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The gut microbiota is essential for overall health, and in recent years, there

has been increasing interest in its complex relationship with the “gut-liver-

kidney axis.” In this research, we aim to examine how the gut microbiota a�ects

metabolic and immune responses via influencing the functions of the liver and

kidneys. It will also analyze potential pathological mechanisms involved in this

interaction and discuss therapeutic strategies that focus on modulating the gut

microbiota. Through thoroughly reviewing existing literature, this article intends

to o�er fresh perspectives and insights that could inform future research and

clinical applications in this rapidly developing area of study.
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1 Introduction

Gut microbiota is a diverse community of microorganisms that live in the

gastrointestinal tract and is essential for maintaining the health of the host while

influencing various bodily functions. This community includes trillions of bacteria,

archaea, fungi, and viruses that interact with one another and with the host’s cells, playing

vital roles in digestion, metabolism, and immune system regulation. Importantly, the gut

microbiota is dynamic and can change in response to several factors, including diet, age,

and environmental influences, which can lead to differences in its composition.When there

is dysbiosis, that is, an imbalance in the gut microbiota, it has been linked to numerous

health problems, such as metabolic disorders, inflammatory diseases, and neurological

conditions (Li C. et al., 2022). Additionally, gut microbiota producesmetabolites like short-

chain fatty acids (SCFAs), which can significantly impact the metabolism and immune

responses of host, underscoring the critical role these microbial communities play in

overall health (Rojas et al., 2021).

The “gut-liver-kidney axis” theory highlights the intricate relationships among the

gut, liver, and kidneys, showcasing how these organs are interconnected through shared

metabolic pathways and interactions with microbiota. This concept has gained attention

recently as studies reveal the important roles that gut microbiota and their metabolites

play in the development of liver and kidney diseases. For example, dysbiosis can lead to

higher levels of harmful substances called uremic toxins in individuals with chronic kidney

disease (CKD), worsening kidney function (Amini Khiabani et al., 2023). Additionally, the

liver processes metabolites that originate from the gut, which can have widespread effects

on kidney health, creating a feedback loop that may affect the diseases progression (Zhu

et al., 2023). Understanding this axis is essential for creating targeted therapies that can

adjust gut microbiota to enhance the health of both the liver and kidneys.
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This article aims to explore the mechanisms that connect

the gut, liver, and kidneys, as well as the implications for

treatment strategies. It will examine how gut microbiota affect liver

and kidney functions by producing metabolites and modulating

immune responses. Furthermore, the article will highlight potential

therapeutic approaches, including probiotics and dietary changes,

designed to restore the balance of microbiota and enhance organ

function. The structure will begin with an overview of the gut

microbiota’s role in maintaining health, followed by a detailed look

at the gut-liver-kidney axis, and conclude with a discussion on

therapeutic strategies could leverage this understanding for clinical

advantages. Through integrating findings from recent studies, this

work aims to shed light on the potential of microbiota-targeted

therapies in managing diseases that involve the gut, liver, and

kidneys (Guo et al., 2023).

2 Composition and function of gut
microbiota

The gut microbiota, a diverse community of microorganisms

living in the gastrointestinal tract, is vital for human health. This

intricate ecosystem includes trillions of bacteria, viruses, fungi,

and other microbes that work together to influence many bodily

functions. Themakeup of the gut microbiota is not static; it changes

in response to various factors such as diet, age, genetics, and

environmental influences. Maintaining a balanced gut microbiota

is crucial for metabolic stability, immune system performance, and

defense against harmful pathogens. It plays a key role in breaking

down dietary fibers, producing short-chain fatty acids (SCFAs),

and synthesizing essential vitamins, all of which are important for

overall health. Additionally, the gut microbiota interacts with the

immune system, helping to shape immune responses and preserve

the integrity of the gut lining (Lukáčová et al., 2023).

