significant effect on rapeseed productivity, whereas biodegradable films 
exhibited superior performance in maintaining soil fertility and microbial 
functions under field conditions. Our study emphasizes the need for long-term 
monitoring to effectively optimize agricultural plastic film applications.

KEYWORDS

rapeseed, conventional polyethylene films, biodegradable films, soil bacterial 
community, soil health

OPEN ACCESS

EDITED BY

Junqiang Zheng,  
Henan University, China

REVIEWED BY

Saif Ullah,  
University of Agriculture, Faisalabad, Pakistan
Xiongde Dong,  
Henan University, China
Yu Yanyan,  
Henan University, China

*CORRESPONDENCE

Dongyan Liu  
 liudy@sicnu.edu.cn

RECEIVED 31 December 2024
ACCEPTED 02 May 2025
PUBLISHED 29 May 2025

CITATION

Xie M, Wei M, Sun Q, Wang G, Shen T, 
He X and Liu D (2025) Comparative impacts 
of polyethylene and biodegradable film 
residues on soil microbial communities and 
rapeseed performance under field conditions.
Front. Microbiol. 16:1553807.
doi: 10.3389/fmicb.2025.1553807

COPYRIGHT

© 2025 Xie, Wei, Sun, Wang, Shen, He and 
Liu. This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 29 May 2025
DOI 10.3389/fmicb.2025.1553807

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2025.1553807&domain=pdf&date_stamp=2025-05-29
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1553807/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1553807/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1553807/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1553807/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1553807/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1553807/full
mailto:liudy@sicnu.edu.cn
https://doi.org/10.3389/fmicb.2025.1553807
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2025.1553807


Xie et al. 10.3389/fmicb.2025.1553807

Frontiers in Microbiology 02 frontiersin.org

1 Introduction

Agricultural films, particularly white plastic mulches, play a 
crucial role in agricultural ecosystems. Film mulching boosts crop 
yields by regulating soil temperature, promoting germination and 
seedling growth, conserving moisture and accelerating organic matter 
decomposition. Furthermore, these films improve fertilizer use 
efficiency, enhance drought resistance, promote earlier crop 
maturation and ultimately lead to increased yields (Maraveas, 2020; 
Nizzetto et al., 2016). However, the widespread use of these films, 
predominantly manufactured from PE, has led to increased soil 
accumulation owing to inefficient recycling practices and their 
inherent resistance to degradation (Di Mola et al., 2021). Mechanical 
stress, weathering, and UV exposure fragment these films into 
microplastics, introducing persistent pollutants into agricultural 
ecosystems (Hayes et al., 2017; Kumar et al., 2020; Zhang K. et al., 
2021; Song et  al., 2023). Mounting evidence suggests that these 
residues might compromise the soil health and stability (Kumar et al., 
2020; Koskei et al., 2021; Lozano et al., 2021; Wang et al., 2021; Huang 
F. et al., 2023; Zhou et al., 2023).

The microplastics released from agricultural film residues 
predominantly include fragments, films and fiber forms (Yuan et al., 
2022). The current methods for managing these plastic residues in 
agricultural soils are both time-consuming and costly (Marí et al., 
2019). The chemical stability and hydrophobicity of agricultural films 
render them resistant to biological and chemical degradation, 
resulting in the accumulation of macro- and microplastics in 
agricultural soils (Angelucci and Tomei, 2020). Substantial variations 
in plastic film residue concentrations across different agricultural 
regions of China have been documented. For instance, concentrations 
range from 4.94 pieces per kilogram in the lower Yangtze River region 
to a remarkably high 40,800 pieces per kilogram in Yunnan (Zhang 
Q. Q. et  al., 2021). Among these residues, polyethylene and 
polypropylene are the predominant (Tang, 2023). This accumulation 
negatively affects crop productivity through alterations in soil 
structure and microbial community composition (Zhao et al., 2021; 
Li C. et al., 2022), ultimately compromising plant growth (Koskei 
et al., 2021). Yield reductions have been observed across various crops, 
including wheat (Qi et al., 2020), maize, cotton, potatoes (Gao et al., 
2019; Zhang et  al., 2020) and green beans (Jiang et  al., 2019). In 
response to these challenges, biodegradable agricultural films have 
emerged as potential alternatives to conventional PE films (Piyathilake 
et al., 2024). These films typically degrade within one year in open 
fields and five years under greenhouse conditions (Velandia et al., 
2020). The rapid release of additives also highlight the need for further 
research to ensure their safe and sustainable application in agriculture.

