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Heavy metal contamination in soil is a serious environmental challenge, and 
abandoned mining areas are of particular concern. In order to rehabilitate the 
ecology of these areas. In this study, we used ICP-MS and potentiometric method 
to analyze the soil physicochemical and then endophytic bacteria of remediation 
plants with the help of 16sRNA sequencing, in order to investigate the ecological 
remediation of abandoned ilmenite mine and the effect of soil microbiology by 
seven common plants.The results revealed that the abandonment of ilmenite 
significantly increased the contents of total phosphorus, total potassium, available 
potassium, iron, and lead in the surrounding soils. It also affected the richness 
and diversity of endophytic bacterial communities. Pvi had the highest richness, 
while Tsi had the lowest richness (P < 0.05). A total of 28 phyla, 69 classes, 171 
orders, and 521 genera were identified. A total of nine core OTUs were found: 
Stenotrophomonas, Chryseobacterium, Lactobacillus, Clostridium_sensu_stricto_12, 
Prevotella, Lactobacillus, Bradyrhizobium, Nocardioides, and Delftia. Beta diversity 
analysis revealed that the community structure of the endophytic bacteria differed 
during the remediation process at the ilmenite site. Functional prediction revealed 
upregulation of Dco transporter protein function, DNA-binding transcriptional 
regulators, glyoxalase or related metal-dependent hydrolases, acyl coenzyme A 
synthetases, ATPase components, amino acid synthesis, and cellular respiration-
related functions. Pearson correlation analysis revealed that the SOC, TK, AN, AK, 
and Zn contents were significantly correlated with α diversity. Redundancy analysis 
(RDA) revealed that Actinobacteriota was significantly positively correlated with soil 
SOD, AN, TN, and TK contents. For the first time, this study revealed the interactions 
among plants, endophytic bacteria and soil pollutants, laying a theoretical basis for 
screening specific plant endophytic bacteria for ecological restoration.
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1 Introduction

Heavy metal-contaminated soil is a severe problem in most countries. In recent decades, 
to promote regional economic growth, mineral mining has led to an increase in metal pollution 
in the environment (Zhong et al., 2023; Su et al., 2022). Heavy metals have polluted one-sixth 
of the agricultural land in China. With the continuous expansion of infrastructure construction, 
the demand in the steel, high-speed rail, aerospace, and chemical industries has increased 
significantly (Dushyantha et al., 2020). Ilmenite mining is also active. However, with ore mining, 
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stone coal smelting, and fossil fuel combustion, large amounts of waste 
liquid and residues enter the soil (Xiao et al., 2017). The processing of 
1 ton of iron concentrate will generate approximately 1.5 tons of 
vanadium-titanium-magnetite tailings, which pose a continuous threat 
to terrestrial ecosystems and health risks to local residents (Liu et al., 
2019). Previous studies have reported that the titanium content in 
tailings accounts for 6.46% of the total titanium content (Zhai et al., 
2020). Under the action of atmospheric precipitation and rainwater 
erosion, the levels of As, Cd, and Pb in the plants around the mining 
area exceeded the allowable limits (Vejvodová et al., 2022). In the past 
20 years, the ecological restoration of heavy metals has mainly used 
physical (Liu et al., 2024a; Jiang et al., 2024) and chemical methods 
(Wu et al., 2022; Zhang et al., 2016; Zhang et al., 2024; Chang et al., 
2018); however, these methods all have the disadvantages of high cost, 
high labor intensity, and potential secondary impacts on the 
environment. Hence, it is imperative to investigate restoration methods 
that are both cost-effective and eco-friendly.

Contaminated environments contain an abundance of microbes 
that can adapt to extreme conditions (Liu et al., 2022a), and the study 
of these microorganisms can increase our understanding of microbial 
diversity (Liu et  al., 2022b); At the same time, the study of the 
biodiversity of endophytic bacteria and the physicochemical 
properties of soil contaminated by heavy metals is critical for 
environmental protection and restoration of the ecological damage 
caused by mining activities. However, the above studies have not yet 
determined the impacts on local plants and microbes during the 
ecological restoration process.

The growth and quality of crops are heavily influenced by bacteria. 
By impacting the creation of plant hormones, improving soil nutrient 
availability, strengthening plant disease resistance, and decomposing 
organic material, bacteria can elevate crop yield and enhance crop 
quality (Chebotar et al., 2015; Jayakumar et al., 2019; Hao et al., 2024). 
As a type of bacteria, endophytic bacteria also play a similar role 
(Afzal et al., 2019). Endophytic bacteria-mediated stress tolerance is 
considered to be the most successful technique for bioremediation 
because this is environmentally acceptable, economically sound, and 
technically feasible (Singh et al., 2015). When plant growth is stressed, 
endophytic bacteria have a more beneficial effect on host plants than 
rhizosphere bacteria do (Hardoim et al., 2008). Endophytic bacteria 
not only eliminate competition problems (Chatterjee et al., 2010), but 
can also withstand very high concentrations of heavy metals. In 
addition to making siderophore and inorganic phosphate, it solubilizes 
and mobilizes heavy metal (Chen et al., 2010). Endophytic bacteria 
may interact more closely with their hosts than inter-root bacteria. 
Plants provide nutrients and a habitat for bacteria, which may directly 
or indirectly improve plant growth and health (Mastretta et al., 2006). 
Endophytic bacteria can indirectly benefit plant growth by preventing 
the growth or activity of plant pathogens through competition for 
space and nutrients, production of hydrolytic enzymes, antimicrobials, 
induction of plant defense mechanisms, and inhibition of enzymes or 
toxins produced by pathogens (Weyens et al., 2009). Previous studies 
have shown that endophytes are potential sources of highly efficient 
biosorbents for biosorption of heavy metals (Xiao et  al., 2010). 
Endophytic bacteria help plants cope with metal stress by converting 
metal ions to less toxic or nontoxic forms, thereby reducing the 
toxicity of heavy metals (Zhu et al., 2014). However, the impact of 
heavy metal pollutants on the composition and activity of the 
endophytic bacterial community remains unclear. Furthermore, the 
ways in which different plants react to metal pollutants and their 

functional variations are not yet fully understood. Therefore, 
we performed the following study.