2.1 Common types of gut microbiota and
their physiological functions

The gut microbiota primarily consists of bacterial phyla,

including Firmicutes, Bacteroidetes, Actinobacteria, and

Proteobacteria, each of which contains various genera that

perform specific functions beneficial to host. For example,

Firmicutes play a significant role in fermenting dietary fibers

into SCFAs, which provide energy to colon cells and possess

anti-inflammatory properties. In contrast, the bacteroidetes are

essential for breaking down complex carbohydrates, thereby

enhancing the nutrient absorption. Furthermore, genera such as

Lactobacillus and Bifidobacterium, which fall under Actinobacteria,

are well-known for their probiotic effects, promoting gut health

and influencing immune responses (Miles, 2020). The balance

among these microbial communities is vital; for instance, an

increase in Firmicutes compared to Bacteroidetes has been

associated with obesity and metabolic disorders, highlighting the

complex relationship between the composition of gut microbiota

and the host’s metabolism (Debnath et al., 2021).

2.2 The impact of gut microbiota dysbiosis
on health

Dysbiosis refers to an imbalance in the composition of gut

microbiota, which can result in negative health effects. Various

factors, including a poor diet, the use of antibiotics, and chronic

stress, can disturb the delicate balance of gut microbiota, leading to

dysbiosis (Meng et al., 2023). This condition is often marked by a

decrease in microbial diversity and an increase in harmful bacteria.

Dysbiosis has been linked to several health problems, such as

inflammatory bowel disease, diabetes, and cardiovascular diseases.

For example, when the dysbiosis occurs, it can compromise gut

barrier function, resulting in increased intestinal permeability

and systemic inflammation, both of which are involved in

development of various chronic diseases (Lukáčová et al., 2023).

Besides, changes in the production of microbial metabolites,

like SCFAs, can adversely impact the host’s metabolism and

immune responses, worsening health issues (Lukáčová et al., 2023).

Therefore, understanding the mechanisms that contribute to gut

dysbiosis is crucial for creating therapeutic approaches aimed at

restoring a healthy gut microbiota and enhancing overall health

outcomes (Wang et al., 2024).

In summary, the gut microbiota plays a crucial role in

human health by influencing various metabolic processes, immune

functions, and susceptibility to diseases. It is essential to maintain

a balanced gut microbiota to prevent dysbiosis, which can lead to a

range of health issues.

3 Physiological mechanisms of the
gut-liver-kidney axis

3.1 Interaction between gut microbiota
and the liver

Gut microbiota is essential for liver health, primarily through

the gut-liver axis, which serves as a two-way communication

pathway. This axis allows gut-derived metabolites and microbial

products to affect liver function, while the liver can also

influence the gut health. The liver is continuously exposed to

substances from the gut via the portal vein, enabling the direct

transport of microbial metabolites such as SCFAs, bile acids,

and lipopolysaccharides (LPS), SCFAs, BAs and LPS all mediate

the metabolic regulation of the gut-liver axis through the portal

vein. Among them, SCFAs and BAs mainly focus on metabolic

regulation and signal transmission, while LPS mainly affects liver

function through the inflammatory pathway (Liu et al., 2022).

These metabolites play a significant role in modulating liver

metabolism and immune responses, and they can even aid in

liver regeneration following injury. For example, changes in gut

microbiota composition during liver regeneration indicate that

these microorganisms may impact the liver’s healing processes by

altering the release of inflammatory factors like IL-6 and TNF-α

(Xu et al., 2022).

Dysbiosis has been associated with various liver diseases,

including non-alcoholic fatty liver disease (NAFLD) and hepatitis

(Long et al., 2024). This relationship highlights the critical need
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to maintain a healthy gut microbiome to prevent liver-related

health issues.

3.2 Role of the liver in metabolism and
detoxification

Liver is the body’s main metabolic organ, crucial for regulating

various metabolic processes, including how the body handles

fats and sugars. It detoxifies harmful substances and produces

vital proteins. Maintaining metabolic balance is essential, as

any disruptions can lead to serious health issues like metabolic

syndrome and liver diseases (Ding et al., 2018). When the liver is

injured, it often leads to metabolic problems, which can be seen

in altered fat levels and insulin resistance, further worsening liver

conditions (You et al., 2023). Additionally, the liver’s detoxification

abilities are affected by substances produced by gut bacteria. For

instance, SCFAs generated during the fermentation of dietary

fibers by gut microbiota can improve liver function and lower

inflammation (Guo et al., 2021). Thus, understanding the liver’s

roles in metabolism and detoxification is vital for creating effective

treatments that aim to restore liver health and prevent progression

of diseases.