Soil microbiome underpins soil and human health by mediating 
nutrient cycling, pollutant degradation and enhancing plant immunity, 
fertility and yield (Chen et al., 2020; Dai et al., 2020; Wei et al., 2020; 
Chepsergon and Moleleki, 2023; Liu Z. et al., 2024). The functional 
capacity of ecosystems, particularly in nutrient cycling processes, is 
positively correlated with microbial community diversity and network 
complexity (Wagg et al., 2019; Ling et al., 2022). Recent studies have 
highlighted the significant influence of microplastics on rhizosphere 
bacterial communities, including their diversity and abundance (Sun 
et  al., 2021). Both conventional and biodegradable microplastics 
influence soil nitrogen availability, enzyme activities and diazotrophic 
networks, with effects varying by type and concentration (Wang et al., 

2023). Additionally, microplastics can enhance the rhizosphere 
microbial abundance and nitrogen metabolism (Kim et al., 2023). 
These findings are further supported that microplastics significantly 
affect plant oxidative stress, photosynthetic efficiency and soil 
microbial activity (Wang W. et al., 2024). PBAT microplastics induce 
dynamic shifts in bacterial community composition, influenced by 
particle size, concentration and soil residence time (Shang et al., 2024). 
Similarly, PLA treatment distinctly alters the bacterial diversity and 
composition in rice soils compared to PVC and PET (Sun X. et al., 
2022). In a rice pot experiment, plastic film residues of different sizes 
significantly altered soil properties and rhizosphere microbiota, 
reducing soil density, increasing porosity, modifying enzyme activity 
and raising dissolved nitrogen levels (Fu et  al., 2023). However, 
research on how conventional and biodegradable agricultural film 
residues affects soil properties, rhizosphere bacterial communities and 
plant productivity under field conditions remain limited.

Rapeseed is the predominant oilseed crop in China’s upper 
Yangtze River region and represents a crucial source of edible oil and 
renewable energy. The southwestern region alone contributes 28.4% 
of national production (Hu et al., 2017; Wang H. et al., 2024). This 
study investigated the effects of PE film residues accumulated over 
30 years of continuous mulching, along with one-year PBAT and PLA 
film residues under field conditions. Specifically, we examined their 
effects on rapeseed performance, soil physicochemical properties, and 
microbial communities. We  aimed to answer the following three 
questions: (1) How do these two types of film residue affect rapeseed 
performance? (2) Do they change soil characteristics, microbial 
community dynamics? (3) What is the relationship between changes 
in soil characteristics, microbial community structures and 
rapeseed productivity?

2 Materials and methods

2.1 Field design and sample collection

The field experiment was carried out at Qiushi Farm, Chengdu, 
Sichuan (30°34′N, 104°11′E), as described by Sun et al. (2025). The 
site is characterized by an annual mean temperature of 14–22°C, 
average yearly rainfall of 771.8 mm, and a cumulative annual 
temperature of 4,600–5,000°C. The soil is classified as Alfisols, with a 
pH ranging from 6.5 to 7.0 and 2–4% organic matter.

A 40 × 50 m plot that had functioned as a seedling nursery for the 
past decade was selected for the experiment. The study used a split-
plot design, establishing six main plots (10 × 8 m each), separated by 
5 m to reduce edge effects (Figure 1). Each main plot included three 
treatments: control (CK, no film), PE film addition (M) and 
PBAT+PLA biodegradable film addition (bioM). The design was 
based on data regarding residual soil film fragments from 32 years of 
agricultural film use (Li S. et al., 2022).

Conventional polyethylene (PE) films were purchased from 
Chengdu Jiuzhou Fengle Agricultural Technology Co., Ltd., while 
biodegradable PBAT+PLA films were obtained from Jialemi 
Horticultural Technology Co., Ltd. Both types had a uniform thickness 
of 0.01 mm. Application rates for film fragments were determined for 
the 0–30 cm soil layer. For PE films, 0.0915% (w/w) was used for 
fragments smaller than 4 cm2 and 0.0183% (w/w) for fragments 
between 4–25 cm2 (Li S. et al., 2022). For PBAT+PLA films, application 
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rates were based on the actual annual coverage in each plot and 
prepared fragments accordingly, 83.33 g for pieces smaller than 4 cm2 
and 41.67 g for those sized 4–25 cm2. To simulate natural aging 
process of film fragments, the experiment began in March 2023 before 
maize planting. Prior to film fragments were applied, all plots were 
fertilized with potassium nitrate and urea (N:P:K = 280:112.7:180 g) 
according to Khan et al. (2017), along with subsequent fertilization as 
needed (Yousaf et al., 2017). Pre-prepared film fragments were then 
incorporated into the top 30 cm of soil using a rotary tiller. After the 
maize harvest in July 2023, soils were tilled and dried to further 
promote film fragment aging.

In November 2023, rapeseed was sown. Plant and soil samples 
were collected at three critical stages: 30 days post-transplantation 
(vegetative stage), 60 days (flowering stage) and 90 days (maturity 
stage). At each sampling point, both aboveground plant tissues and 
fine roots were collected for laboratory measurements of physiological 
traits, including plant height and root diameter, using a steel tape and 
calipers. Soil samples were taken near plants using a five-point 
composite sampling method at a depth of 0–20 cm, after removing 
surface debris. Soil adhering to fine roots was combined to create 
composite samples, 18 samples per sampling time point, for a total of 
54 soil samples over three sampling rounds. In the laboratory, soil 
samples were passed through a 2 mm sieve and divided: one portion 
was air-dried for physicochemical analysis, while the other was stored 
at −80°C for further study. Seed yield was determined by weighing 
rapeseed after the April 2024 harvest.