This study used 16S rRNA sequencing technology on the 
Illumina NovaSeq platform to investigate the effects of ecological 
restoration on the diversity and community structure of endophytic 
bacteria in the ilmenite area. We selected seven species of plants 
with strong environmental adaptability that were planted by our 
team for the ecological restoration of the mining area 2 years ago as 
samples to explore the ecological restoration effect of ilmenite 
control. This study documents the impacts of ecological restoration 
in the ilmenite area on the structure and function of plant 
endophytic bacterial communities, as well as the response 
mechanisms to the differentiation of endophytic bacterial 
communities and functional differentiation. This research offers a 
theoretical framework for a thorough comprehension of how 
ilmenite ecological restoration affects soil microecology and 
environmental restoration. It also sets the groundwork for 
identifying valuable microbial resources.

2 Research area and methods

2.1 Study locations and sample collection

The samples for this study were collected in May 2024. Seven 
environmentally adapted plants were planted by our team in June 2022 
at an abandoned mine site (within 3 kilometers of the ilmenite area) in 
Wuding County, Chuxiong Yi Autonomous Prefecture, Yunnan 
Province: Polygonum plebeium R. Br., Tournefortia sibirica L., Alhagi 
camelorum Fisch., Casuarina equisetifolia L., Dryopteris coreano-
montana Nakai, Dodonaea viscosa Jacquem., and Pteris vittata L. These 
plants were specifically named Ppl, Tsi, Aca, Ceq, Dco, Dvi, and Pvi 
(Supplementary Table S1). Three groups of replicates were selected as 
soil samples for each plant. The sampling methods were performed 
according to the method described by Li et  al. (2022). The plant 
surfaces were disinfected with alcohol before they were placed in sterile 
bags and placed in an incubator filled with ice packs for temporary 
storage. All collected samples were transported to the laboratory under 
refrigeration for DNA extraction and rDNA sequencing. First, a DNA 
kit (MP Bimonedicals, United States) was used for extraction, and the 
extraction effect was detected on a 1% agarose gel.

2.2 Measurement of soil physicochemical 
properties

Soil pH was determined using the potentiometric method (HJ 
962–2018), and organic carbon (SOC) was determined using fast 
microwave digestion (Benbi, 2018). The total nitrogen (TN) was 
determined via the Kjeldahl method (Mason et al., 1999), the total 
phosphorus (TP) was determined through nitric acid wet digestion 
(Webb and Adeloju, 2013), the total potassium (TK) was determined 
using atomic absorption spectrometry (Miswan et al., 2023), then 
alkaline nitrogen (AN) was determined using the alkaline hydrolysis 
diffusion method (Tsiknia et al., 2014), the available phosphorus (AP) 
and available potassium (AK) were determined using infrared 
spectroscopy (Jia et al., 2015). The contents of five heavy metals in the 
soil, including iron (Fe), zinc (Zn), copper (Cu), titanium (Ti), and 
lead (Pb), were determined using ICP-MS (Moor et al., 2001).
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2.3 PCR amplification detection

The extracted genomic DNA was diluted to 1 ng/μL with sterile 
water and incubated with conventional primers (799F, 
5′-AACMGGATTAGATACCCKG-3′; 1193R: 5′-ACGTCACCCT 
TCC-3′) for the 16S rRNA V5-V7 region of all samples. In this step, 
15 μL of Phusion® High-Fidelity PCR Master Mix (New England 
Biolabs), 2 μL of forward and reverse primers and 10 ng of template 
DNA were used. Thermal cycling conditions were performed 
according to the method of Li et al. (2022) and finally electrophoresed 
on agarose gels. Next, the extract was purified using a Qiagen Gel 
Extraction Kit (Qiagen, Germany).

2.4 Library preparation, sequencing, and 
data processing

One microliter of the library was collected, and quality control 
was performed on the library using the Agilent High Sensitivity DNA 
Kit. Library quantification was performed using a Quant-iT PicoGreen 
dsDNA Assay Kit from Promega QuantiFluor. Qualified libraries were 
subjected to paired-end sequencing on the Illumina NovaSeq 
instrument (Modi et al., 2021; Wu et al., 2021).

2.5 OTU clustering and species annotation

We assigned sequences with a similarity of ≥97% to the same 
operational taxonomic unit (OTU) using Uparse v7.0.1001 (Edgar, 
2013) which were then filtered for representative sequences from each 
OTU and annotated using the Silva database (Quast et al., 2013). In 
order to investigate the phylogenetic relationship between OTUs and 
the variations in dominant species among different samples (groups), 
we  conducted multiple sequence alignment using Muscle v3.8.3 
(Edgar, 2004). Finally, the analysis of alpha diversity and beta diversity 
was performed using normalized data.

2.6 Data analysis

2.6.1 Microbial alpha diversity analysis
By employing QIIME2 software, we calculated seven diversity 

indices for each sample (Hall and Beiko, 2018; Yang et al., 2024), 
which included the Chao1, Observed_otus, Shannon, Simpson, 
dominance, Pielou_e, and Good’s coverage. Following this, a box plot 
was created to compare the richness and uniformity of OTUs among 
different samples. For the observed species, Chao1 was used to 
identify the richness of the community. The Shannon and Simpson 
were used to identify symbiont diversity. Good’s coverage was used to 
describe the sequencing depth. Dominance and Pielou_e were used 
to describe the species evenness of the community.

2.6.2 Microbial beta diversity analysis
Beta diversity is frequently employed to assess the variations in 

species diversity among samples. The beta diversity of the weighted 
UniFrac was calculated using QIIME 2 (Caporaso et al., 2010) along 
with a non-metric multidimensional scaling analysis using the 
R-VEGAN software package.

2.7 Functional prediction

In order to speculate on the function of endophytic bacteria, 
we  employed Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States (PICRUST) (Douglas et  al., 
2018) and used the gene ontology (GO)(Ashburner et al., 2000) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG)(Kanehisa and 
Goto, 2000). The function for cluster analysis first performs principal 
component analysis (PCA) using the FactoMineR program package 
and the ggplot2 package in R v2.15.3 (Almeida et al., 2018; Gould, 
2019). Dimensionality reduction is then performed on the 
original variables.

2.8 Statistical analysis

All of the samples included three replicates. Analysis of variance 
(ANOVA) was performed using SPSS 21.0. p < 0.05 was 
considered significant.