3.3 Kidney function and regulation by gut
microbiota

The kidneys play a crucial role in filtering blood, maintaining

fluid balance, and eliminating waste products from the body.

Recent studies have shed light on the important connection

between gutmicrobiota and kidney health, commonly referred to as

the gut-kidney axis. Dysbiosis, can lead to the increased production

of harmful substances called uremic toxins, which negatively

impact kidney function and can accelerate the progression of

chronic kidney disease (CKD) (Peters et al., 2023). For example,

changes in the composition of gut microbiota have been linked

to elevated levels of indoxyl sulfate and p-cresyl sulfate, both of

which are known to cause kidney damage (Chen et al., 2019).

Furthermore, certain metabolites produced by gut microbes can

affect kidney inflammation and fibrosis, indicating that restoring a

healthy gut microbiome might provide a promising new approach

for treating kidney diseases (Zhu et al., 2023). This interaction

between gut microbiota and kidney function highlights the critical

need for a balanced microbiome to support renal health and

prevent disease.

4 Dysbiosis of gut microbiota and
associated diseases

4.1 Relationship between liver diseases and
gut microbiota

The gut microbiota is essential for the development and

progression of liver diseases, especially non-alcoholic fatty liver

disease (NAFLD) and hepatitis. Dysbiosis has been associated with

increased intestinal permeability. This condition allows gut-derived

metabolites and pathogens to enter the bloodstream, potentially

triggering liver inflammation and damage (Long et al., 2024).

Research indicates that individuals with NAFLD often have altered

gut microbiota profiles, which are marked by decreased microbial

diversity and specific shifts in the abundance of certain bacterial

groups, such as an increase in Firmicutes and a decrease in

Bacteroidetes (Wree et al., 2019).

Additionally, the gut-liver axis serves as a vital pathway

through which the gut microbiota affects liver metabolism and

immune responses. For example, microbial metabolites like SCFAs

and bile acids, produced in the gut, can influence hepatic lipid

metabolism and inflammatory processes (Figure 1). For example,

SCFAs, including propionic acid and butyric acid, can stimulate

the activation of the AMPK signaling pathway by elevating the

intracellular AMP/ATP ratio. The phosphorylation of AMPK

leads to the inhibition of acetyl-CoA carboxylase (ACC), which

subsequently lowers the levels of malonyl-CoA. This reduction

alleviates the suppression of carnitine palmitoyltransferase 1

(CPT-1), thereby facilitating the transport of fatty acids into

the mitochondria for β-oxidation (den Besten et al., 2015a).

Additionally, SCFAs modulate the expression of uncoupling

protein 2 (UCP2) via an AMPK-dependent pathway, which

diminishes mitochondrial membrane potential, decreases ATP

production, and further activates AMPK, thus establishing a

positive feedback loop that augments oxidative metabolism

(OXPHOS) (Iannucci et al., 2016). Moreover, SCFAs curtail hepatic

adipogenesis by downregulating the expression and activity of

PPARγ and diminishing the transcription of genes associated with

lipid synthesis, such as SREBP-1c and FAS (den Besten et al.,

2015b).

In the chronic liver diseases like hepatitis, the role of gut

microbiota becomes increasingly significant. Dysbiosis can worsen

liver inflammation through encouraging the release of pro-

inflammatory cytokines and activating immune pathways (Chopyk

and Grakoui, 2020). Furthermore, an experimental obesity-

associated meta-flammation rat model demonstrated certain gut

bacteria have been linked to the development of liver fibrosis

and cirrhosis, which underscores the potential for microbiota-

targeted therapies as a new method for treating liver diseases,

and this discovery suggested this mechanism warrants further

validation in humans (Li K. P. et al., 2022). Recent studies indicate

that interventions designed to restore a healthy balance of gut

microbiota, such as use of probiotics and changes in diet, may

enhance liver health and slow progression of these diseases (Zhang

et al., 2023). Therefore, it is crucial to understand the complex

relationship between gut microbiota and liver diseases to create

effective treatment strategies.

