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The gut microbiota is closely associated with the onset and development of type 2 
diabetes mellitus (T2DM), characterized by insulin resistance (IR) and chronic low-
grade inflammation. However, despite the widespread use of first-line antidiabetic 
drugs, IR in diabetes and its complications continue to rise. The gut microbiota and 
its metabolic products may promote the development of T2DM by exacerbating 
IR. Therefore, regulating the gut microbiota has become a promising therapeutic 
strategy, with particular attention given to probiotics, prebiotics, synbiotics, and 
fecal microbiota transplantation. This review first examines the relationship between 
gut microbiota and IR in T2DM, summarizing the research progress of microbiota-
based therapies in modulating IR. We then delve into how gut microbiota-related 
metabolic products contribute to IR. Finally, we summarize the research findings 
on the role of traditional Chinese medicine in regulating the gut microbiota and 
its metabolic products to improve IR. In conclusion, the gut microbiota and its 
metabolic products play a crucial role in the pathophysiological process of T2DM 
by modulating IR, offering new insights into potential therapeutic strategies for 
T2DM.

KEYWORDS

type 2 diabetes mellitus, gut microbiota, gut microbiota metabolites, insulin 
resistance, traditional Chinese medicine

1 Introduction

Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder that accounts for 90–95% of 
diabetes cases and is characterized by insulin resistance (IR) (American Diabetes Association, 
2015). It is associated with an increased risk of complications due to factors such as 
hyperglycemia, IR, low-grade inflammation, and accelerated atherosclerosis (Schlienger, 
2013). The Global Burden of Disease (GBD) Study 2021, published by The Lancet, shows that 
in 2021, there were 529 million people worldwide living with diabetes, of which 96.0% had 
type 2 diabetes (T2DM). It is projected that by 2025, the prevalence of T2DM will increase 
from 5.9% in 2021 to 9.5%, affecting more than 1.27 billion people (GBD 2021 Diabetes 
Collaborators, 2023). Diabetes-related macrovascular diseases and microvascular 
complications, due to their high incidence, disability, and mortality rates, are significant 
contributors to the global health burden (Emerging Risk Factors Collaboration et al., 2010; 
Barrett et al., 2017). IR and chronic inflammation are key factors influencing T2DM treatment. 
Insulin receptors are widely distributed throughout the body, and insulin signaling primarily 
occurs in skeletal muscle, liver, and white adipocytes. IR is a pathological condition 
characterized by reduced insulin response in target tissues (mainly muscle, liver, and adipose 
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tissue), leading to imbalances in glucose, fat, and protein metabolism 
(Samuel and Shulman, 2012; Petersen and Shulman, 2018).

The pathogenesis of IR in T2DM involves multiple factors, with 
genetics, age, gender, diet, environment, and occupation being 
significant risk factors (Kautzky-Willer et al., 2016; Cole and Florez, 
2020; Liu et  al., 2023). Recent studies have shown that the gut 
microbiota is a key factor in developing IR. The gut microbiota 
regulates signaling pathways that affect energy metabolism through 
the production of metabolites and interactions with the host’s 
intestinal cells (Lee and Lee, 2020). A reduction in gut bacterial 
diversity (the number or richness of bacterial species) has been 
associated with IR, obesity, elevated lipid levels, and increased 
inflammation (Le Chatelier et al., 2013). Gut microbiota also produces 
metabolites such as short-chain fatty acids (SCFAs), bile acids (BAs), 
trimethylamine N-oxide (TMAO), indole derivatives, and 
lipopolysaccharides (LPS), which participate in insulin signaling and 
induce the occurrence of T2DM through mechanisms such as IR, bile 
acid metabolism, lipid metabolic disorders, and endotoxemia (Gurung 
et al., 2020; Scheithauer et al., 2020; Zhang Y. et al., 2020; Wu et al., 
2023). Modulating the gut microbiota and its metabolites can improve 
the effects of T2DM and underlying mechanisms (Jiang et al., 2024). 
Probiotics can prevent high-fat-diet (HFD) induced glucose 
intolerance and hyperglycemia by improving IR (Won et al., 2021). 
Fecal microbiota transplantation (FMT) has become an effective 
strategy for treating metabolic diseases, and fecal bacteria from 
individuals with normal blood glucose levels may represent a 
promising approach for treating T2DM (Zhang P. P. et al., 2020). Many 
herbs or their active compounds have therapeutic effects on T2DM by 
improving the gut microbiota structure, increasing beneficial bacteria 
and butyrate concentration in the gut, and inhibiting opportunistic 
pathogens (Xu et al., 2020; Yang X. et al., 2021). Additionally, dietary 
and exercise interventions can elevate bifidobacteria, improve SCFA 
levels, lower blood glucose, and enhance insulin sensitivity (Ojo et al., 
2020; Zaharieva et al., 2020).

Therefore, investigating the role of the gut microbiota and its 
metabolites in developing IR could offer new strategies for preventing 
and treating T2DM. This approach can potentially improve IR and 
reduce the incidence of related metabolic and cardiovascular 
complications. In this review, we summarize the impact of the gut 
microbiota and its metabolites on the pathogenesis of IR and the 
mechanisms by which traditional Chinese medicine (TCM) regulates 
gut microbiota and its metabolites to improve IR (Figure 1).