3 Results and analysis

3.1 Soil element contents and canonical 
correlation analysis

The constant element analysis revealed that the nitrogen content 
in alkaline hydrolysis was the highest at 80.00 g/100 g. This was 
followed by organic carbon, available phosphorus, total phosphorus, 
total nitrogen, and total phosphorus (Table 1) (p < 0.05). The pH of 
Ceq was the highest at 8.02, and the pH of Ppl was the lowest at 6.93. 
Compared to those of the samples from the non-mining area (CK), 
only the pH values of Ppl and Pvi decreased, while those of the 
remaining samples significantly increased. In terms of organic carbon 
content, the levels of seven samples were markedly lower compared to 
the CK sample. The Aca content was the lowest at 1.95 g/100 g, while 
the Ceq content was the highest at 27.08 g/100 g. For the total nitrogen 
content, Ceq was the highest at 2.26 g/100 g; Ppl was the lowest at 
0.29 g/100 g; Ceq, Dvi and Dco were greater than those of CK; and the 
contents of the remaining samples were lower than those of CK. In 
terms of total phosphorus, compared to CK, Ceq had the highest 
amount (0.21 g/100 g), while Pvi had the lowest (0.09 g/100 g) 
(p < 0.05). Except for Pvi, all other samples had higher amounts than 
CK. For alkaline-hydrolyzed nitrogen, we found that the contents of 
all samples were lower than those of the CK. Among the seven 
samples, Dvi had the highest value (165.00 g/100 g), while Ppl had the 
lowest (14.00 g/100 g) (p < 0.05). Analysis of the indicators for 
available phosphorus revealed that, compared to all the samples, the 
DVI content of the CK samples was the highest at 15.33 g/100 g, and 
the PVI content was the lowest at 2.83 g/100 g. Physicochemical 
examination revealed that the available potassium content of all the 
samples was significantly greater than that of CK, with Tsi having the 
highest content (367.00 g/100 g) and Dco having the lowest content 
(187.67 g/100 g) (p < 0.05).

In the detection of trace elements (Table 2), the maximum content 
of copper was 145 mg/kg, followed by zinc, iron, titanium, and lead. 
The copper content is an indicator. Except for Dco and Pvi, the 
rhizosphere soil of the remaining plants was greater than that of CK, 
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with the highest rhizosphere soil content of Ceq at 319.00 ± 5.51 mg/
kg and the lowest rhizosphere soil content of Pvi at 48.33 ± 0.67 mg/
kg (p < 0.05). The Zn contents of the seven plant species were lower 
than those of CK, with Tsi having the highest content in rhizosphere 
soil at 96.67 ± 2.60 mg/kg, P in the rhizosphere soil had the lowest 
content at 30.33 ± 0.33 mg/kg. The iron content of all the samples was 
greater than that of the CK samples. The Ceq rhizosphere soil had the 
highest iron content, at 135.37 ± 3.98 mg/kg, while the Pvi rhizosphere 
soil had the lowest iron content, at 81.23 ± 1.91 mg/kg (p < 0.05). The 
titanium content of CK was the highest at 14.57 ± 0.34 mg/kg, and the 
titanium contents of the soil samples were as follows: Ppl, Tsi, Dco, 
Dvi, Pvi, Ceq, and Aca. In terms of Pb content, the Ppl rhizosphere 
soil had the highest content at 14.57 ± 0.34 mg/kg; the Ceq rhizosphere 
soil had the lowest content at 4.23 ± 0.03 mg/kg (p < 0.05).

In summary, the seven local plants used to control tailings 
pollution targeted Zn and Ti pollution and played an important role. 
Among these plants, Pvi had the most significant effect on the Zn 
control process. In the governance process of Ti, the effects of Aca and 
Ceq are the most significant. For the control of Cu pollution in 
tailings, Pvi could be degraded, and the effect was more significant 
(p < 0.05).

3.2 Sequencing data analysis

We detected the species richness of the endophytic bacteria of 
seven kinds of plants planted in the mining area: Ppl, Tsi, Aca, Ceq, 
Dco, Dvi, and Pvi. The sparseness curves of the OTU sample 
species are shown in Supplementary Figure S1. The sparse curve 
gradually stabilized when the number of sequencing reads reached 
more than 14,000, indicating that the sequencing results tended to 
be  saturated. After removing chimeras, poor quality reads, and 

short reads, a 97% similarity threshold was used to assign OTUs. 
The number of OTUs per sample ranged from a minimum of 111 
to a maximum of 1,034, with an average of 528 OTUs across 
all samples.

3.3 Classification and abundance of 
samples

Among all the samples, we identified a total of 28 phyla. There are 
69 classes, 171 orders, and 521 genera. Proteobacteria accounted for 
67.89%, Actinomycetes accounted for 24.65%, Cyanobacteria 
accounted for 2.89%, and Firmicutes accounted for 1.11%. Among the 
Proteobacteria, γ-Proteobacteria dominated (89.75%), and 
Actinomycetes also accounted for the highest proportion (77.92%) of 
the Actinomycetes phylum. At the genus level, Steotrophomonas had 
the highest abundance (58.15%), followed by Streptavidin (4.46%) and 
Pseudonocardia (3.20%).

3.4 Alpha diversity

The diversity and complexity of the sampled species were revealed 
through seven indices. The diversity and complexity of the sampled 
species were revealed through seven indices. The data presented in 
Figure 1 indicates that as Alpha diversity increases, the diversity level 
of endophytic bacteria in the root system also increases. According to 
the community richness analysis, Pvi had the highest species richness, 
while Tsi had the lowest, as evidenced by the values of Observed_otus, 
Chao1, and Pielou_e (p < 0.05). In terms of the community diversity 
indices (Shannon and Simpson), the Pvi had the highest diversity, 
while the Tsi had the lowest diversity. In terms of good coverage, the 

TABLE 1 Soil physical and chemical properties.