4.2 The impact of gut microbiota on kidney
diseases

The relationship between gut microbiota and kidney diseases

has received considerable attention in recent years, especially
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FIGURE 1

Schematic diagram of Gut Microbiota regulating the mitochondrial function and lipid metabolism of liver through SCFAs. Intestinal microbiota,

SCFAs, and bile acids influence lipid metabolism and energy use in the liver and adipose tissue. The liver produces SCFAs like Acetate and Butyrate,

which promote lipolysis and reduce lipid accumulation in white adipose tissue (WAT), while also enhancing fatty acid oxidation and thermogenesis

for increased energy consumption. Akkermansia interacts with bile acids to boost lipolysis and fatty acid oxidation in WAT, raising heat production.

Bile acids a�ect both WAT and brown adipose tissue (BAT) via the TGR5 receptor, increasing energy consumption in BAT and promoting lipolysis and

fatty acid oxidation in WAT, thus enhancing heat production.

concerning chronic kidney disease (CKD) and renal failure. In

patients with CKD, dysbiosis has been linked to the buildup of

uremic toxins, including indoxyl sulfate and p-cresyl sulfate. These

toxins can worsen kidney injury and speed up the progression of

the disease (Chi et al., 2021). The gut-kidney axis is crucial in

this scenario, as changes in gut microbiota can increase intestinal

permeability. This alteration allows harmful metabolites to enter

the bloodstream, subsequently affecting renal function (Amini

Khiabani et al., 2023).

Recent research indicates that chronic kidney disease (CKD)

patients often exhibit specific microbial profiles, which are marked

by a reduction in beneficial bacteria and an increase in harmful

species, especially hyperuricemia (HUA). A novel model of HUA

in geese investigated the mechanism by which Lactobacillus

rhamnosus GG (LGG) could have beneficial effects on HUA,

LGG and its metabolites could alleviate HUA through the gut-

liver-kidney axis, and LGG and proline could be promising

therapies for HUA (Fu et al., 2024). These alterations can

lead to an intensified inflammatory response, further advancing

kidney disease. Additionally, modifying gut microbiota through

dietary changes or probiotics has shown potential in lowering

uremic toxin levels and enhancing kidney function (Liu et al.,

2024). For example, studies have revealed that administering

probiotics can improve gut barrier function and decrease

inflammation, which may help slow the CKD progression (Favero

et al., 2022). Therefore, focusing on gut microbiota presents a

promising new strategy for treating kidney diseases and enhancing

patient outcomes.

SCFAs reduce the expression of pro-inflammatory factors (such

as IL-1β and MCP-1) by inhibiting the NF-κB signaling pathway.

For example, in glomerular mesangial cells induced by high

glucose and lipopolysaccharide, SCFAs inhibit NF-κB activation

through GPR43 and reduce the generation of adhesion molecules

such as ICAM-1, thereby alleviating the inflammatory response.

Furthermore, SCFAs can also indirectly alleviate the damage

to the kidneys caused through intestinal-derived inflammation

by reducing the activity of the NLRP3 inflammasome in

the colon.
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4.3 The association between metabolic
syndrome and gut microbiota

Metabolic syndrome is defined by a combination of conditions

such as obesity, insulin resistance, and dyslipidemia, and it has

been strongly associated with the composition and function of gut

microbiota. Dysbiosis can disrupt metabolic processes, which may

lead to onset of insulin resistance and obesity (Wang et al., 2022).

Research indicates that people with metabolic syndrome typically

have a lower diversity of gut microbiota. Specifically, there is often

an increase in firmicutes and a decrease in bacteroidetes, two types

of bacteria that play significant roles in how the body extracts

energy from food and stores fat (Kani et al., 2023).