2.2 Measurement of soil and plant 
physicochemical parameters

The plant samples were subjected to a two-step drying process: 
initial blanching at 100°C for 30 min, followed by complete drying at 
80°C for moisture content determination. The plant biomass was 
quantified by direct weighing. For the soil analyses, the moisture 
content was determined gravimetrically (drying at 105°C), and the pH 
was measured using a 2.5:1 soil-to-water ratio. The total inorganic 
nitrogen in the soil was extracted using a 2 M KCl solution. Nitrate 
nitrogen was quantified using ultraviolet–visible spectrophotometry, 
whereas ammonium nitrogen was determined using the potassium 
chloride-indigo blue colorimetric method. Total carbon (TC) was 

measured using the potassium dichromate method, while total 
nitrogen (TN) was determined using the Kjeldahl method after 
digestion with H2SO4. For soluble organic carbon and nitrogen 
analysis, samples were extracted with 0.5 M K₂SO₄ (1,5 ratio), 
followed by quantification procedures similar to those used for total 
carbon and nitrogen determination.

2.3 High-throughput sequencing of 
bacterial 16S rDNA

Given the consistent physicochemical trends across sampling 
times, we selected 18 soil samples at the 60-day vigorous growth stage 
for representative high-throughput sequencing analysis. Genomic 
DNA was extracted from 0.5–0.7 g soil samples following Liu et al. 
(2018). DNA quality was verified by 0.7% agarose gel electrophoresis 
and quantification was performed using a Nanodrop  2000 
spectrophotometer. The bacterial 16S rDNA V4 region was amplified 
using the primers 515F and 806R (Parada et  al., 2016). The 
amplification success was confirmed using 2% agarose gel 
electrophoresis, followed by sequencing on the Illumina 
PE250 platform.

2.4 Bioinformatics analysis

Raw sequencing data were processed by paired-end merging using 
the FLASH program, and barcodes were removed during 
preprocessing. Quality control of the sequences was performed using 
the QIIME2. Sequences were filtered based on the following criteria: 
average base quality score <30, length <200 base pairs, or presence of 
ambiguous bases (N). The Deblur algorithm within QIIME2 was 
applied for sequence denoising and chimera removal, resulting in 
Amplicon Sequence Variant (ASV) tables and representative 
sequences. Taxonomic classification was performed using a Naïve 
Bayes classifier trained using the SILVA v138 database. Phylogenetic 
trees were constructed using FastTree plugin QIIME2. To standardize 
the sampling effort, all samples were rarefied to a minimum 
sequencing depth of 34,234 reads. All sequence data were deposited 
in the National Center for Biotechnology Information Sequence Read 
Archive under accession number PRJNA1197682.

FIGURE 1

Experimental plot layout diagram.
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Alpha diversity metrics, including Shannon and Simpson indices, 
were calculated using the vegan package in R. Comparisons of 
diversity between treatments were performed using the Wilcoxon 
rank-sum test for pairwise comparisons and Kruskal-Wallis test for 
multiple groups, with post-hoc analyses adjusted using the Agricolae 
package. Beta diversity was assessed using Bray-Curtis distances, 
which were calculated using the Vegan package in R. Principal 
coordinate analysis (PCoA) was performed for visualization using the 
ape and Vegan packages to create ordination plots. Permutational 
Multivariate Analysis of Variance (PERMANOVA) was performed 
using the Adonis function in Vegan. To predict potential microbial 
metabolic and ecological functions, the FAPROTAX tool was used for 
functional annotation of ASV tables. Random forest analysis was 
conducted using the RandomForest package in R to identify the key 
microbial functional groups associated with film residues.

Microbial co-occurrence networks were constructed to evaluate 
the soil microbial community dynamics. Robust correlations 
(Spearman correlation coefficients >0.8 or <−0.8 with adjusted 
p-values <0.05) were calculated to define edge connections between 
nodes (Jiao et al., 2022). Network metrics, including the total number 
of nodes, links, network diameter, average clustering coefficient, and 
relative modularity, were computed using the igraph package in R 
(version 4.3.3) (Yuan et  al., 2021). Network visualization was 
performed using the Gephi software. Positive and negative cohesion 
values were calculated to assess bacterial community complexity 
(Herren and McMahon, 2017; She et al., 2021). Network visualizations 
were generated using the Gephi software. The stability of the soil 
microbial network was assessed using a network robustness analysis. 
Simulated random species removal was performed by excluding 50% 
of the network nodes and evaluating changes in connectivity and 
network metrics. The ratio of absolute negative to positive cohesion 
was used to calculate network stability (Wu et al., 2023). Structural 
equation modeling was conducted to explore causal relationships 
among soil properties, microbial communities, and rapeseed yield 
using the plspm package in R (version 4.3.3).