Element 
(g/kg dw)

CK Ppl Tsi Aca Ceq Dco Dvi Pvi

pH 7.15 ± 0.01 d 6.93 ± 0.18 f 7.21 ± 0.02 d 7.22 ± 0.03 d 8.02 ± 0.01 a 7.40 ± 0.03 c 7.02 ± 0.02 e 7.77 ± 0.01 b

SOC 28.16 ± 0.11 a 2.30 ± 0.05 f 2.65 ± 0.04 f 1.95 ± 0.02 f 27.08 ± 0.13 b 26.96 ± 0.50 b 4.51 ± 0.10 c 26.28 ± 0.49 b

TN 1.89 ± 0.01 c 0.29 ± 0.01 g 0.45 ± 0.01 e 0.37 ± 0.01f 2.26 ± 0.02a 2.18 ± 0.01b 0.76 ± 0.00 d 2.24 ± 0.21 a

TP 0.10 ± 0.00 g 0.17 ± 0.00c 0.18 ± 0.00 b 0.14 ± 0.00 e 0.21 ± 0.00 a 0.16 ± 0.00 d 0.09 ± 0.00 h 0.13 ± 0.00 f

TK 15.10 ± 0.12 e 14.20 ± 0.12 f 14.30 ± 0.12 f 15.13 ± 0.03 e 20.63 ± 0.15 c 22.87 ± 0.12 a 21.60 ± 0.10 b 19.27 ± 0.12 d

AN 218.00 ± 0.58 a 14.00 ± 0.58 g 18.00 ± 0.58 f 12.67 ± 0.88 g 157.00 ± 0.58 c 152.00 ± 1.15 d 44.33 ± 0.33 e 165.00 ± 1.53 b

AP 21.47 ± 0.50 a 5.80 ± 0.40 e 4.93 ± 0.24 e 3.83 ± 0.18 f 9.13 ± 0.38 c 5.43 ± 0.23 e 2.83 ± 0.19 f 15.33 ± 0.57 b

AK 144.67 ± 1.76 f 281.67 ± 1.45 b 367.00 ± 2.52 a 286.33 ± 2.03 b 251.67 ± 1.86 c 187.67 ± 0.88 e 238.33 ± 2.60 d 281.00 ± 3.06 b

TABLE 2 Soil trace element content.

Element 
(mg/kg 
dw)

CK Ppl Tsi Aca Ceq Dco Pvi Dvi

Fe 73.47 ± 1.27 e 94.03 ± 0.29 b 91.80 ± 2.62 bc 85.00 ± 2.31 cd 135.37 ± 3.98 a 81.93 ± 1.80 d 81.23 ± 1.91 d 95.00 ± 2.84 b

Zn 109.33 ± 1.20 a 89.67 ± 2.03 c 96.67 ± 2.60 b 83.00 ± 2.31 c 81.67 ± 2.40 e 48.67 ± 0.88 g 30.33 ± 0.33 h 65.33 ± 1.86 f

Cu 112.33 ± 1.86 d 130.00 ± 3.51 c 137.67 ± 2.40 c 152.67 ± 2.40 b 319.00 ± 5.51 a 105.67 ± 2.40 d 48.33 ± 0.67 e 154.33 ± 4.10 b

Ti 14.57 ± 0.34 a 13.63 ± 0.37 b 12.00 ± 0.12 c 4.23 ± 0.03 g 4.80 ± 0.10 g 7.00 ± 0.15 e 5.60 ± 0.12 f 5.83 ± 0.03 f

Pb 5.83 ± 0.03 f 14.57 ± 0.34 a 13.63 ± 0.37 b 12.00 ± 0.12 c 4.23 ± 0.03 g 4.80 ± 0.10 g 7.00 ± 0.15 e 5.60 ± 0.12 f
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average index of all samples was greater than 0.998, indicating a high 
sequencing depth.

3.5 Classification analysis of bacterial 
communities

In all of the samples, a total of 28 phyla were identified. Figure 2A 
shows the changes in the abundance of the 10 most abundant phyla in 
the samples. Proteobacteria was the most abundant phylum in all of 
the samples, accounting for 67.89% of the total number of endophytic 
bacteria. Proteobacteria was the highest in the Tsi. The Actinobacteria 
were the second most abundant phylum in the samples, accounting 
for 24.65%. Making up 85.69% of the total bacteria present in the Dco, 
the Actinobacteria were also the most abundant. Proteobacteria was 
the second abundant phylum in the Dco sample, but its abundance 
was lower than that of the other six plant species (Dco is 9,214, Ppl is 
52,519, Tsi is 73,862, Aca is 69,181, Ceq is 65,739, Dvi is 62,451, and 
Pvi is 46,366) (p < 0.05).

At the class level (Figure  2B), Gammaproteobacteria had the 
highest abundance (60.93%), followed by Actinobacteria (19.17%), 
Alphaproteobacteria (6.96%), and Cyanobacteriia (2.89%). The 
abundance of Gammaproteobacteria in Tsi was greater than in Aca 
(73,475 and 68,743, respectively), and its abundance in Ceq was also 
greater than in Ppl (62,685 and 51,381, respectively) (p < 0.05). The 
abundance of Alphaproteobacteria in Dvi exceeded that in Pvi (16,682 
and 11,634, respectively) (p < 0.05), and the abundance of the Ceq 
sample was significantly lower than that in Dco (3,045 and 5,553, 
respectively) (p < 0.05).

At the family level (Figure 2C), Xanthomonadaceae, Chloroplast 
and Promicromonosporaceae were the three families with the greatest 
abundance. The abundance of Xanthomonadaceae in Tsi rhizosphere 
soil was significantly greater than that in Aca rhizosphere soil. The Tsi 
abundance was 72,557, while the Aca abundance was 67,751. 

Additionally, Pvi showed a significant decreasing trend compared to 
Dvi, with Pvi and Dvi abundances of 29,673 and 42,742, respectively 
(p < 0.05). The Streptomycetaceae family was the most abundant in 
Dco at 20,326, while Dvi was slightly more abundant than Ppl (577 
and 543, respectively) (p < 0.05).

At the genus level (Figure 2D), Stenotrophomonas was the most 
prevalent genus across all the samples, followed by Chloroplast 
Streptomyces, Pseudonocardia, and Promicromonospora. The 
abundance of Stenotrophomonas in the endophytic bacterial 
communities of the samples showed the following trend: 
Tsi > Aca > Ceq > Ppl > Dvi > Pvi > Dco (p < 0.05). For Chloroplast 
and Pseudonocardia, the abundances in the remaining five samples 
were very low, except for Ppl and Aca (with abundances of 11,130, 
8,063, and 4,286, respectively). The abundances in the remaining five 
samples were as follows: Tsi (176, 0), Ceq (0, 3), Dco (83, 54), Dvi 
(286, 0), and Pvi (0, 6) (p < 0.05).