Gut microbiota significantly impacts metabolic health through

several mechanisms, notably the production of SCFAs, which

are essential in regulating appetite and glucose metabolism

(Busch et al., 2024). Additionally, metabolites derived from the

gut can influence systemic inflammation and insulin sensitivity,

underscoring the gut’s pivotal role in metabolic regulation

(Guimarães et al., 2023). Recent efforts to restore the balance

of gut microbiota, including the use of prebiotics, probiotics,

and dietary changes, have demonstrated promise in enhancing

metabolic parameters and lowering the risk of related diseases

(Kani et al., 2023). Therefore, it is vital to comprehend the complex

relationship between gut microbiota and metabolic syndrome to

develop the targeted therapies aimed at addressing this escalating

health concern.

5 Therapeutic strategies for
modulating gut microbiota

5.1 Gut microbiota regulation treatment
strategies

Gut microbiota is essential for maintaining host health and

can be significantly influenced by different therapeutic approaches.

These strategies focus on restoring or maintaining a balanced

gut microbiota, which is vital for optimal physiological functions

and the prevention of diseases. This article will delve into the

applications of probiotics and prebiotics, dietary interventions, and

the potential effectiveness of microbiota transplantation.

5.2 Application of probiotics and prebiotics

Probiotics and prebiotics play crucial roles in shaping gut

microbiota. Probiotics are live microorganisms that provide health

benefits when taken in sufficient quantities, while prebiotics are

non-digestible food components that encourage the growth and

activity of beneficial gut bacteria. Recent study has underscored

the importance of probiotics in preventing and managing various

gastrointestinal issues, such as irritable bowel syndrome and

inflammatory bowel disease (So et al., 2023). Additionally,

probiotics may enhance immune responses and lower the risk

of infections (Rojas et al., 2021). Prebiotics, including substances

like inulin and fructooligosaccharides, act as food sources for

beneficial bacteria, leading to the production of SCFAs that possess

anti-inflammatory effects. The combined effects of probiotics

and prebiotics, often termed synbiotics, can further improve

gut health by fostering a balanced microbiota and enhancing

metabolic functions (Markowiak and Sliżewska, 2017). However,

the effectiveness of these interventions can differ based on

individual microbiota profiles, dietary patterns, and overall health,

highlighting the need for personalized therapeutic approaches (Li

et al., 2021).

At present, the clinical research evidence regarding the

prognostic impact of prebiotics or probiotics on patients with non-

alcoholic fatty liver disease (NAFLD) or chronic kidney disease

(CKD) is still limited (Figure 2). Firstly, some small-scale clinical

trials have observed that probiotics may improve liver enzyme

(ALT/AST) levels, liver fat content or inflammatory markers.

However, most of these studies are short-term interventions

(usually 3–6 months), lacking long-term follow-up data for hard

endpoints such as liver fibrosis progression, liver cirrhosis or liver

cancer. In addition, studies using compound strains containing

Bifidobacterium and Lactobacillus have shown an improvement

effect on liver steatosis, but these results have not yet been

verified in large-scale multicenter RCTS (Carpi et al., 2022).

Secondly, some studies on CKD patients mainly focus on the

regulatory effect of probiotics on uremic toxins (such as cresol

and indolethol sulfate), which are closely related to the metabolism

of the intestinal flora. Some studies have shown that probiotics

may reduce toxin levels, but there is currently no evidence to

suggest that this effect can translate into delaying renal function

decline or reducing the risk of dialysis. Studies on hemodialysis

patients have found that probiotics may improve the micro-

inflammatory state, but no significant impact on cardiovascular

events or survival rate has been observed (Cooper et al.,

2023).

5.3 Impact of dietary interventions on gut
microbiota

Diet plays a crucial role in shaping the composition and

function of gut microbiota, which can be modified through

various dietary choices. Research indicates that different dietary

patterns, such as high-fiber, Mediterranean, and plant-based diets,

can enhance the diversity and stability of gut microbiota (Chen

et al., 2024). A key component of this is dietary fiber, which

gut bacteria ferment to produce SCFAs. SCFAs are essential for

maintaining gut health and managing inflammation (Fu et al.,

2022). In contrast, diets that are high in saturated fats and

refined sugars can disrupt this balance, leading to dysbiosis,

which is marked by a decrease in microbial diversity and an

increase in harmful bacteria, an experiment from a mice model

shows that FMT from different donors coupled with dietary fiber

intervention could lead to different patterns of gut microbiota

composition, and dietary fiber might play a more critical role

in shaping gut microbiota than FMT donor (Zhong et al.,

2021). Notably, long-term dietary changes tend to result in
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FIGURE 2

