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Introduction: The results of microbiome composition in patients with 
malignancy have been inconsistent across studies and are affected by various 
factors. This study aimed to identify microbiome composition of saliva, feces, 
and blood in patients with pancreatic cancer.

Results: Overall, 31 patients with pancreatic cancer and 24 healthy controls 
were sex- and age-matched. Microbiome analysis of saliva, fecal, and blood 
samples was conducted using 16S rRNA amplicon sequencing. Baseline 
characteristics were comparable between patients and controls. Saliva showed 
insignificant difference in alpha diversity (p = 0.42), whereas feces and blood 
exhibited a significant difference in Shannon’s index (feces: 6.19 vs. 6.52, 
p = 0.013; blood: 8.00 vs. 7.49, p < 0.001) between patients and controls. Beta 
diversity analysis revealed significant differences between saliva, fecal, and 
blood samples (p = 0.014, 0.001, and 0.001, respectively). Distinct microbiome 
compositions were identified in patients, with higher abundance of Lactobacillus, 
Enterobacter, and Prevotella in saliva, fecal, and blood samples, respectively. 
Based on microbial network analysis, patients with pancreatic cancer showed 
lower clustering coefficient (71% vs. 99%) and higher average path length 
(1.67 vs. 0.68) than healthy controls, suggesting a more compact network and 
stronger microbial interactions in healthy controls.

Conclusion: This study identified a distinctive microbiome in patients with 
pancreatic cancer, indicating the presence of Lactobacillus, Enterobacter, and 
Prevotella. A less condensed and robust microbial interaction network was 
observed in blood samples of patients with pancreatic cancer. These findings 
provide a basis for research on the connection between the microbiome and 
pancreatic cancer.
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1 Introduction

The incidence of pancreatic cancer is increasing, and it is expected 
to become the second leading cause of cancer-related deaths 
worldwide by 2030 (Rahib et al., 2014; Siegel et al., 2023). The average 
5-year survival rate in pancreatic cancer has reached approximately 
12%, and the 5-year survival rate in patients with localized disease is 
only 44% (Siegel et al., 2023).

The tumor microenvironment (TME) plays an important role in 
tumor growth, metastasis, and disease characteristics. The TME 
comprises various cell types that interact with each other (Hanahan 
and Weinberg, 2011). The microbiome, a constituent of the TME, 
modulates the inflammatory response, which can drive carcinogenesis 
(Zambirinis et al., 2014; Yu et al., 2021). Microbiome analysis has been 
reported to be a potential diagnostic tool for malignancies (Poore 
et al., 2020).

Studies on the microbiome of saliva and feces from patients with 
pancreatic cancer have reported variations in diversity and taxonomy 
(Torres et al., 2015; Ren et al., 2017; Half et al., 2019; Zhou et al., 2021; 
Nagata et  al., 2022; Petrick et  al., 2022). This inconsistency is 
attributable to differences between individuals, sample sites, and 
lifestyle variables, such as diet, medication, and familial factors (Song 
et al., 2013; Gilbert et al., 2018).

Although human blood is considered sterile, modern sequencing 
techniques have detected bacterial genetic material even in the blood 
of healthy individuals (Potgieter et al., 2015). Distinct blood microbial 
profiles have been reported in several malignancies (Cho et al., 2019; 
Poore et al., 2020; An et al., 2022; Woerner et al., 2022; Cheng et al., 
2023). This underscores the importance of blood microbiome analysis 
in cancer. However, studies examining the blood microbiome in 
pancreatic cancer remain limited and underexplored.

There are limited studies on microbiome composition in patients 
with pancreatic cancer. In particular, comprehensive analyses remain 
scarce, especially those that include blood samples. This study aimed 
to characterize microbiome composition of saliva, fecal, and blood 
samples in patients with pancreatic cancer and to explore microbial 
interaction networks beyond compositional differences.