3.6 Structural differentiation of microbial 
communities

For specificity and consensus OTU analysis among different 
samples (shown in Figure  3), two adjacent samples were directly 
compared: Dco and Ceq. The former generated 1,154 specific OTUs, 
while the latter generated 1,284 specific OTUs. Compared to Aca and 
Ceq, Aca and Ceq generated 453 specific OTUs, while Ceq generated 
1,529 specific OTUs. Compared to Aca, Tsi generated 372 specific 
OTUs, while Aca generated 454 specific OTUs. In comparison, Tsi 
generated 352 specific OTUs, while Ppl generated 640 specific OTUs. 
Compared to Ppl and Dco, Ppl generated 652 specific OTUs, while 
Dco generated 1,392 OTUs.

Comparison of three adjacent samples (as shown in Figure 3): Tsi, 
Ppl, and Dco. Tsi generated 334 specific OTUs, Ppl generated 559 
specific OTUs, and Dco generated 1,374 specific OTUs. There were a 

FIGURE 1

Changes in the alpha diversity indicators of different samples.
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total of 22 OTUs among the three groups. A comparison of Ppl, Dco 
and Ceq revealed that Ppl generated 601 specific OTUs, Dco generated 
1,093 specific OTUs, and Ceq generated 1,233 specific OTUs, for a 
total of 42 OTUs among the three. A comparison of Dco, Ceq, and Aca 
revealed that Dco generated 1,117 specific OTUs, Ceq generated 1,231 
specific OTUs, and Aca generated 416 specific OTUs. There were a 
total of 43 OTUs among the three. A comparison of Ceq, Aca and Tsi 
revealed that Ceq generated 1,502 specific OTUs, Aca generated 386 
specific OTUs, and Tsi generated 344 specific OTUs, with a total of 29 
OTUs among the three. In comparison, Aca generated 393 specific 
OTUs, Tsi generated 307 specific OTUs, and Ppl generated 580 specific 
OTUs, for a total of 51 OTUs among the three. In total, all of the 
samples had nine core OTUs (Stenotrophomonas, Chryseobacterium, 
Lactobacillus, Clostridium_sensu_strictto_12, Prevotella, Lactobacillus, 
Bradyrhizobium, Nocardioides, and Delftia). Each sample contained 
257 to 1,441 specific OTUs (shown in Figure 3).

We employed NMDS and PCA to evaluate the variations in the 
endophytic bacterial communities within the roots of the various 
samples (Figure 4). We found that most species presented a high level 
of similarity. Since the stress value was less than 0.05 in the NMDS 
analysis, it can be concluded that the results were highly representative. 
The microbiomes of five species, Aca, Tsi, Ceq, Ppl, and Pvi, 
overlapped. Notably, the three species Tsi, Ceq, and Aca were more 
closely related and presented greater similarity than Dvi and Dco. 
PCA revealed that in the PC1 dimension, with the exception of Pvi, 
the projection distances of the other six species were relatively close. 

Therefore, the species richness values of Ceq, Aca, Tsi, Ceq, Ppl and 
Dco were more similar. In addition, in the PC2 dimension, the 
projection distances of Dco, Aca, Tsi, and Ppl were the shortest, 
suggesting that the richness of these four species was the most similar.

3.7 Metabolic functions of the endophytic 
bacterial communities

We employed PICRUSt2 to forecast the precise functions of the 
bacteria found in the samples. Using the KEGG database, bacterial 
genes were categorized into six different groups (Figure  5A): 
metabolism, genetic information processing, environmental 
information processing, and cellular processes, Organismal Tsistems 
and Human Diseases. Metabolism was the most abundant KEGG 
pathway in all of the samples (80.75%), followed by genetic 
information processing and cellular processes, accounting for 10.55 
and 5.12%, respectively. The organic system had the lowest proportion 
of genes, at 0.44%. At the second level, amino acid metabolism, 
carbohydrate metabolism, cofactors, and vitamin metabolism were the 
most abundant KEGG metabolic functions, accounting for 12.62, 
12.46, and 11.58%, respectively.

In response to the functional differences among different species, 
we  selected the top  35 functions to draw a heatmap for analysis 
(Figure  5B). We  found that the functional differences among the 
species were significant. Compared with those in the other six 

FIGURE 2

Relative abundance of soil bacteria in different samples at the phylum (A), class (B), family (C), and (D) genus.
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samples, the expression levels of genes associated with the following 
functions were significantly increased in the Dco group: glnA, GLUL; 
glutamine synthetase (K01915); acetyl-CoA C-acetyltransferase 
(K00626); fatty-acyl-CoA synthase (K00666); long-chain acyl-CoA 
synthetase (K01897); enoyl-CoA hydratase (K01692); ABCB-BAC; 
ATP-binding cassette, subfamily B; bacterial (K06147); and ABC.
MS. P; multiple sugar transport system permease protein (K02025), 

ABC.MS. S; multiple sugar transport system substrate-binding protein 
(K02027), ABC.MS. the P1; multiple sugar transport system permease 
protein (K02026), ABC.PE. S; peptide/nickel transport system 
substrate-binding protein (K02035), ABC.PE. A1; peptide/nickel 
transport system ATP-binding protein (K02032), ABC.PE. P peptide/
nickel transport system permease protein (K02033), ABC.PE. the P1; 
peptide/nickel transport system permease protein (K02034), serine/

FIGURE 3

Shared and unique OTU analysis among different samples.
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threonine protein kinase, bacterial (K08884), ABC-2. A; ABC-2 type 
transport system ATP-binding protein (K01990), ABC-2. P; ABC-2 
type transport system permease protein (K01992), GST, gst; 
glutathione S-transferase (K00799); in addition, the Dco group was in 
exbD; biopolymer transport protein ExbD (K03559), fecR; 
transmembrane sensor (K LacI family transcriptional regulator 
(K02529)), mcp; methyl-accepting chemotaxis protein (K03406), 
acrA, mexA, adeI, smeD, mtrC, cmeA; membrane fusion protein, 
multidrug efflux system (K035E85); rpo; RNA polymerase sigma-70 
factor, ECF subfamily (K03088), two-component system, OmpR 
family, response regulator (K02483), GST, gst; glutathione 
S-transferase (K00799), mcp; methyl-accepting chemotaxis protein 
(K03406); ABC.CD. P; putative ABC transport system permease 
protein (K02004), putative oxidoreductase (K15977), TC.FEV. The 
expression of OM, iron complex outer membrane receptor protein 
(K02014), fecR, transmembrane sensor (K07165), and putative long-
chain acyl-CoA synthase (K03822) was significantly lower than that 
in the other groups. The expression of Aca, Ceq, and Tsi contrasted 
with that of the Dco group. The expression of the Dco group decreased, 
while the expression of the Aca, Ceq, and Tsi groups increased.