Schematic diagram of the mechanism by which gut microbiota regulate the development of NAFLD and CKD. It illustrates the link between gut

dysbiosis and NAFLD and CKD, highlighting gut bacteria imbalance, secondary bile acids, TMA, SCFAs, and their e�ects on intestinal cells, leading to

inflammation and metabolic issues in NAFLD and CKD, including increased risks of inflammation, fat accumulation, and T2DM.

more stable modifications to gut microbiota than short-term

dietary adjustments, highlighting the importance of consistent

dietary habits for maintaining microbiota health (Leeming et al.,

2019).

Besides, there is growing evidence that gut microbiota can

affect how dietary components are metabolized, which in turn

influences the host’s metabolism and the likelihood of developing

chronic conditions such as obesity and type II diabetes (Li et al.,

2021). Therefore, dietary interventions hold significant potential

as a strategy for modifying gut microbiota and enhancing overall

health outcomes.

5.4 Potential e�cacy of microbiota
transplantation

Fecal microbiota transplantation (FMT) has emerged as a

promising treatment for restoring the balance of gut microbiota,

especially in cases of dysbiosis linked to recurrent Clostridioides

difficile infections and various gastrointestinal disorders. The

procedure involves transferring fecal matter from a healthy

donor to a recipient, with the goal of re-establishing a diverse

and functional microbiota. Clinical studies have shown that

FMT can lead to sustained remission in patients suffering from

recurrent infections and can significantly improve overall gut

health (Halaweish et al., 2022). However, the success of FMT is

influenced by several factors, including the composition of the

donor’s microbiota, the health status of the recipient, and the

method used for the transplantation (Porcari et al., 2023). While

FMT holds promise for treating specific conditions, its potential

applications in broader therapeutic areas, such as metabolic

diseases and neurodegenerative disorders, are still being researched.

As studies continue to investigate the safety and effectiveness of

FMT, this approach may open doors to innovative microbiota-

targeted therapies that could enhance health and prevent disease.

In brief, the modulation of gut microbiota using probiotics,

prebiotics, dietary changes, and fecal microbiota transplantation

offers a comprehensive strategy for enhancing health outcomes.

Ongoing research is crucial to refine these approaches and to gain

a deeper understanding of how they function within the intricate

ecosystem of the human gut.
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6 Future research directions and
clinical application prospects

6.1 Application of emerging technologies
in gut microbiota research

Emerging technologies are transforming the study of gut

microbiota, offering deeper insights into its intricate interactions

with host physiology and health. Techniques like metagenomics,

metatranscriptomics, and metaproteomics enable researchers to

examine microbial communities with unprecedented detail. For

example, high-throughput sequencing technologies allow for the

identification and quantification of various microbial species in

the gut, which helps in exploring their functional roles in both

health and disease (Sahle et al., 2024). Moreover, advancements in

organ-on-a-chip models and gut-on-a-chip systems are improving

our understanding of how the gut microbiome responds to

different stimuli, such as dietary changes and pharmacological

treatments (Thomas et al., 2023). These technologies enhance our

capability to study microbial diversity and function while also

paving the way for the personalized medicine, where treatments

can be customized according to an individual’s specific microbiota

composition. The incorporation of artificial intelligence (AI) in

analyzing microbiome data further simplifies the identification

of patterns and the prediction of health outcomes, potentially

leading to new therapeutic strategies aimed at addressing gut

microbiota dysbiosis (Shen et al., 2025). Overall, the use of these

cutting-edge technologies holds great promise for deepening our

understanding of gut microbiota and its significant implications for

human health.