2 The correlation between gut 
microbiota and insulin resistance

2.1 Mechanisms of gut dysbiosis and insulin 
resistance

The gut microbiota refers to the microbial community in the 
gastrointestinal tract, primarily consisting of bacteria, fungi, viruses, 
and archaea. Studies have shown that the number of gut microbiota is 
approximately 10 times greater than the number of human cells, with 
bacteria accounting for more than 90%, mainly including phyla such 
as Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria 
(Sender et al., 2016). The composition and diversity of an individual’s 
gut microbiota are influenced by various factors, including diet, 

lifestyle, genetics, and environmental exposures, collectively shaping 
the microbial ecosystem. The normal gut microbiota plays a crucial 
role in metabolism, immune response regulation, and antimicrobial 
protection (Rinninella et al., 2019; Zhang, 2022). The hallmark of gut 
dysbiosis is the reduced diversity and abundance of bacteria and fungi, 
particularly those associated with functional impairments and various 
pathological conditions (Sun et al., 2019; Zeng et al., 2024). Extensive 
research has revealed a significant association between changes in the 
gut microbiota composition and the development of diabetes. Gut 
microbiota dysbiosis is characteristic of T2DM, with a reduced 
abundance of butyrate-producing bacteria and increased opportunistic 
pathogens (Qin et  al., 2012). Specifically, the abundance of 
Bifidobacterium is significantly correlated with T2DM. Studies have 
shown a marked decrease in the total Bifidobacterium and 
Bifidobacterium adolescentis in diabetic groups (Xu et al., 2012). Daily 
supplementation of Bifidobacterium adolescentis restores the gut 
microbiota homeostasis, increases the abundance of SCFA-producing 
microbes, alleviates inflammation, and lowers blood glucose levels 
(Moroti et al., 2012; Qian et al., 2022). The presence of Bifidobacterium, 
Bacteroides, Faecalibacterium, Akkermansia, and Roseburia is 
negatively correlated with T2DM, while Ruminococcus, Fusobacterium, 
and Blautia show a positive correlation with T2DM (Gurung et al., 
2020). Recent research has found that Alistipes indistinctus and 
Alistipes finegoldii are linked to IR and insulin sensitivity. These 
bacteria exhibit distinct carbohydrate metabolism patterns and have 
been shown to improve IR in mouse models by altering the host’s 
phenotype (Takeuchi et  al., 2023). These findings underscore the 
critical role of microbiota composition in influencing 
metabolic disorders.

2.2 The role of microbiome therapy in 
T2DM

The potential for modifying the gut microbiota through dietary 
interventions to manage T2DM is increasingly recognized. Several 
beneficial bacterial genera, such as Allobaculum, Bacteroides, Blautia, 
Butyricoccus, and Phascolarctobacterium, which are characterized by 
SCFA production, are associated with the prevention of obesity and 
IR in HFD-fed rats (Zhang et al., 2012, 2015). Long-term HFD leads 
to T2DM and disrupts the gut microbiota, with an increase in the 
relative abundance of Alistipes and Prevotella and a decrease in the 
relative abundance of Butyricimonas, Ruminococcus, and 
Bifidobacterium (Lee et al., 2022; Zhang H. et al., 2024). High-fiber 
diets improve glucose homeostasis in T2DM by increasing the 
abundance of Lactobacillus, Bifidobacterium, and Akkermansia while 
decreasing the abundance of Desulfovibrio, Klebsiella and other 
opportunistic pathogens, but it is crucial to evaluate the long-term 
sustainability and practical applicability of such dietary changes across 
diverse populations (Chen et  al., 2023; Chang et  al., 2024). 
Furthermore, FMT has been used to demonstrate the role of gut 
microbiota in IR. For example, transferring the fecal microbiota of 
obese or IR individuals to germ-free mice results in the development 
of IR, while microbiota from lean, healthy individuals does not 
(Ridaura et al., 2013). FMT combined with lifestyle interventions or 
metformin has been shown to improve the gut microbiota in T2DM 
patients and enhance parameters such as blood lipids, IR, and body 
mass index (Ng et al., 2022; Wu et al., 2022). While these findings 
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suggest a beneficial role for FMT in restoring microbiota balance and 
improving metabolic health, the long-term safety and efficacy of FMT 
require further investigation.

In addition, probiotics also hold promise as a therapeutic tool for 
T2DM management. Lactobacillus rhamnosus downregulates glucose-
6-phosphatase expression, reduces fasting blood glucose, and 
improves glucose tolerance (Farida et al., 2020). Lactiplantibacillus and 
Lactobacillus plantarum inhibit intestinal enzymes and increase the 
concentration of hepatic antioxidant enzymes (Li et al., 2016; Lee 
et  al., 2021; Narang et  al., 2024). Several clinical trials have 
demonstrated that the consumption of probiotics reduces lipids and 
blood glucose (Tonucci et al., 2017; Hsieh et al., 2018; Mirjalili et al., 
2023) and enhances glycemic management by increasing butyrate 
production to act as an adjunct to metformin (Palacios et al., 2020). 
However, the overall effectiveness of probiotics in managing T2DM 
may vary depending on the strain used and the individual’s baseline 
microbiota composition. Considering the patient’s unique microbiota 

profile, personalized approaches may enhance the therapeutic 
outcomes of probiotic interventions in T2DM management (Xiao 
et  al., 2023). Prebiotics, which selectively promote the growth of 
beneficial microbes, offer an additional strategy to modulate the gut 
microbiome and improve insulin resistance. Resistant starch, for 
example, alters the selective microbiota composition to produce 
starch-degrading enzymes, promotes the production of gut 
metabolites, and enhances gut barrier function, thus preventing 
T2DM and obesity through the gut microbiome (Liu H. et al., 2020). 
Despite some promising findings, not all prebiotics, such as galacto-
oligosaccharides, have significantly improved glucose and lipid 
metabolism, highlighting the need for more targeted prebiotic 
interventions (Wan et al., 2023). In conclusion, while modulation of 
the gut microbiota presents a promising approach for managing 
T2DM, it is essential to recognize that other factors, including diet, 
lifestyle, genetics, and environmental exposures, play critical roles in 
shaping the microbiota and influencing insulin resistance.