3 Results

3.1 Fundamental characteristics of plants 
and soil

Rapeseed yield and aboveground biomass showed distinct 
responses to the different treatments (Figures 2a,b). While the M 
treatment resulted in a slight, non-significant reduction in yield 
compared to the control (CK), the bioM treatment significantly 
enhanced both the yield and aboveground biomass (p  < 0.05). 
Although the M treatment showed a trend toward increased biomass, 
this change was not statistically significant. The soil physicochemical 
properties were substantially altered by both treatments (Table 1). The 
M treatment significantly increased soil pH and total carbon 
compared to CK (p < 0.05), but decreased inorganic nitrogen (IN) and 
total nitrogen content (p < 0.05). Although not statistically significant, 
reductions were observed in NH4

+-N, NO3
−-N, dissolved organic 

carbon (DOC), and dissolved organic nitrogen (DON). In contrast, 
the bioM treatment significantly enhanced soil moisture content, 
NH4

+-N, NO3
−-N, IN, DOC and total carbon compared with CK 

(p < 0.05).

3.2 Diversity and structure of soil bacterial 
communities

High-throughput sequencing at 100% similarity identified 6,268 
bacterial Amplicon Sequence Variants (ASVs), with 1,467, 1,212, and 
1729 unique ASVs in CK, M, and bioM treatments, respectively. 
Among these, 1,038 ASVs were shared across all the treatments 
(Supplementary Figure S1). Diversity indices (Chao1, Shannon and 
InvSimpson) consistently showed that the bioM treatment significantly 
enhanced bacterial diversity compared to CK, while the M treatment 
reduced diversity (Figures  3a–c). However, both M and bioM 
treatments significantly reduced Phylogenetic Diversity compared to 

FIGURE 2

Rapeseed yield (a) and aboveground biomass (b) in the rhizosphere soil with different treatments. Data are shown as mean ± SE (n = 6). An asterisk (*) 
indicates a significant difference according to the Kruskal-Wallis test with Dunn post-hoc test, with significance levels defined as follows: *p < 0.05, 
**p < 0.01 and ns indicates no significant difference.
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CK (Figure 3d). Principal coordinate analysis (PCoA) revealed distinct 
bacterial community compositions among the treatments (Figure 3e). 
The first two PCoA axes explained 63.3% of the total variance (PC1, 
40.4%; PC2, 22.9%). PERMANOVA confirmed significant differences 

among all treatments: CK vs. M (R2 = 0.50, p = 0.003), CK vs. bioM 
(R2 = 0.58, p = 0.001) and M vs. bioM (R2 = 0.59, p = 0.002).

The top 10 bacterial phyla maintained similar compositions across 
treatments, although their relative abundances varied considerably 
(Figure 3f, Supplementary Figure S2). Proteobacteria was dominant 
across all plots, followed by Actinobacteria, Acidobacteria, Chloroflexi, 
Gemmatimonadetes, and Bacteroidetes. The M treatment showed 
increased relative abundances of Proteobacteria, Acidobacteria, 
Bacteroidetes, and Nitrospirae, but decreased Actinobacteria 
compared to CK. BioM treatment enhanced the relative abundance of 
Acidobacteria, Bacteroidetes, Planctomycetes, Verrucomicrobia, and 
Nitrospirae while reducing the abundance of Actinobacteria 
and Gemmatimonadetes.

At the genus level, both treatments induced distinct community 
shifts (Figure 4, Supplementary Figure S3). M significantly increased 
the relative abundances of Sphingomonas, Acidibacter, Flavisolibacter, 
Thermomonas, Ramlibacter, Streptomyces, Amycolatopsis and Pedobacter, 
while reducing Burkholderia-Caballeronia-Paraburkholderia, Massilia, 
Pseudarthrobacter, HSB OF53-F07, Ellin6067 and Acidothermus. BioM 
treatment enhanced Candidatus Udaeobacter, Acidibacter, 
Flavisolibacter and Pedobacter, while decreasing Gemmatimonas, 
Burkholderia-Caballeronia-Paraburkholderia, Massilia, 
Pseudarthrobacter, Thermomonas, Acidothermus and Streptomyces 
compared to CK.

TABLE 1 Physiochemical properties in rhizosphere soil with different 
treatments.

Parameter CK M bioM

pH 6.51 ± 0.05b 6.82 ± 0.04a 6.57 ± 0.09b

SMC(%) 12.06 ± 0.25c 13.27 ± 0.35b 14.00 ± 0.43a

NH4
+-N(mg/kg) 3.09 ± 0.10b 2.94 ± 0.02b 3.64 ± 0.12a

NO3
−-N(mg/kg) 12.96 ± 0.85b 11.67 ± 0.78b 18.30 ± 1.46a

IN(mg/kg) 16.05 ± 0.85b 14.61 ± 0.80c 21.94 ± 1.42a

DOC(g/kg) 16.46 ± 0.99b 15.70 ± 1.15b 19.72 ± 1.97a

DON(g/kg) 0.25 ± 0.01a 0.24 ± 0.00a 0.43 ± 0.00a

TC(g/kg) 41.42 ± 0.48c 43.67 ± 0.47b 45.53 ± 0.81a

TN(g/kg) 2.77 ± 0.16a 2.42 ± 0.02b 2.84 ± 0.03a

Data are shown as mean ± SE (n = 6). Different letters indicate significant difference 
(p < 0.05) according to the Kruskal-Wallis test with Dunn post-hoc test among the 
treatments. SMC, soil water content; NH4

+-N, soil ammonium; NO3
−-N, soil nitrate; IN, 

inorganic nitrogen; DOC, dissolved organic carbon; DON, dissolved organic nitrogen; TC, 
total carbon; TN, total nitrogen.