6.2 Integration of personalized medicine
with gut microbiota

The intersection of personalized medicine and gut microbiota

research is revolutionizing healthcare through recognizing

how individual differences in gut microbiota composition can

significantly affect drug metabolism, efficacy, and toxicity. This

underscores the necessity for personalized treatment strategies

(Feng et al., 2020). For instance, research has demonstrated gut

microbiome can influence how various medications are processed

in the body, resulting in varying therapeutic outcomes for different

patients (Lim andWang, 2022). Through utilizing this information,

healthcare providers can customize drug therapies according to a

patient’s unique microbiome profile, which can enhance treatment

effectiveness while reducing the risk of adverse effects.

Additionally, advancements in next-generation probiotics and

other therapies aimed at targeting the microbiota are being

developed to restore microbial balance and improve health

outcomes in a personalized way (Singh and Natraj, 2021). The

potential for incorporating gut microbiota profiling into clinical

practice is extensive, as it can guide dietary recommendations,

inform probiotic usage, and assist in selecting appropriate

pharmacological agents. This personalized approach not only

improves patient care but also deepens our understanding of

the complex relationship between the gut microbiome and

overall health.

6.3 Role of policy and education in gut
health

Promoting gut health through effective policy and education

is essential for tackling the increasing prevalence of health issues

related to the microbiota. Public health initiatives that emphasize

nutrition education, dietary guidelines, and the significance of gut

microbiota can empower individuals to make informed choices

that enhance their gut health (Zhang et al., 2023). For example,

educational programs that showcase the advantages of a diverse

diet, particularly one rich in fiber and fermented foods, can

motivate people to adopt healthier eating habits, which can

positively affect the composition of their gut microbiota (Li C. et al.,

2022).

Furthermore, policies that advocate for research funding

and the incorporation of microbiome studies into healthcare

practices can expedite progress in this area. It is crucial for

governments and health organizations to prioritize the creation

of guidelines that endorse microbiota-friendly practices, such

as recommending the inclusion of probiotics and prebiotics in

diets. Additionally, fostering collaboration among researchers,

healthcare professionals, and policymakers can help translate

scientific discoveries into practical health policies. By increasing

public awareness and understanding of gut health, we can lay the

groundwork for better health outcomes and alleviate the burden of

diseases associated with microbiota.

7 Conclusions

The intricate relationship between the gut microbiome and

the gut-liver-kidney axis has gained significant attention in recent

years, highlighting the complex interactions within this triad. The

gut microbiome, a diverse ecosystem of microorganisms residing

in the gastrointestinal tract, plays a vital role in various metabolic

processes, immune function, and overall health. Its influence

reaches liver and kidneys, where microbial metabolites can affect

systemic inflammation, contribute to metabolic syndrome, and

even play a role in chronic kidney disease.

Understanding the relationship between the gut microbiome

and health is crucial for developing therapeutic strategies that aim

to modify the gut microbiome to improve patient outcomes across

a range of diseases. Recent research emphasizes the promise of

probiotics, prebiotics, and dietary changes in restoring microbial

balance and enhancing the functionality of the gut-liver-kidney

axis. Nevertheless, a significant challenge remains in reconciling the

varied findings from different studies, as many report conflicting

results. These discrepancies often arise from differences in study

design, population characteristics, and methodologies employed,

making it difficult to draw definitive conclusions.

As experts in the field, advocating for standardized research

protocols is crucial to enable the comparison of outcomes across

various studies. Future research should aim not only to clarify the

specific mechanisms through which the gut microbiome affects
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liver and kidney function but also to investigate the therapeutic

implications of these interactions. Longitudinal studies that track

the evolution of the gut microbiome over time in relation to liver

and kidney health will be especially valuable.