FIGURE 1

Gut microbiota metabolites and their role in improving insulin resistance: Gut microbiota metabolites such as BAs, SCFA, LPS, TMO, and tryptophan 
metabolites, in combination with different interventions like diet, FMT, prebiotics, probiotics, Chinese herb monomers, and Chinese herbal formulas, 
can regulate the gut microbiota and its metabolites to improve insulin sensitivity. Created with BioRender.com.
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3 Gut microbiota metabolites regulate 
insulin sensitivity

IR is a key factor in the development of metabolic diseases such 
as T2DM, obesity, and cardiovascular diseases, involving multiple 
molecular mechanisms, particularly dysfunction of the insulin 
receptor signaling pathway, abnormalities in insulin receptor 
substrates (IRS), and chronic low-grade inflammation (Samuel and 
Shulman, 2012; Petersen and Shulman, 2018). The insulin receptor is 
a transmembrane receptor that, upon binding with insulin, triggers a 
series of intracellular signaling events through IRS. It plays a central 
role in mediating insulin’s effects on glucose uptake, metabolism, and 
cell growth (Goldfine et  al., 1973; Kolterman et  al., 1981). In IR, 
insulin receptor signaling is often impaired due to receptor defects, 
reduced phosphorylation, or functional changes of IRS. These defects 
result in weakened downstream signaling pathways, crucial for 
glucose transport and metabolic regulation (Kolterman et al., 1981; 
Schultze et  al., 2012; Kearney et  al., 2021). Additionally, chronic 
low-grade inflammation has become a critical factor in the 
development of IR (Shoelson et al., 2006; Olefsky and Glass, 2010). 
Inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), 
interleukin-6 (IL-6), and C-reactive protein (CRP) interfere with 
insulin receptor signaling, further promoting the development of IR 
by disrupting key metabolic processes (Samokhvalov et  al., 2009; 
Chirivi et al., 2022; Li A. et al., 2022). Understanding these potential 
mechanisms is crucial for identifying therapeutic targets to alleviate 
or reverse IR and its associated diseases.

3.1 Regulation of insulin receptor and 
substrates

3.1.1 SCFAs
SCFAs, key products of gut microbiota metabolism, are the end 

products of fermenting indigestible food by intestinal microbes, 
mainly anaerobes in the cecum and colon (Macfarlane and Macfarlane, 
2003). Some SCFAs are absorbed by the colon epithelium through 
H- or sodium-dependent monocarboxylate transporters, providing 
energy for colon cells (Ruppin et al., 1980). The remaining SCFAs 
enter circulation via the liver and portal vein, influencing the 
development of conditions like obesity, IR, and T2DM (Morrison and 
Preston, 2016). SCFAs significantly affect energy homeostasis by 
regulating key metabolic tissues, including adipose tissue, skeletal 
muscle, and the liver (Canfora et al., 2015). Studies have shown that 
increasing the acetate concentration in the systemic circulation may 
reduce lipolysis and free fatty acids (FFA) levels, thereby improving 
insulin sensitivity (Fernandes et  al., 2012). Butyrate, as a dietary 
supplement, increases the phosphorylation of IRS-1 protein at Tyr632 
and Akt at Thr308, preventing IR (Gao et al., 2009). meta-analysis 
found that different SCFA interventions reduced blood glucose in 
diabetic mice, with butyrate being the most effective intervention 
(Pham et  al., 2024; Zheng et  al., 2024). It can also improve 
AMP-activated protein kinase (AMPK) phosphorylation, increase 
GLP-1 secretion, and enhance insulin sensitivity (Gonzalez et  al., 
2019). Propionate and butyrate inhibit lipolysis and de novo 
lipogenesis, suppress acetyl-CoA carboxylase, and increase insulin-
stimulated glucose uptake in primary rat adipocytes (Heimann et al., 
2014). Clinical trials indicate that oral butyrate supplementation 

increases insulin sensitivity (Bouter et al., 2018), and long-term intake 
of acetate and butyrate helps improve glucose metabolism by delaying 
gastric emptying and intestinal absorption (Wijdeveld et al., 2023). 
However, some studies have found that acetate, propionate, butyrate, 
and mixed SCFA do not affect human blood glucose and insulin 
(Cherta-Murillo et al., 2022). Therefore, further studies are needed to 
determine the effect of SCFA on glycemic control.

The effects of SCFAs are not limited to directly influencing insulin 
sensitivity; they also activate specific G protein-coupled receptors 
(GPCRs), affecting adipocytes, immune cells, and others. Free fatty 
acid receptors (FFARs) belong to the GPCR family (100), with FFAR2 
and FFAR3 being activated by SCFAs. This activation increases the 
intestinal hormones Peptide YY (PYY) and Glucagon-like peptide-1 
(GLP-1), which regulate insulin signaling (Briscoe et al., 2003; Brown 
et al., 2003). In human and rat colon samples, SCFA receptors FFAR2 
and FFAR3 are colocalized with PYY-containing enteroendocrine L 
cells (Karaki et al., 2008; Tazoe et al., 2009). The absence of FFAR2 and 
FFAR3 in pancreatic β-cells leads to increased insulin secretion and 
improved glucose tolerance, while FFAR2 and FFAR3 knockout mice 
show decreased colon PYY expression and impaired systemic glucose 
tolerance (Tolhurst et al., 2012; Tang et al., 2015). FFAR2 and FFAR3 
mediate SCFA-induced enhancement of GLP-1 secretion. Without 
FFAR2 and FFAR3, SCFA-triggered GLP-1 secretion is reduced, and 
glucose tolerance is impaired (Tolhurst et al., 2012). SCFAs inhibit 
insulin signaling in adipocytes by activating FFAR2, thereby reducing 
fat accumulation and promoting the metabolism of lipids and glucose 
in other tissues (Kimura et al., 2013). Propionate and valerate activate 
FFAR3 to increase insulin-stimulated glucose uptake in adipocytes 
and skeletal muscle cells (Han et al., 2014).

3.1.2 BAs
In addition to SCFAs, BAs are also considered key factors in 

regulating insulin sensitivity. BAs exert critical physiological functions 
in the intestine through microbial metabolic conversion. Primary bile 
acids are synthesized in the liver. In contrast, the gut microbiota 
produces secondary bile acids, participating in multiple metabolic 
processes such as fat digestion and absorption, cholesterol metabolism, 
and immune regulation (Wahlström et al., 2016; Guzior and Quinn, 
2021). IR is positively correlated with hyperbileacidemia in diabetic 
populations (Sun et al., 2016), and increased total serum BAs are 
associated with impaired systemic insulin sensitivity, β-cell 
dysfunction, and elevated glucagon levels in T2DM (Wang X. H. et al., 
2020). There is a relationship between elevated BA levels and impaired 
insulin sensitivity. BAs exert their effects by activating G protein-
coupled BA receptor 5 (TGR5) and farnesoid X receptor (FXR). 
Studies have found that activation of TGR5 in the intestine promotes 
the transport of BAs, improves glucose metabolism, and enhances 
lipolysis and energy metabolism (Li et al., 2023). In obese mice lacking 
TGR5, inflammation in adipose tissue is enhanced, and insulin-
stimulated AKT phosphorylation is reduced, leading to decreased 
insulin responsiveness in adipose tissue and exacerbating IR (Perino 
et al., 2014). This underscores the critical importance of TGR5 in 
maintaining metabolic balance.