FIGURE 3

Alpha diversity indices of Chao1 (a), Shannon (b), Simpson (c), PD (d), PCoA analysis based on Bray-Curtis distance (e) and relative abundance of top 10 
phyla (f) of bacterial community in rhizosphere soil with different treatments. Data are shown as mean ± SE (n = 6). An asterisk (*) indicates a significant 
difference according to the Kruskal-Wallis test with Dunn post-hoc test, with significance levels defined as follows: **p < 0.01, ***p < 0.001, 
****p < 0.0001 and ns indicates no significant difference.
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3.3 Prediction of soil bacterial community 
functions

FAPROTAX analysis of 6,268 bacterial ASV sequences identified 
92 functional groups, encompassing metabolic processes related to 
nutrient cycling (nitrogen, carbon, and sulfur), metal transformations 
(As and Fe), and ecological interactions. Random forest analysis of the 
30 key functional groups revealed treatment-specific variations in 
carbon and nitrogen cycling (Figures  5a,b). In the M treatment, 
carbon-related functions including oxygenic photoautotrophy, 
phototrophy, and aerobic chemoheterotrophy showed significant 
increases compared with CK. However, functions related to aromatic 
compound degradation, cellulolysis, fermentation, methanogenesis, 
and chloroplast processes were reduced. Nitrogen-related functions, 
including aerobic nitrite oxidation, nitrification, nitrate respiration, 
and chitinolysis, were significantly enhanced, while ureolysis 
decreased (Figure  5a). The bioM treatment significantly enriched 
carbon functional groups associated with chitinolysis, plastic 
degradation, and photosynthetic processes (oxygenic photoautotrophy, 
phototrophy, and photoautotrophy) compared to CK, while reducing 
methanogenesis, hydrocarbon degradation, cellulolysis, and aromatic 
compound degradation. Similarly, nitrogen cycling functions such as 
aerobic nitrite oxidation, nitrate respiration, and nitrite denitrification 
were enhanced, although ureolysis decreased (Figure 5b).

3.4 Co-occurrence network of soil 
bacterial communities

Network analysis revealed distinct structural changes across the 
treatments (Figure 6; Table 2). Both M and bioM treatments showed 
reduced network complexity compared with CK, with lower 
modularity (M: 0.445, bioM: 0.459, CK: 0.497), average degree (M: 
27.28, bioM: 29.41, CK: 43.03)and clustering coefficients (M: 0.417, 

bioM: 0.409, CK: 0.428). Conversely, the average path lengths (M: 
0.019, bioM: 0.020, CK: 0.011) and network diameters (M = 0.041, 
bioM = 0.038, CK = 0.025) increased significantly. While positive and 
negative cohesive forces were strengthened in both M and bioM 
treatments compared to CK (Figures  7a,b), network complexity 
decreased (Figure 7c). Random node removal analysis demonstrated 
reduced network robustness for both treatments (Figures 7d,e). The 
M treatment showed the highest bacterial network vulnerability, while 
bioM and CK maintained similar vulnerability indices (Figure 7f).

3.5 PLS-PM model of bacterial 
communities

The partial least squares path model (PLS-PM) revealed distinct 
treatment effects on soil–plant-microbe interactions (Figure 8). The M 
treatment model (goodness of fit: 0.71) showed strong positive effects on 
bacterial communities, functions, and network stability (r = 0.99), but 
negatively affected soil properties, particularly nitrogen content 
(r  = −0.74), with no direct effect on rapeseed biomass or yield 
(Figure  8a). The bioM treatment model (goodness of fit: 0.80) 
demonstrated more comprehensive positive effects, enhancing bacterial 
communities, functions, and network stability (r = 0.97), which directly 
improved the rapeseed biomass and yield (r = 0.91). Additionally, bioM 
treatment positively influenced soil properties (r = 0.90), creating an 
indirect positive feedback loop through bacterial communities (r = 0.88), 
which further enhanced plant performance (r = 0.71) (Figure 8b).

4 Discussion

In this study, the effects of conventional PE and biodegradable 
PBAT-PLA film residues on bacterial communities, soil properties 
and rapeseed performance were comprehensively analyzed. All 

FIGURE 4

Heatmap of top 30 genera of the bacterial community in rhizosphere soils with different treatments.
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FIGURE 5

Random Forest analysis of top 30 bacterial functional groups based on FAPROTAX analysis between CK vs. M (a) and CK vs. bioM (b) treatments.
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experimental questions were confirmed. Conventional PE residues 
had no significant impact on rapeseed biomass or yield but decreased 
soil inorganic nitrogen, bacterial α-diversity, and organic matter 
degradation functions, significantly weakening microbial network 
stability. In contrast, biodegradable residues enhanced rapeseed 
productivity by improving soil fertility and microbial diversity and 
enriching functional groups involved in carbon and nitrogen 
cycling, although they also moderately reduced microbial 
network stability.