The COG database (Figure 5C) can be divided into three categories, 
with metabolism accounting for 41.26%, followed by information 
storage and processing, and cellular processes and signal transduction, 
accounting for 26.25 and 17.25%, respectively. Secondary COG 
metabolism analysis revealed that amino acid transport and metabolism, 
translation, ribosome structure and biogenesis, and energy production 
and conversion, as well as cell wall/membrane/envelope biogenesis, 
accounted for the greatest percentage of patients, making up 8.39, 7.28, 
6.65, and 6.49%, respectively. Similarly, we  performed intergroup 
comparisons using a heatmap (Figure 5D). Dco was compared with 
other groups in terms of the levels of Acyl-CoA dehydrogenase related 
to the alkylation response protein AidB (COG1960), enoyl-CoA 
hydratase/carnitine racemase (COG1024), DNA repair exonuclease 
SbcCD ATPase subunit (COG0419), glycosyltransferase involved in cell 

wall bisynthesis (COG0438), nucleoside-diphosphate-sugar epimerase 
(COG0451), DNA-binding transcriptional regulator, ArsultR family 
(COG0640, ABC-type Atransgase) component (COG1131), 
DNA-binding transcriptional regulator, MarR family (COG1846), 
Acyl-CoA synthetase (AMP-forming)/AMP-acid ligase II (COG0318), 
Flavin-dependent oxidoreductase, luciferase family (COG2141), and 
short-chain. The functional expression of dehydrogenase (COG0300) 
was upregulated, while other selected functions were downregulated. 
The expression of functions in the Aca, Ceq, and Tsi groups contrasts 
with that in the Dco group. The functions upregulated in the Dco group 
were downregulated in the Aca, Ceq, and Tsi groups.

The MetaCyc database (Figure 5E) categorizes bacterial genes into 
seven different groups:Biosynthesis was the predominant category in 
the samples, making up  67.18% of the total count, followed by 
generation, degradation/utilization/assimilation of detoxification 
precursor metabolites and energy, accounting for 15.53 and 13.64%, 
respectively. In the second stage, amino acid biosynthesis (15.09%) 
accounted for the largest proportion, followed by cofactor, prosthetic 
group, electron carrier, and vitamin biosynthesis (14.28%), and 
nucleoside and nucleotide biosynthesis (13.27%). The biosynthesis of 
fatty acids and lipids (10.93%), carbohydrate biosynthesis (4.99%), and 
the TCA cycle (4.01%) were investigated. A comparison of the 
differences between the various test groups was performed (Figure 5F). 
A comparison of the Tsi group, the Aca group, and the Ceq group 
revealed that the functional expression was generally consistent, which 
was somewhat consistent with the opposite functional expression of 
Dco: Dco in palmitate biosynthesis II (bacteria and plants) (PWY-
5971), cis-vaccenate biosynthesis (PWY-5973), stearate biosynthesis 
II (bacteria and plants) (PWY-5989), gondoate biosynthesis 
(anaerobic) (PWY-7663), superpathway of fatty acid biosynthesis 
initiation (FASYN-INITIAL-PWY), 8-amino-7-oxononanoate 
biosynthesis I  (PWY-6519), biotin biosynthesis I  (BIOTIN-
BIOSYNTHESIS-PWY), oleate biosynthesis IV (anaerobic) (PWY-
7664) (PWY-6282), (5Z)-dodec-5-enoate biosynthesis (PWY0-862), 

FIGURE 4

Beta diversity between different samples based on NMDS and PCoA.
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FIGURE 5

PICRUSt2 function prediction (A,B) KEGG, (C,D) COG, (E,F) MetaCycE.
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mycolate biosynthesis I  (from (5Z)-dodec-5-enoate) (PWY-6282), 
(5Z)-dodec-5-enoate biosynthesis (PWY0-862), mycolate biosynthesis 
(PWYG-321), fatty acid elongation  - saturated (FASYN-
ELONG-PWY), urate biosynthesis/inosine 5′-phosphate degradation 
(PWY-569), 6-hydroxymethyl-dihydropropterin diphosphate 
biosynthesis III (Chlamydia) (PWY-7539), mixed acid fermentation 
(FERMENTATION-PWY), glucose and glucose-1-phosphate 
degradation (GLUCOSE1PMETAB-PWY), L-methionine biosynthesis 
III (HSERMETANA-PWY), superpathway of adenosine nucleotides 
de novo biosynthesis I (PWY-7229) showed down-regulation of their 
functional expression. A comparison of the Dco group and others 
revealed that L-isoleucine biosynthesis III (PWY-5103), aerobic 
respiration I  (cytochrome c) (PWY-3781), the pentose phosphate 
pathway (nonoxidative branch) (NONOXIPENT-PWY), adenosine 
nucleic acid degradation II (SALVADEHYPOX-PWY), fatty acid 
salvage (PWY-7094), the superpathway of branched amino acid 
biosynthesis (BRANCHED-CHAIN-AA-SYN-PWY), aromatic 
biogenic amine degradation (bacteria) (PWY-7431), pyruvate 
fermentation to isobutanol, and the functional expression of 
(engineered) (PWY-7111), L-isoleucine biosynthesis II (PWY-5101), 
L-valine biosynthesis (VALSYN-PWY), and L-isoleucine biosynthesis 
I (from threonine) (ILEUSYN-PWY) were upregulated.