On the other hand, FXR activation appears to have a somewhat 
protective effect, with studies indicating that it induces the secretion 
of fibroblast growth factors in the intestine, which ultimately leads to 
changes in BA composition. This, in turn, helps reduce obesity and 
insulin resistance (IR) while encouraging adipose tissue browning 

https://doi.org/10.3389/fmicb.2025.1554189
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fmicb.2025.1554189

Frontiers in Microbiology 05 frontiersin.org

(Fang et  al., 2015). After FXR knockout, the expression of 
inflammatory markers in adipose tissue macrophages and mature 
adipocytes decreases, protecting mice from high blood glucose and IR 
induced by HFD (Dehondt et al., 2023). FXR knockout mice show 
impaired glucose tolerance and reduced insulin sensitivity, suggesting 
that BA activation of FXR may improve IR by inhibiting hepatic 
SREBP-1c expression and/or modulating glucose-induced lipogenesis 
(Lefebvre et al., 2009). In sum, through their receptors TGR5 and 
FXR, BAs appear to exert a profound influence on glucose 
homeostasis, fat metabolism, and the broader metabolic landscape. As 
research advances, novel therapeutic approaches targeting these 
pathways for treating obesity, diabetes, and insulin resistance 
may emerge.

3.1.3 TMAO
Another crucial metabolic product is trimethylamine (TMA), 

primarily produced by the bacterial metabolism of substrates such as 
phosphatidylcholine, carnitine, and betaine in the colon. TMA is 
oxidized in the liver by flavin monooxygenase 3 (FMO3) to form 
trimethylamine N-oxide (TMAO), which is associated with 
atherosclerosis, cholesterol reverse transport, and glucose and lipid 
metabolism (Koeth et al., 2013; Zhao Z. H. et al., 2019; Kong et al., 
2024). One striking aspect of TMAO is its dynamic regulation of 
insulin sensitivity. Its levels fluctuate based on diet and an individual’s 

gut microbiome composition. By reducing red meat consumption and 
increasing plant-based foods, individuals can reduce the production 
of oxidized TMA and lower the risk of developing T2DM (Heianza 
et al., 2019; Huang et al., 2024). Higher levels of TMAO are associated 
with an increased risk of T2DM, possibly through effects on IR, 
inflammation, or lipid metabolism (Li S. Y. et al., 2022; Huang et al., 
2024). The impact of TMAO on β-cell function is particularly 
alarming. Elevated levels of TMAO have been shown to impair 
glucose-stimulated insulin secretion, reduce β-cell mass, and worsen 
glucose tolerance, all of which can contribute to the progression of 
diabetes (Kong et  al., 2024). In this light, TMAO’s role in the 
pathophysiology of diabetes becomes even more evident.

TMAO levels are influenced by FMO3 expression. Increased liver 
FMO3 activity may reflect hepatic IR, as FMO3 is primarily 
responsible for converting TMA into TMAO (DiNicolantonio et al., 
2019). FMO3 is upregulated in obese/IR male mice, and FMO3 
knockdown improves glucose tolerance by reducing endoplasmic 
reticulum cholesterol, inducing SREBP-2, thereby inhibiting FoxO1 
(Miao et al., 2015). Changes in FMO3 activity could be an important 
mechanism in metabolic diseases, and modulating FMO3 activity may 
represent a novel strategy for improving these metabolic disorders. In 
summary, TMAO’s role in metabolic regulation is multifaceted, with 
its production being influenced by diet, microbiome composition, and 
liver function (Figure 2).

FIGURE 2

Gut microbiota metabolites regulate insulin substrates and receptors to modulate insulin resistance. ISNR, insulin receptor; GLUT4, glucose transporter 
4; PHK, Phosphorylase kinase; PYGM, Glycogen phosphorylase; PPAR, peroxisome proliferator-activated; PI3K, phosphatidylinositol 3-hydroxy kinase. 
Created with BioRender.com.
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3.2 Regulation of chronic low-grade 
inflammation

3.2.1 LPS
LPS is an important component of the cell wall of Gram-negative 

bacteria and is known to play a significant role in IR and inflammatory 
responses in T2DM. Studies have shown that plasma LPS levels are 
positively correlated with markers of IR (Pedro et  al., 2018). 
LPS-induced metabolic endotoxemia can lead to an increase in F4/80-
positive cells in adipose tissue and an elevation in inflammatory 
markers, which in turn increases liver triglyceride content and 
exacerbates IR and fasting blood glucose levels (Cani et al., 2007). 
Dysbiosis induced by HFD upregulates LPS concentration, further 
promoting the release of pro-inflammatory cytokines such as TNF, 
IL-1, and IL-6, leading to systemic inflammation (Zhu et al., 2020).

LPS activates macrophages in adipose tissue and triggers the Akt–
mTOR pathway. Chronic, sustained inflammation activates this 
pathway, ultimately leading to a decline in insulin sensitivity (Toda 
et al., 2020). LPS also activates the cAMP/PKA pathway or the MAPK 
and NF-κB signaling pathways, inhibiting IκB phosphorylation, 
promoting the release of free fatty acids from adipose tissue, enhancing 
lipolysis and inflammation, thus aggravating IR (Chung et al., 2006; 
Hussey et al., 2012; Jung et al., 2018a, 2018b; Chirivi et al., 2022). The 
end result is a vicious cycle where inflammation and insulin resistance 
perpetuate one another, further worsening metabolic dysfunction. 
Furthermore, LPS impairs insulin signaling by directly downregulating 
the phosphorylation of IRS, phosphoinositide 3-kinase (PI3K), and 
Akt, thereby reducing the responsiveness of adipocytes to insulin 
(Samokhvalov et al., 2009; Chirivi et al., 2022). Toll-like receptor 4 
(TLR-4) is a key receptor for LPS, and LPS-mediated inflammation 
induced by saturated fatty acids is associated with IR via TLR-4 
(González et al., 2019). Through the TLR-4 signaling pathway, LPS can 
activate both the MAPK and NF-κB pathways, triggering 
inflammatory cascades that further promote insulin resistance. 
Interestingly, inhibiting TLR-4 expression has been shown to improve 
LPS-induced IR, suggesting that targeting TLR-4 may hold therapeutic 
potential for managing LPS-related metabolic disorders (Kim et al., 
2007; Kawamoto et al., 2008; Hussey et al., 2012). Taken together, this 
suggests that LPS is a key player in the development of insulin 
resistance and systemic inflammation, which may provide new 
therapeutic avenues for the management of T2DM and other 
metabolic disorders.