4.1 Impact of agricultural film residues on 
plant performance and soil 
physicochemical properties

Our study compared the ecological impacts of conventional 
polyethylene (PE) and biodegradable PBAT-PLA mulch films, 
revealing distinct effects on plant growth and soil properties (Figure 2; 
Table 1). Recent studies have highlighted the significant effects of 
agricultural film residues on plant growth and soil microbial 

communities (Qi et al., 2022; Zhou et al., 2023; Shirin et al., 2024; Yang 
et al., 2024). While previous research has documented the negative 
effects of film residues on various crops including wheat, maize, potato 
and cotton (Gao et al., 2019; Qi et al., 2020; Zhang et al., 2020), our 
findings showed treatment-specific responses.

PE film residues had minimal impact on rapeseed biomass and 
yield, consistent with observations that PE microplastics negligibly 
affected maize growth (Ding et al., 2023). In contrast, PBAT-PLA 
residues significantly enhanced both parameters, aligning with reports 
of increased peanut yields under biodegradable mulch films (Zhao 
et al., 2023). One key reason for the difference between our results and 
those of previous studies is the concentration of film residues applied 
(Qi et al., 2018). Our experiment applied much lower residue levels, 
about 0.1% w/w for PE and similarly low rates for PBAT-PLA. In 
contrast, Qi et al. (2018) used a much higher concentration of 1%. 
Their study found negative effects at this level, no matter the fragment 
size. This highlights a strong dose-dependent effect. For example, 
Zhang et al. (2020) reported that with every 100 kg ha−1 increase in 
residual mulch film, maize plant height decreased by 2.5%. Therefore, 
the lower and more realistic concentrations used in our study may 
explain why we did not observe the same adverse effects as those 
reported with higher doses.

The observed changes in plant performance were correlated with 
alterations in soil physicochemical properties, which are crucial 
determinants of bacterial function (Wu et al., 2022). Both film types 
significantly increased the total soil carbon content, consistent with 
previous studies showing enhanced soil organic matter and carbon 
content following microplastic addition (Kim et  al., 2021). For 
instance, high concentrations (28%) of polypropylene microplastics 
have been shown to increase soil soluble organic carbon by over 35% 
(Liu et al., 2017). This suggests that plastic mulch residues contribute 
to soil carbon content independently of photosynthetic processes and 
net primary production (Rillig and Lehmann, 2020), although 
distinguishing between soil and plastic-derived carbon remains 
technically challenging.

The treatments had contrasting effects on soil nitrogen dynamics. 
PBAT-PLA films significantly increased inorganic nitrogen 

FIGURE 6

The co-occurrence networks of soil bacterial communities at the ASV level in rhizosphere soil with different treatments.

TABLE 2 Topological properties of network in rhizosphere soil with 
different treatments.

Parameter CK M bioM

Nodes 731 458 501

Edges 15,726 6,247 7,367

Positive correlation 7,855 3,106 3,686

Negative correlation 7,871 3,141 3,681

Average degree 43.03 27.28 29.41

Network density 0.059 0.060 0.059

Clustering coefficient 0.43 0.42 0.41

Average path length 0.011 0.019 0.020

Network diameter 0.025 0.041 0.038

Modularity 0.50 0.46 0.46
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(ammonium and nitrate) and soluble organic nitrogen concentrations, 
while PE films reduced inorganic nitrogen levels. These findings align 
with previous research showing that non-degradable plastics 
(0.3–1%) reduce nitrate and ammonium nitrogen in rice paddy soils 
(Sun X. et al., 2022). Such changes in nitrogen availability directly 
influence crop performance, as demonstrated by studies showing 
reduced maize growth and nitrogen uptake in soils containing 0.5% 

PET microplastics (Ingraffia et  al., 2022; Hu et  al., 2020). The 
differential effects of plastic type on soil nitrogen cycling processes 
are well documented (Seeley et al., 2020), which enhances nitrification 
and denitrification, while polyvinyl chloride inhibits these processes. 
Our results support these findings, demonstrating that biodegradable 
films improve soil nutrient status and consequently enhance 
rapeseed yield.

FIGURE 7

Microbial network stability indices, including positive cohesion (a), negative cohesion (b), network complexity (c) robustness after random removal of 
samples (d), robustness after targeted removal of specific samples (e) and vulnerability (f) in the rhizosphere soil with different treatments. Data are 
shown as mean ± SE (n = 6). An asterisk (*) indicates a significant difference according to the Kruskal-Wallis test with Dunn post-hoc test, with 
significance levels defined as follows: *p < 0.05, **p < 0.01, ****p < 0.0001 and ns indicates no significant difference.