3.8 Differentiation of the metabolic 
function of the microbial community

PCA was used to assess the variations in bacterial function across 
the different samples (Supplementary Figure S2). To a certain extent, 
the functional differentiation of rhizosphere microbes among different 
species in mining areas has occurred. Aca had the highest degree of 
dispersion, Ppl had the lowest, and Dco was the farthest from the rest 
of the samples, indicating greater functional differences.

3.9 Correlation analysis

Pearson correlation analysis (PC, p < 0.05) was used to evaluate 
the correlations between the soil physicochemical properties and the 

Alpha diversity indices of the endophytic bacteria (Figure 6). The 
results revealed that the SOC, TK, AN, AK, and Zn contents were 
significantly correlated with alpha diversity. A strong positive 
correlation was observed between pH and Chao1. Furthermore, a 
strong positive correlation was noted between the SOC content and 
Chao1, Observed_otus, Pielou’s evenness, Shannon, and Simpson. In 
contrast, the AK, Zn, and Ti contents were significantly negatively 
correlated (p < 0.05) with Chao1, Observed_otus, Pielou’s evenness 
and Shannon.

To further investigate the effects of environmental factors on the 
endophytic bacterial microflora of the rhizosphere soil and roots, 
redundancy analysis (RDA) was used to focus on the top 10 microbial 
species at the phylum level and their relationships with soil 
environmental factors (Figure 7). RDA1 and RDA2 explained 85.87 
and 2.42%, respectively, of the total variance observed by the analyzed 
species, significantly explaining the complex relationship between 
environmental factors and the composition of microflora. Among 
them, Actinobacteria were significantly positively correlated with the 
contents of SOD, AN, TN, and TK in the soil. Moreover, Bacteroidota 
and Firmicutes exhibited a significant positive correlation with the TP 
content in the soil.

4 Discussion

4.1 Effects of ilmenite ecological 
restoration on the surrounding soil 
elements

In this study, an ilmenite ore area was taken as the research object 
to determine the pH, SOC, TN, and TK of the soil in the area. pH is an 
important factor affecting the soil microbiome (Xiao et al., 2021). The 
tests revealed that the pH values of Ppl and Dvi were lower than those 
of CK, which may be  due to soil degradation caused by mining 
disturbance, resulting in a decrease in soil pH. The pH values of Tsi, 
Aca, Ceq, Dco, and Pvi were greater than those of CK. It is possible that 
in an oxidative environment, Fe(II) and Fe(III) in the soil readily form 
hydroxides, thus increasing the pH value (Huang et al., 2019). SOC 
plays a dual role in plants, serving as both a substrate and an energy 

FIGURE 6

Pearson correlation analysis.
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source for various physiological and biochemical processes, thereby 
indicating the soil fertility level to some extent. The SOC content in the 
experimental group was lower than that in the control group, and the 
accumulation of Ceq in the experimental group was the highest. This 
is likely because heavy metals significantly inhibit the carbon utilization 
ability and enzyme activity of plants and microorganisms (Li et al., 
2011). A high content of organic matter can promote the metabolism 
of soil microbes to produce enzymes (Xu et al., 2024), resulting in a 
decrease in soil fertility. Nitrogen and phosphorus play crucial roles in 
organisms and serve as significant constraints on soil productivity, 
impacting soil physicochemical properties (Fan et al., 2021). In terms 
of TN content, Ceq, Dco, and Pvi were significantly greater than those 
in CK, indicating that the specific conditions of the mining area 
promoted the uptake of nitrogen by these two types of plants. In 
addition, the AN content of all the plants was lower than the CK level, 
indicating once again that mining activities limit the uptake of nitrogen 
by plants. This is because the AN content depends on the content and 
maturity of soil organic matter (SOM), and a decrease in organic 
matter inevitably leads to an increase in nitrogen content. Phosphorus 
plays a crucial role in maintaining soil fertility. The soil’s phosphorus 
pool is a crucial source of many elements necessary for plant growth 
and development, providing most of the phosphorus plants need 
(Billah et al., 2019). The AP contents of the seven plants were lower 
than those of the CK plants. It is also related to soil organic matter. The 
SOM is the most conducive factor for maintaining phosphorus in the 
soil (Silva et  al., 2016). The reduction in organic matter will also 
be reduced to a certain extent. Soil AK is easily taken up and used by 

plants, making it an important indicator for characterizing the 
potassium supply level in soil. The AK content was consistent with that 
of AP and lower than that of CK. There were significant spatial 
variations in the AK content, which were influenced by soil pH, soil 
water levels, soil texture, and type of clay mineral (Li et al., 2021). In 
addition to Ceq (Qin et al., 2024) and Pvi (Salas-Luévano et al., 2017), 
existing methods have been used for heavy metal control, and the 
remaining five plant species have been used for the first time in the 
ecological restoration of mining areas. Therefore, Ceq and Pvi have 
high feasibility and can be further promoted.

4.2 Effects of the ecological restoration of 
ilmenite on the surrounding microbial 
communities

The microbial composition differs greatly in the process of ilmenite 
ecological restoration, which affects the community structure (Liu et al., 
2023). In contrast to alpha diversity, when the indices were compared, 
we found significant differences among the seven plants. In terms of the 
Chao1 and Shannon, Pvi, Dco, and Dvi had relatively high values, 
indicating that, to a certain extent, the species richness and community 
diversity of these three plants were promoted in the mining area 
environment. Under heavy metal pollution, plants adapt to 
environmental changes by influencing the assembly of bacterial 
communities, which in turn affects the composition and diversity of 
these communities (Jiang et  al., 2019; Zhang et  al., 2015). Further 

FIGURE 7

Redundancy analysis.
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analysis of the Simpson revealed that Dco was significantly increased. 
This indicates that in this environment, the distribution of species in the 
community is more uniform, and the diversity is better maintained. 
However, there was no significant difference between Ppl and the other 
methods in terms of the Simpson. Therefore, Ppl may be sensitive to or 
have a low response to environmental changes in the mining area. In 
addition, among all the indicators, Pvi presented the highest abundance, 
which to some extent indicates the strong adaptability and biological 
maintenance ability of Pvi plants in the mining area environment.