3.2.2 Tryptophan metabolites
The gut microbiota plays a crucial role in metabolizing 

aromatic amino acids into metabolites such as tryptamine, indole, 
and other derivatives, either directly or through indirect pathways 
like the kynurenine and serotonin pathways (Dodd et al., 2017). 
Among these, tryptophan-derived metabolites, including 
serotonin, tryptamine, and indole, are closely related to IR and the 
development of T2DM (Alexeev et al., 2018). Studies have shown 
that tryptophan derivatives such as indole lactate are positively 
correlated with T2DM, while indole propionate esters are 
negatively correlated with T2DM (Qi et al., 2022). Additionally, 
tryptophan metabolites such as 5-hydroxyindole-3-acetic acid 
(5-HIAA) promote hepatic insulin signaling by directly activating 
the aryl hydrocarbon receptor (AhR), inhibiting the mTORC1 
pathway, and alleviating IR induced by a high-fat diet (Du et al., 

2024). Indole-3-pyruvic acid, acting through AhR, downregulates 
TNF-α in intestinal epithelial cells, further improving insulin 
sensitivity (Venkatesh et al., 2014, p. 4). Supplementing endogenous 
AhR ligands, such as tryptophan and indole-3-carbinol, can 
increase AhR expression in the gut, inhibit the expression of 
intercellular adhesion molecules and FMO3 in the liver, and reduce 
plasma levels of IL-6 and TNF-α, thus alleviating inflammation and 
IR (Liu W. C. et al., 2020). In contrast, AhR deficiency can prevent 
obesity, hepatic steatosis, IR, and inflammation induced by HFD 
(Xu et  al., 2015). The supply of tryptophan directly affects the 
synthesis of serotonin (5-HT), and low levels of tryptophan 
suppress serotonin synthesis, which in turn impacts insulin 
sensitivity. As a key regulator of IR, prolonged injection of 5-HT 
can lead to impaired glucose tolerance and IR, indicating that 
changes in serotonin levels can directly affect the body’s ability to 
effectively use insulin, leading to IR (Liang et al., 1999; Luo et al., 
1999). Serotonin triggers inflammation and adipocyte dysfunction 
through the serotonin reuptake transporter in adipose tissue, 
serotonin receptor 2B, and tryptophan hydroxylase 1, affecting 
insulin sensitivity (Chen et al., 2012; Yabut et al., 2020; Choi et al., 
2021) (Figure 3).

4 Traditional Chinese medicine 
regulates gut microbiota and its 
metabolites to improve insulin 
resistance

T2DM is associated with dysfunction of the gut microbiota and 
its metabolites. The current main treatment strategies for T2DM 
include surgery, pharmacotherapy, exercise therapy, diet, and 
multifactorial approaches (Magkos et al., 2020; Su et al., 2023). Among 
these, insulin injection therapy is the most effective method for 
controlling blood glucose, but insulin injections increase the risk of 
cardiovascular complications (Home et al., 2014). Currently, first-line 
hypoglycemic drugs are the primary treatment for T2DM; however, 
their use is always accompanied by side effects, including weight gain, 
hypertension, and heart failure (Verbrugge, 2017; Davies et al., 2018). 
Research has shown that statins reduce blood GLP-1 levels in a 
microbiota-dependent manner (via the Clostridium bile acid axis), 
thereby worsening IR (She et al., 2024). TCM compensates for the 
limitations of first-line hypoglycemic drugs by reducing their side 
effects. Lycium barbarum L. increases the abundance of Akkermansia 
muciniphila, which helps alleviate liver damage by regulating the 
gut-liver axis (Lu et al., 2023, 2024). Clinical trials have confirmed that 
metformin and TCM formulas significantly improve blood glucose 
and lipid levels (Lu et al., 2023, 2024). However, TCM formulas have 
a more pronounced effect on improving insulin resistance and plasma 
triglyceride levels, and they have a greater impact on the gut 
microbiota, particularly increasing the abundance of Blautia spp. and 
Faecalibacterium spp., indicating that the gut microbiota is an 
important target for the treatment of metabolic diseases (Tong et al., 
2018; Xu et al., 2022). Therefore, regulating the gut microbiota and its 
metabolic products to reduce the adverse risks of drug treatments 
represents a new therapeutic approach for T2DM. TCM’s regulation 
of the gut microbiota shows significant effects in the treatment of 
T2DM, and the gut microbiota may play a crucial role in the 
therapeutic effects of TCM (Wang J. et al., 2020).
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4.1 Chinese herb monomers

The main components of Chinese herb monomers include 
polysaccharides, flavonoids, alkaloids, and saponins. These 
components regulate the abundance of gut microbiota, improve 
glucose metabolism, and enhance insulin sensitivity, thereby 
providing auxiliary treatment for diabetes (Luo et  al., 2020; 
Bhambhani et al., 2021; Dias et al., 2021; Zhao et al., 2023). A large 
number of animal studies have found that TCM monomers, such 
as Ganoderma lucidum polysaccharides, Cyclocarya paliurus 
polysaccharides, and licochalcone A, can regulate the abundance 
of gut microbiota species (increasing Blautia, Bifidobacterium, 
and Parabacteroides, and decreasing Aerococcus, Ruminococcus, 
and Enterococcus), reduce blood sugar levels, and improve insulin 
resistance and glucose tolerance (Chen et  al., 2020; Yao et  al., 
2020; Luo et al., 2023). TCM monomers not only directly regulate 
changes in the gut microbiota, but also improve insulin resistance 
by influencing the metabolic products of the gut microbiota. Coix 

seed polysaccharides, Lycium barbarum polysaccharides, and 
Baicalin regulate the gut microbiota composition, particularly 
increasing the bacteria that produce SCFAs, thereby improving 
abnormal glucose and lipid metabolism and showing 
hypoglycemic effects (Ju et al., 2019; Xia et al., 2021; Yang Y. et al., 
2021). Cyclocarya paliurus polysaccharides and Astragalus 
membranaceus polysaccharides increase SCFA-producing 
bacteria, promote SCFA production, and upregulate GLP-1 and 
PYY expression to improve glucose tolerance (Yao et al., 2020; 
Song et  al., 2022). Red ginseng extracts improve glucose 
metabolism and promote lipolysis, and energy metabolism by 
activating TGR5 in the gut, significantly alleviating obesity and IR 
(Li et al., 2023).