FIGURE 8

PLS-PM analysis the effects of soil abiotic factors, soil bacterial community, functional group and network stability on rapeseed growth in M (a) and 
bioM (b) treatments. The path coefficients are indicated by the numbers adjacent to the arrows. Solid arrows represent significant path coefficients 
(p < 0.05), while dashed arrows indicate non-significant coefficients (p > 0.05). Positive and negative influences are represented in black and gray, 
respectively.
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4.2 Influence of agricultural film residues 
on soil bacterial community diversity and 
composition

Agricultural film residues significantly influenced soil bacterial 
α-diversity, depending on the treatment (Figure 3). BioM treatment 
enhanced bacterial α-diversity compared to the controls, which is 
consistent with previous observations of increased microbial diversity 
under biodegradable film treatments (Lian et al., 2022). Conversely, 
conventional PE films (M treatment) reduced bacterial α-diversity, 
aligning with studies showing decreased bacterial abundance and 
diversity following the addition of 1% LDPE addition (Fei et al., 2020). 
This divergent effect on bacterial diversity likely stems from differences 
in carbon bioavailability between film types. Biodegradable plastics 
hydrolyze into water-soluble, low-molecular-weight oligomers that 
serve as readily available carbon sources for microorganisms (Sun 
Y. et al., 2022). The increased soil organic nitrogen and carbon levels 
observed in bioM treated soils were positively correlated with 
enhanced microbial diversity (Li C. et  al., 2022), suggesting that 
improved nutrient availability supports more diverse 
bacterial communities.

Both treatments significantly altered the composition of the 
dominant bacterial taxa, reflecting the strong relationship between soil 
nutrient status and bacterial diversity (Wagg et  al., 2021). The 
predominant phyla identified were Proteobacteria, Actinobacteria, 
Acidobacteria, Chloroflexi, Gemmatimonadetes, and Bacteroidetes, 
which is consistent with communities found in organically enriched and 
microplastic-contaminated soils (Li C. et al., 2022). The M treatment 
enhanced the abundance of Proteobacteria, Acidobacteria, Bacteroidetes, 
and Nitrospirae abundance while reducing Actinobacteria. The bioM 
treatment increased Acidobacteria, Bacteroidetes, Planctomycetes, 
Verrucomicrobia and Nitrospirae, but decreased Actinobacteria and 
Gemmatimonadetes (Figure 3, Supplementary Figure S2). These shifts 
reflect the functional roles of specific taxa. Proteobacteria, among the 
most metabolically versatile phyla, contribute to various physiological 
processes and nutrient cycling, including the degradation of 
biodegradable PBAT and PLA films (Han et al., 2021). Acidobacteria 
serves as an indicator of soil nutrient status (Acuña et al., 2020), while 
Bacteroidetes thrives in nutrient-rich environments, facilitating nutrient 
cycling (Griffith et  al., 2017). Actinobacteria, which are crucial for 
rhizosphere processes, support nutrient cycling and promote plant 
growth (Merzaeva and Shirokikh, 2006).

At the genus level (Figure  4, Supplementary Figure S3), 
conventional film residues enhanced populations of hydrocarbon-
degrading bacteria such as Sphingomonas, Streptomyces, and 
Amycolatopsis, which promote soil health through nutrient cycling and 
organic matter decomposition (Chigwada and Tekere, 2023; Shen et al., 
2023; Zhou et al., 2024). Sphingomonas specializes in complex organic 
compound metabolism and pollutant degradation (Aulestia et al., 2021). 
The observed decrease in Burkholderia-Caballeronia-Paraburkholderia, 
Massilia and Acidothermus likely reflects habitat disruption by film 
residues, potentially affecting their roles in nitrogen assimilation and 
plant-microbe interactions (Liu R. et al., 2024; Zhang et al., 2024). In 
contrast, biodegradable film residues enriched Candidatus Udaeobacter, 
Acidibacter, Flavisolibacter and Pedobacter genera, suggesting enhanced 
organic carbon and nutrient availability. These genera play crucial roles 
in organic matter degradation and nutrient mobilization and support 
plant growth and soil fertility (Brabcova et al., 2016; Li C. et al., 2022).

4.3 Impact of agricultural film residues on 
predicted functional profiles of soil 
bacterial communities

FAPROTAX analysis revealed treatment-specific effects on 
bacterial functional profiles (Figures 5a,b), with primary functions 
centered on nitrogen and carbon cycling, consistent with recent studies 
(Liu et al., 2023). Soil microbial communities are crucial mediators of 
nutrient cycling, particularly for nitrogen and carbon transformations 
(Liang et al., 2020). In the M treatment, carbon-related functional genes 
showed divergent responses. While genes associated with oxygenic 
photosynthesis and phototrophic processes increased significantly, 
those involved in aromatic hydrocarbon and cellulose degradation 
decreased compared to controls. This suggests that conventional PE 
film residues may impede organic carbon transformation and energy 
release from organic matter, potentially compromising soil ecological 
function and agricultural productivity (Qian et al., 2018). The inert 
nature and slow turnover of conventional film residues likely restrict 
organic carbon availability for microbial utilization. The nitrogen 
cycling genes in the M treatment exhibited complex dynamics. Despite 
enrichment in groups related to aerobic nitrous oxide oxidation, 
nitrification and nitrogen respiration, urease-related functions 
decreased significantly. This imbalance may impair nitrogen 
mineralization and plant nitrogen uptake, which is consistent with 
previous observations that microplastic addition (1% LDPE, 30-day 
exposure) reduces nitrate reduction functionality (Chen et al., 2022).