In addition to indirect liver-kidney connection mediated by

enterogenic factors, hepatogenic factors are also an important

factor. For instance, it is common that the intestinal barrier

dysfunction in patients with liver cirrhosis can aggravate renal

dysfunction. The reason for this clinical phenomenon is that

portal hypertension in liver cirrhosis leads to intestinal mucosal

congestion and edema, and tight junction proteins form “leakage

of the intestine.” At this point, lipopolysaccharide (LPS) released

by Gram-negative bacteria in the intestine enters the portal vein

circulation through the damaged barrier. The Kupffer cells in the

hardened liver are impaired in function and unable to effectively

clear LPS, resulting in systemic endotoxemia. Then, the LPS that

has not been degraded by the liver activates the TLR4 receptors in

the kidneys. It induces apoptosis of renal tubular epithelial cells

(through the caspase-3 pathway). endotoxin stimulates excessive

production of NO throughout the body, triggers renal artery

constriction and renal cortical ischemia, and induces typical

manifestations of hepatorenal syndrome (HRS) (Bera and Wong,

2022).

The clinical implications of these findings are significant and

warrant attention. As we enhance our understanding of the gut-

liver-kidney axis, it becomes increasingly important to apply this

knowledge in clinical settings. This involves creating targeted

interventions that utilize gut microbiome modulation to either

prevent or treat diseases impacting the liver and kidneys.

By adopting personalized medicine approaches that take into

account an individual’s unique microbiome profile, we could

transform treatment methodologies, resulting in more effective and

customized therapeutic strategies.

Meanwhile, we also pay attention to the differences and

limitations between animal models and human studies in the

research on the association between gut microbiota and liver

diseases. The main points are as follows:

1. Physiological and metabolic differences: there are notable

differences in bacterial genera proportions and immune

responses between rats and humans; for example, Lactobacillus

makes up over 50% in rats’ cecal microbiota but<5% in humans,

and rodents’ immune systems are more sensitive to bacterial

products, causing heightened inflammatory responses;

2. Simplification of disease modelconstruction: experimental rat

models quickly develop liver fibrosis in weeks, while humans

take 10–20 years for NASH to progress to cirrhosis due to factors

like obesity and insulin resistance;

3. Clinical transformation bottleneck: animal studies use

histological improvements, while human trials focus on hard

endpoints, but their correlation is unclear. Rats regenerate

liver tissue much faster than humans, masking fibrosis risk; for

instance, rats can regenerate 70% of their liver in 7 days, while

humans take months with fibrosis risk.

In conclusion, it is essential to bridge the gap between research

and clinical application to fully utilize the therapeutic potential

of the gut microbiome. The intricate relationships within the

gut-liver-kidney axis require ongoing exploration, emphasizing

the importance of integrating various research perspectives to

enhance clinical practice. As we deepen our understanding, we

must prioritize collaboration across different disciplines to discover

new opportunities in patient care, ultimately leading to better

health outcomes for individuals affected by disorders related to this

crucial axis.

Based on the above summary, we propose the “Microbial

metabolic cycle—Organ Barrier Interaction” hypothesis, suggesting

that intestinal microbiota influences the liver and kidneys through

nutritional and toxin metabolic cycles, with the intestinal barrier’s

integrity being crucial.

1. Positive cycle: SCFAs may enhance TLR4 sensitivity in kidneys

through liver epigenetic changes, promoting immune tolerance.

2. Negative cycle: intestinal barrier damage allows endotoxins and

metabolites into circulation, overloading liver enzymes and

harming kidneys, increasing oxidative stress.

3. Interaction hubs: the intestinal barrier, hepatic endothelial

structure, and glomerular filtration barrier form a three-tier

defense system.

Key unexplored areas include:

1. The spatiotemporal dynamics of metabolic flows among the

gut, liver, and kidney, particularly the role of liver-synthesized

apoA-IV in bile acid metabolism via renal feedback, which lacks

quantitative tracer evidence.

2. The organ-specific colonization of microbial communities,

where bacterial fragments may enter systemic circulation

through liver Kupffer cells, forming microcolonies in kidneys

and causing inflammation.

3. Cross-border regulation of the neuro-endocrine axis, with

intestinal microbiota metabolites potentially coordinating anti-

inflammatory responses in the liver and kidneys via the

α7nAChR receptor, which remains unverified.

Future research should focus on the monitoring technology

for the three-organ linkage, developing microbiota intervention

strategies based on metabolic simulations, and validating a

treatment paradigm that prioritizes intestinal barrier repair, liver

metabolism rebalancing, and renal excretion optimization.
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