Animal studies have found that Baicalin can improve the 
balance of the gut microbiota, increase the number of bacteria-
producing SCFAs, and improve glucose and lipid metabolism (Ju 
et al., 2019). Baicalein 7-O-glucuronide inhibits FXR-CYP7A1-
mediated bile acid signaling in T2DM mice, reducing lipid 

FIGURE 3

Gut microbiota metabolites participate in the regulation of chronic inflammation and insulin resistance. MyD88, myeloid differential protein-88; IRAK, 
interleukin receptor-associated kinases; TRAF6, tumor necrosis factor receptor-related molecules; Hsp90, heat shock protein 90; S6K1, Ribosomal 
protein S6 kinase; PRAS40, pras40 monoclonal antibody. Created with BioRender.com.
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accumulation in the liver and bile, thus exerting anti-diabetic 
effects (Yan et al., 2022). Integrating Mendelian randomization 
from a genetic perspective identified eight potential targets for 
Baicalin in the treatment of T2DM. The expression of ANPEP, 
BECN1, HNF1A, and ST6GAL1 increases the risk of T2DM, while 
the expression of PGF, RXRA, SREBF1, and USP7 lowers the risk 
of T2DM (Liang et  al., 2024). Ginsenoside Rb1 reverses gut 
microbiota dysbiosis in diabetic mice, alters the levels of free fatty 
acids in fecal metabolites (Zhou et  al., 2023), increases the 
abundance of Akkermansia spp., significantly elevates long-chain 
fatty acid content, improves HFD-induced dyslipidemia, and 
enhances insulin sensitivity (Yang X. et al., 2021; Zou et al., 2022). 
Clinical trials have found that diabetic patients metabolize 
Ginsenoside compound K slower than healthy subjects. The 
differences in the biotransformation ability of Ginsenoside 
compound K in the gut microbiota of diabetic patients and healthy 
subjects affect its anti-diabetic efficacy (Huang et al., 2023). The 
gut microbiota may enhance the efficacy of ginsenosides by 
influencing their biotransformation and altering the 
pharmacokinetics of individual ginsenosides (Kim et al., 2020, 
2023). In conclusion, TCM monomers can improve insulin 
resistance by regulating the gut microbiota and its metabolic 
products (Table 1), while the gut microbiota, in turn, increases the 
hypoglycemic effect of these monomers by affecting their 
biotransformation capacity.

4.2 Chinese herbal formulae

Chinese herbal formulas are the primary prescription forms 
used in TCM clinical applications. Gegen Qinlian Decoction 
(GQD) is a widely studied anti-hyperglycemic herbal prescription. 
Animal studies have found that GQD regulates the gut microbiota, 
improves bile acid metabolism, activates the TRG5/cAMP/PKA/
CREB signaling pathway, and stimulates GLP-1 secretion (Liu 
et al., 2024). It increases the proportion of bacteria that produce 
SCFAs and possess anti-inflammatory properties while decreasing 
the proportion of conditionally pathogenic bacteria associated 
with diabetes phenotypes. These effects regulate the structure of 
the gut microbiota, lower blood glucose levels, and reduce 
inflammatory cytokine levels (Tian et  al., 2021). Animal 
experiments suggest that GQD can improve hyperglycemia and 
protect pancreatic function by regulating the gut microbiota and 
its metabolic products. Clinical trials have confirmed that, 
compared to metformin alone, GQD and metformin have a 
synergistic effect on blood glucose control (Ryuk et al., 2017; Tan 
et al., 2023). GQD mainly improves type 2 diabetes by increasing 
the abundance of Faecalibacterium, elevating short-chain fatty 
acid levels, and reducing serum inflammation-related markers, 
thus alleviating metabolic disorders and inflammation (Gao et al., 
2024). Therefore, GQD shows potential efficacy and safety in 
enhancing glucose and lipid metabolism and alleviating insulin 
resistance, making it a promising supplementary therapy 
for T2DM.

Shenzhu tiaopi granule (SZTP) can increase the relative 
abundance of Lactobacillus in the intestines of T2DM rats, reduce 
the relative abundance of Allobaculum and Desulfovibrionaceae, 
improve blood glucose and lipid levels in T2DM rats (Zhao 