The bioM treatment demonstrated distinct functional patterns, 
with significant enrichment of groups related to chitin degradation, 
plastic degradation and photoautotrophy, while showing reduced 
abundance of non-methane aliphatic and aromatic hydrocarbon 
degradation groups. These changes suggest optimized organic carbon 
transformation and resource utilization, potentially contributing to 
improved agricultural yields (Huang J. et al., 2023). Nitrogen cycling 
groups in the bioM treatment showed a broad enhancement, despite 
the reduced urease-related group abundance. This pattern indicates 
that biodegradable film residues may provide nutrient-rich substrates 
that support increased microbial biomass and enhanced nitrogen 
cycling capacity (Zhang et al., 2024). Such improvements in microbial 
performance can enhance nitrogen fixation and plant nutrient uptake, 
ultimately promoting plant growth and crop yields (Tang et al., 2020).

The influence of agricultural film residues, particularly 
biodegradable variants, extends beyond the immediate nutrient 
cycling. These materials can reshape microbial community structure 
and function by providing energy and nutrients that support microbial 
proliferation and enzyme activity (Sun Y. et al., 2022). However, the 
observed enrichment of human pathogens and animal parasites in 
both treatments warrant careful consideration. Although FAPROTAX 
provides valuable insights, further research is needed to validate these 
functional predictions and their implications for agricultural systems.

4.4 Impact of agricultural film residues on 
co-occurrence network stability of soil 
bacterial communities

Both conventional and biodegradable film residues significantly 
altered soil bacterial co-occurrence networks, reducing their 
complexity and stability (Figures  6, 7). The observed decrease in 
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network nodes and connections indicates diminished 
interconnectedness within the microbial communities. Cohesion 
parameter analysis, which characterizes the strength of positive and 
negative bacterial relationships and overall community stability (Yuan 
et al., 2021), revealed that both film types, particularly conventional 
films, reduce bacterial community complexity and potential species 
interactions. Network modularity, an indicator of distinct functional 
habitats within microbial communities (Hernandez et  al., 2021), 
decreased by 10 and 8% in the conventional and biodegradable film 
treatments, respectively. This reduction suggests the loss of functional 
niches in response to agricultural film residues (Yuan et al., 2021; Shi 
et al., 2022), potentially compromising ecosystem functionality. The 
observed decrease in network stability indicates reduced resistance to 
external perturbations, which typically correlates positively with the 
network complexity (Cornell et al., 2023; Artime et al., 2024). This 
diminished modularity further suggests limited ecosystem resilience, 
consistent with previous studies showing that residual agricultural 
films disrupt co-occurrence networks and alter microbial diversity 
(Wu et  al., 2022). The decreased network robustness, particularly 
pronounced in conventional film treatments, indicates increased 
vulnerability of microbial communities to environmental stressors.

While both film types affected network stability, biodegradable 
films appeared to have less severe effects. Their potential to serve as 
labile carbon sources may promote microbial metabolic activity and 
enhance interactions related to resource utilization and niche 
differentiation compared with conventional films (Huang F. et al., 
2023). However, the long-term implications of biodegradable film 
residues, particularly their accumulation and impact on soil ecosystem 
stability, require further investigation (Zhu et  al., 2022; Rillig 
et al., 2024).

5 Conclusion

This study compared the effects of conventional PE film residues 
and biodegradable PBAT-PLA residues on plant performance, soil 
properties and microbial communities under field conditions. 
Conventional PE film residues had minimal impact on rapeseed 
biomass and yield, but significantly reduced inorganic and total 
nitrogen contents, thereby impairing soil fertility. They also decreased 
the abundance of Actinobacteria, potentially hindering organic matter 
degradation by suppressing key functions such as aromatic 
hydrocarbon and cellulose decomposition. Furthermore, PE residues 
substantially weaken microbial network stability and increase the 
ecosystem vulnerability to external stressors. In addition, 
biodegradable PBAT-PLA film residues significantly enhanced 
rapeseed biomass and yield by improving soil fertility and microbial 
diversity. These residues enriched the functional groups associated 
with carbon and nitrogen cycling, such as those involved in chitin and 
plastic degradation, nitrogen respiration, optimizing nutrient cycling 
and resource utilization. While biodegradable residues also reduced 
microbial network stability, their effects were less disruptive than 
those of PE residues. In summary, although biodegradable films offer 
short-term benefits for crop productivity and soil fertility, both 
conventional and biodegradable residues negatively impact soil 
microbial community structure and stability. These findings highlight 
the need to consider the long-term ecological effects of all types of film 
residues when promoting agricultural plastic alternatives.
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