In addition, further studies on the factors affecting the diversity of 
microbial communities were conducted through Pearson correlation 
analysis. This analysis was based on the alpha diversity, heavy metal 
content, and soil properties. Chao1 and observed_otus had significant 
positive correlations with pH, SOC, TN, and TK and significant 
negative correlations with Zn and Ti. This finding once again indicates 
that the abundance of the bacterial community is primarily affected 
by soil properties (Yang et al., 2023). However, there were significant 
correlations between the Shannon index and the Simpson index, as 
well as between the SOC and Zn. Therefore, the diversity of the 
endophytic bacterial community is affected by both soil characteristics 
and heavy metal pollution. Jiang et  al. (2019) found that the key 
environmental variable for the composition and diversity of soil 
bacterial communities was soil characteristics, which is consistent 
with our findings. The solubility of heavy metals changes under the 
influence of soil pH, which in turn affects the bioavailability of heavy 
metals, resulting in changes in their toxicity (Awasthi et al., 2016).

Redundancy analysis revealed that Actinobacteriota was 
significantly positively correlated with the contents of SOD, AN, TN, 
and TK in the soil. This result was consistent with those of previous 
studies (Pham et al., 2024). Actinobacteriota became the dominant 
species in this study, with a greater proportion of Actinobacteriota in 
oilfield areas, farms, and cornfields than in soils in mining areas. It has 
been reported that Actinobacteriota contains heavy metal resistance 
genes (Yan et al., 2020). In this study, Fe, Zn, Cu, Ti, and Pb were 
found in the soil in the mining area, indicating that the Actinobacteria 
may be resistant to these metals. Proteobacteria, Firmicutes are also the 
main metal-resistant bacteria (Yan et al., 2020), based on the results 
and existing studies, we believe that metal tolerance in drug-resistant 
bacteria is achieved through the export of metals by the corresponding 
transport proteins through pumps and ion channels, or reduction by 
redox reactions. Bacterial metal tolerance may be related to DNA 
repair capacity. Microbial DNA can be  damaged and produce 
oxidative stress under heavy metal stress, and DNA recombination can 
repair damaged genes, and repair-associated genes have been shown 
to be present in microbial genomes and plasmids, so that these genes 
can be exchanged by gene transfer via plasmids or transposons (Nanda 
et al., 2019; Bruins et al., 2000).

In terms of functional predictions for endophytic bacteria, 
we identified four proteins related to peptide/nickel transport, three 
proteins related to ATP, two proteins related to ABC transport, and 
glutathione S-. The function of transferase was upregulated, indicating 
that it is related to the uptake and transport of heavy metals. This is 
different from what was reported by Liu et al. (2024b). The study 
results were consistent. Glutathione S-transferase (GST) is an 
important protein for the detoxification of organic xenobiotics and 
endophytic metabolites, and it is a key enzyme in the GSH binding 
reaction. The defense system against oxidative stress and other 
negative consequences increases GST activity when metals enter an 

organism (Işık et al., 2023). In this study, glutathione S-transferase was 
upregulated, indicating that in this environment, endophytic bacteria 
secrete more glutathione S-transferase to resist heavy metal damage 
and thus promote the growth of plants and microorganisms. The 
upregulated metabolites are critical for maintaining normal cellular 
metabolic stability. Metal transporter proteins, which are situated on 
the cell membrane, play a crucial role in the absorption and 
transportation of metal elements (Chen et al., 2017). ABC transporter 
proteins serve as powerful transporters (Wang et al., 2022) and can 
transfer inorganic ions, amino acids, and metal ions (Guo et al., 2022). 
In addition, ABC transporter proteins are essential for protecting 
against virulence factors and drugs, as well as for regulating metal ion 
levels by moving them across the cell membrane in various forms (Do 
et al., 2018). The function of acyl-CoA-related enzymes is upregulated. 
It can be inferred that the activity of the donor acyl-CoA is increased 
to promote phytorepair and the removal of harmful heavy metals from 
the environment (Xiao and Chye, 2011). Whether the above process 
occurs is to be verified by subsequent experiments.

In summary, Pvi, Dco, and Dvi showed high abundance levels in 
heavy metal environments, as well as strong environmental 
adaptability. The two bacteria, Actinobacteria and Firmicutes, are 
dominant bacteria that can be made into microbial agents. These 
agents are expected to be used in the future for ecological remediation 
of heavy metal environments such as mines and ironworks.

5 Conclusion and future perspectives

This study investigated the ecological restoration of abandoned 
ilmenite mines by seven common plants. The results revealed that the 
abandonment of ilmenite significantly increased the contents of total 
phosphorus, total potassium, available potassium, iron, and lead in 
the surrounding soils. It also affected the richness and diversity of 
endophytic bacterial communities. Pvi had the highest richness, 
while Tsi had the lowest richness (p < 0.05). A total of 28 phylums, 69 
classs, 171 orders, and 521 genus were identified; the nine core OTUs 
shared. Beta diversity analysis revealed that the community structure 
of the endophytic bacteria differed during the remediation process at 
the ilmenite site. Functional prediction revealed upregulation of Dco 
transporter protein function, DNA-binding transcriptional 
regulators, glyoxalase or related metal-dependent hydrolases, acyl 
coenzyme A synthetases, ATPase components, amino acid synthesis, 
and cellular respiration-related functions. Pearson correlation 
analysis revealed that the SOC, TK, AN, AK, and Zn contents were 
significantly correlated with α diversity. Redundancy analysis (RDA) 
revealed that Actinobacteriota was significantly positively correlated 
with soil SOD, AN, TN, and TK contents. For the first time, this study 
revealed the interactions among plants, endophytic bacteria and soil 
pollutants, laying a theoretical basis for screening specific plant 
endophytic bacteria for ecological restoration.

In this study, we screened plants with strong growth ability and 
endophytic bacteria with high abundance in heavy metal 
environments to demonstrate their adaptive abilities to heavy 
metals. This will lay a theoretical foundation for the ecological 
restoration of mine sites. In order to prove its ability of ecological 
restoration, the growth of plants and the differentiation of 
endophytic bacteria should be continuously monitored in the later 
stage. In addition, the functions and mechanisms of 
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Actinobacteriota and Firmicutes in metal detoxification and soil 
restoration need to be further investigated.
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