J. et  al., 2019), decrease LPS and IL-1β levels, increase the 
abundance of Intestinimonas, reduce the abundance of 
Eubacterium coprostanoligenes, regulate bile acid biosynthesis and 
cholesterol metabolism, and alleviate hyperglycemia (Zhao and 
Fang, 2024). Clinical studies have confirmed that SZTP, combined 
with lifestyle interventions, reduces the conversion rate from 
impaired glucose tolerance (IGT) to diabetes and increases the 
conversion rate from IGT to normal blood glucose levels (Fang 
et al., 2014). JinQi Jiangtang Tablet (JQJT) increases Akkermansia, 
decreases Desulfovibrio, increases the concentrations of acetate, 
propionate, and butyrate, enhances intestinal barrier function, 
reduces host inflammation, improves insulin resistance in T2DM, 
regulates gut microbiota, and promotes SCFA production (Cao 
et al., 2019). Clinical trials have found that after JQJT intervention, 
the risk of progression from prediabetes to diabetes was 0.58 times 
lower than in the placebo group, and the likelihood of reaching 
normal blood glucose levels was 1.41 times higher than in the 
placebo group. After 12 months of intervention, the percentage of 
patients with normalized blood glucose was 41.8%, compared to 
27.8% in the control group (Wang et al., 2017). Chinese Herbal 
Formulae Tianqi treatment for 12 months reduced diabetes risk 
by 32.1%, and no serious adverse events occurred in the trial (Lian 
et al., 2014). Qinglian Hongqu decoction and JiangTang Sanhuang 
pill (JTSH) activate the FXR/FGF15 and TGR5/GLP-1 signaling 
pathways in the gut, reducing lipid accumulation and insulin 
resistance (Tawulie et  al., 2023; Zhang Z. et  al., 2024). A 
retrospective cohort study found that 1-year treatment with JTSH 
tablets reduced the risk of poor glycemic control by 17.00%. 
T2DM patients were satisfied with the anti-diabetic effect of JTSH 
tablets, which significantly lowered blood glucose and insulin 
resistance and improved pancreatic beta-cell function (Shao et al., 
2022). The above animal experiments and clinical trials suggest 
that Chinese Herbal Formula can significantly reduce the 
incidence of T2DM in subjects with impaired glucose tolerance, 
making it an effective intervention for preventing and treating 
type 2 diabetes (Table 2).

5 Limitations and research prospects 
of TCM treatment

Specific TCM monomers have progressed in regulating gut 
microbiota to treat diabetes. For example, baicalin and 
ginsenosides can improve gut microbiota structure, enhance 
insulin sensitivity, and regulate glucose and lipid metabolism 
(Zheng et al., 2019; Sun et al., 2021). However, research has mainly 
focused on animal experiments and preliminary clinical trials, 
and clinical translation still faces challenges significantly since the 
diversity and complexity of gut microecology may vary 
considerably between humans and animals (Amato, 2016; Cao 
et al., 2020). The biotransformation capabilities of different TCM 
monomers and the mechanisms of their metabolites are not yet 
precise, and further research is needed on the differences in 
individual responses to gut microbiota, as well as the relationship 
between drug dosage and effectiveness (Kim et al., 2020; Deng 
et al., 2024). Although TCM formulas can regulate gut microbiota 
and improve diabetes symptoms, their molecular mechanisms still 
require in-depth exploration. In addition, TCM formulas are 
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complex in composition, and extracting practical components 
precisely and optimizing dosages and treatment protocols remains 
a challenge. In the future, it is essential to identify the targets of 
TCM monomers, optimize biotransformation pathways, explore 
individualized treatment plans, and conduct large-scale, multi-
center, long-term randomized controlled trials to verify efficacy 
and safety, as well as assess their potential in different 
diabetes subtypes.

6 Conclusions and future 
perspectives

In summary, the gut microbiota and its metabolites are crucial 
in the onset and progression of IR in T2DM. SCFAs, BAs, TMAO, 
LPS, and indole derivatives significantly regulate glucose 
metabolism by improving insulin sensitivity, promoting gut 
hormone secretion, and inhibiting inflammation. TCM formulas 

and individual herbs, such as Lycium barbarum, Ganoderma 
lucidum, and Baicalin, help improve glucose metabolism and 
insulin sensitivity by promoting beneficial gut bacteria. 
Furthermore, TCM monomers, such as polysaccharides, 
flavonoids, and alkaloids, show the potential to directly influence 
gut microbiota and metabolic products, highlighting their 
significant clinical efficacy in managing T2DM. These findings 
highlight the key role of gut microbial metabolites in IR and 
contribute to exploring new therapies for metabolic diseases. They 
help understand how the gut microbiota and its metabolites 
regulate IR and provide new therapeutic targets for 
clinical treatment.

Although significant progress has been made in current 
research, many issues remain unresolved, such as the variability 
of microbiota among individuals, further clarification of the 
specific mechanisms, and the feasibility of clinical applications. 
Future studies should focus on exploring the individual differences 
in the metabolic effects of different microbiota communities and 

TABLE 1 Chinese herb monomers.

Chinese herb 
monomers

Research 
subjects

Therapeutic mechanisms and targets References

Astragalus membranaceus T2DM mice models Increases SCFA-producing bacteria, promotes SCFA production, and upregulates GLP-1 

and PYY expression to improve glucose tolerance

Song et al. (2022)

Baicalein 7-O-glucuronide T2DM mice models Inhibits FXR-CYP7A1-mediated bile acid signaling in T2DM mice, reducing lipid 

accumulation in the liver and bile, thus exerting anti-diabetic effects

Yan et al. (2022)

Baicalin T2DM mice models Increases the number of bacteria producing SCFAs and improves glucose and lipid 

metabolism

Ju et al. (2019)

Berberine Zucker diabetic fatty 

rats

Slows the progression of prediabetes to T2DM by enhancing GLP-2, improving intestinal 

permeability, and modifying the gut microbiota structure

Wang et al. (2021)

Coix seed polysaccharides T2DM mice models Modulates gut microbial composition, especially SCFA-producing bacteria, activates the 

IGF1/PI3K/AKT signaling pathways, and exhibits hypoglycemic efficacy

Xia et al. (2021)

Cyclocarya paliurus 

polysaccharides

T2DM rat models Increase key bacterial species that prevent diabetes, such as Ruminococcaceae UCG-005, 

and improve nutritional metabolism and energy metabolism

Li et al. (2021)

Cyclocarya paliurus 

polysaccharides

T2DM rat models Increases the production of SCFAs both in vivo and in vitro, promotes the production of 

SCFAs and upregulating SCFA-GLP1/PYY-associated sensory mediators

Yao et al. (2020)

Ganoderma lucidum 

polysaccharides

T2DM rat models Reduce the abundance of Aerococcus, Ruminococcus, Corynebacterium, and Proteus, while 

increasing the levels of Blautia, Dehalobacterium, Parabacteroides, and Bacteroides. These 

changes restore amino acid, carbohydrate, inflammation, and nucleotide metabolism to 

improve glucose metabolism

Chen et al. (2020)

Ginsenoside Rb1 T2DM mice models Reverses gut microbiota dysbiosis in diabetic mice and alters the levels of free fatty acids in 

fecal metabolites

Zhou et al. (2023)

Ginsenoside Rb1 Obesity mice models Increases the abundance of Akkermansia spp., significantly elevates long-chain fatty acid 

content, improves HFD-induced dyslipidemia, and enhances insulin sensitivity

Yang X. et al. 

(2021) and Zou 

et al. (2022)

Ginsenoside Ro Obesity mice models Promotes GLP-1 secretion and energy expenditure, improving high-fat diet-induced 

obesity and IR in mice by activating the TGR5 pathway

Jiang et al. (2021)

Licochalcone A T2DM mice models Promotes the growth of beneficial bacteria (such as Bifidobacterium, Turicibacter, Blautia, 

and Faecococcus) while inhibiting the growth of harmful bacteria (such as Enterococcus, 

Dorea, and Arachnococcus) and improves insulin resistance and glucose tolerance

Luo et al. (2023)

Lycium barbarum 

polysaccharides

Obesity mice models Improve obesity by modulating the composition of intestinal flora and the metabolism of 

SCFAs

Yang Y. et al. (2021)

Red ginseng extracts Obesity mice models Improve glucose metabolism and promote lipolysis and energy metabolism by activating 

TGR5 in the gut, significantly alleviating obesity and IR

Li et al. (2023)
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conduct clinical trials to assess the clinical application value of 
microbiota-based therapies in preventing and treating 
T2DM. Attention should also be given to optimizing the use of 
TCM in this field and its potential for combination therapy with 
conventional drugs. These studies offer new approaches to 

diabetes treatment, primarily through strategies regulating gut 
microbiota and its metabolites. TCM and related complementary 
therapies are expected to become effective adjuncts in treating 
T2DM, improving blood glucose control, and reducing drug 
side effects.

TABLE 2 Chinese herbal formulae.

Chinese herbal 
formulae

Research subjects Therapeutic mechanisms and targets References

Baihu Rensheng 

decoction

T2DM rat models Increases the relative abundance of Lactobacillus, Blautia, and Anaerostipes in the gut 

of T2DM rats while decreasing the relative abundance of Allobaculum, Candidatus 

Saccharimonas, and Ruminococcus. It inhibits TLR4/NF-κB-mediated inflammation 

and alleviates hyperglycemia and inflammatory responses

Yao et al. (2022)

Gegen Qinlian 

decoction

T2DM mice models Regulates the gut microbiota, improves bile acid metabolism, activates the TRG5/

cAMP/PKA/CREB signaling pathway, stimulates GLP-1 secretion, and significantly 

reduces blood glucose levels in T2DM mice, improving oral glucose tolerance

Liu et al. (2024)

Gegen Qinlian 

decoction

T2DM rat models Regulates the structure of the gut microbiome by increasing the proportion of SCFA-

producing and anti-inflammatory bacteria while decreasing the proportion of 

conditionally pathogenic bacteria associated with diabetic phenotypes, which helps 

lower blood glucose and inflammatory cytokine levels

Tian et al. (2021)

Gegen Qinlian 

decoction

patients with T2DM and T2DM 

mice models

Improves T2DM by increasing the abundance of Faecalibacterium, elevating SCFA 

levels, and reducing serum inflammation-related markers, thereby alleviating 

metabolic disorders and inflammatory states

Gao et al. (2024)

JiangTang Sanhuang pill T2DM rat models Activate the FXR/FGF15 and TGR5/GLP-1 signaling pathways in the gut, reducing 

lipid accumulation and insulin resistance

Tawulie et al. (2023)

JiangTang Sanhuang pill patients with T2DM Reasonable blood glucose control may positively correlate with the duration of JTSH 

tablet administration. Patients with T2DM were satisfied with the Anti-diabetic effects 

of JTSH tablets, which can significantly reduce blood glucose and insulin resistance 

and improve the function of islet cells

Shao et al. (2022)

JinQi Jiangtang Tablet T2DM mice models Increases Akkermansia, decreases Desulfovibrio, increases the concentrations of 

acetate, propionate, and butyrate, enhances intestinal barrier function, reduces host 

inflammation, improves insulin resistance in T2DM, regulates gut microbiota, and 

promotes SCFA production

Cao et al. (2019)

JinQi Jiangtang Tablet patients with pre-diabetes The incidence of diabetes upon treatment completion was 16.5% in the JQJT tablets 

group compared with 28.9% in the control group. The percentage of patients with 

normalized blood glucose upon 12-month intervention was 41.8% in the JQJT tablets 

group compared with 27.8% in the control group

Wang et al. (2017)

PuRenDan T2DM rat models Reduces serum lipid metabolism biomarkers and inflammatory factors, regulates the 

levels of pantothenic acid, 1-methylhistamine, and 1-methylhistidine, participates in 

the biosynthesis of pantothenic acid and coenzyme A, histidine metabolism, and 

secondary bile acid biosynthesis, thus improving blood glucose and IR

Ma et al. (2024)

Shenzhu Tiaopi Granule T2DM rat models Increase the relative abundance of Lactobacillus in the intestines of T2DM rats, 

reduce the relative abundance of Allobaculum and Desulfovibrionaceae, and improve 

blood glucose and lipid levels in T2DM rats

Zhao J. et al. (2019)

ShenZhu TiaoPi 

Granule

T2DM rat models Decrease LPS and IL-1β levels, increase the abundance of Intestinimonas, reduce the 

abundance of Eubacterium coprostanoligenes, regulate bile acid biosynthesis and 

cholesterol metabolism, and alleviate hyperglycemia

Zhao and Fang 

(2024)

ShenZhu TiaoPi 

Granule

patients with impaired glucose 

tolerance

Reduces the conversion rate from impaired glucose tolerance (IGT) to diabetes and 

increases the conversion rate from IGT to normal blood glucose levels

Fang et al. (2014)

Shengmai San Formula Obesity mice models Reduces the abundance of lactobacilli carrying bile salt hydrolase, increases TCA 

content, promotes M2 macrophage polarization in adipose tissue, and enhances Slit3 

release, improving glucose and lipid metabolism

Wang et al. (2024)

Tianqi patients with impaired glucose 

tolerance

Reduced diabetes risk by 32.1% and no serious adverse events occurred in the trial Lian et al. (2014)
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