2 Materials and methods

2.1 Patients

We collected saliva, fecal, and blood samples from patients with 
pancreatic cancer in a single tertiary teaching hospital between 
December 2019 and May 2022. Samples from healthy controls were 
acquired from the Periodontal Human Specimen Storage Registry at 
Seoul National University Bundang Hospital, with approval for 
secondary research. We  reviewed a database of patients with 
pancreatic cancer. A survey was conducted among patients with 
pancreatic cancer and healthy controls to obtain information on the 
underlying medical conditions and oral care practices. When assessing 
smoking history, individuals who had quit for ≥6 months were 
categorized as the nonsmoking group and those who had quit within 
the past 6 months were classified as the smoking group (Boutou et al., 
2008; Walton et  al., 2020). Experienced periodontists evaluated 
periodontal health parameters, including periodontal probing depth 
and missing teeth count.

Written informed consent was obtained from all participants prior 
to inclusion in the study. This study was conducted in accordance with 
the Declaration of Helsinki and was approved by the Institutional 
Review Board of the Seoul National University Bundang Hospital (no. 
B-2110-714-303).

2.2 Sample collection and preparation

Patients with pancreatic cancer and healthy controls were 
instructed to abstain from oral hygiene practices for a minimum of 
2 h before saliva collection. Fecal samples were self-collected by the 
participants using a sterile spatula, placed in a sterile container 
designed for feces, and immediately stored in a freezer until 
transportation on ice to the laboratory. Venous blood samples were 
aseptically collected by trained personnel. Upon arrival at the 
laboratory, all samples, excluding fecal samples, were stored at −80°C 
until DNA extraction. DNA was extracted from 1 mL of thawed 
sample using QIAamp DNA Microbiome Kit (QIAGEN, Venlo, the 
Netherlands), following the manufacturer’s protocol.

2.3 16S rRNA amplicon sequencing

DNA quality was assessed using Qubit dsDNA HS Assay Kits 
(Thermo Fisher Scientific Inc., Waltham, MA, United  States). 
Polymerase chain reaction (PCR) targeting V3 and V4 hypervariable 
regions of 16S rRNA genes was conducted using KAPA HiFi HotStart 
ReadyMix PCR Kit (Roche, Basel, Switzerland) following the 
manufacturer’s instructions. The primer sequences used for PCR 
amplification were as follows: 519F: 5′-CCTACGGGNGGCWGCAG-3′ 
and 806R: 5′-GACTACHVGGGTATCTAATCC-3′. Libraries were 
constructed utilizing Nextera XT DNA Library Preparation Kit 
(Illumina Inc., San Diego, CA, United  States), and the amplified 
samples were pooled to achieve a final loading concentration of 8 
pM. Subsequently, paired-end (2 × 300 bp) sequencing was performed 
using the MiSeq platform (Illumina).

2.4 Data analysis and visualization

The reads were processed using a Divisive Amplicon Denoising 
Algorithm (DADA2)-based pipeline within the Quantitative Insights 
Into Microbial Ecology (QIIME2) 22.2 platform. This process involved 
generation of an amplicon sequence variant (ASV) table through 
quality-based filtering and trimming, read deduplication, ASV 
inference, paired-end merging, and chimera removal. ASVs were 
taxonomically classified against the 99% SILVA rRNA taxonomy. To 
rectify artifactual biases, feature tables were normalized via rarefaction.

For alpha diversity analysis, including observed features, 
Shannon’s entropy, Pielou’s evenness, and Faith’s phylogenetic diversity 
were calculated. To evaluate dissimilarities between microbial 
compositions of each sample, beta diversity indices, such as the Bray–
Curtis index, and unweighted UniFrac distance were calculated. 
Principal coordinate analysis (PCoA) was used to visualize overall 
trends in sample dissimilarities. PERMANOVA based on Bray–Curtis 
dissimilarity was performed with BMI included as a covariate to assess 
group differences in microbial composition after adjustment. 
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Moreover, permutation multivariate analysis of variance was 
performed to quantify the strength of associations between microbial 
composition and sample variables. To identify differentially abundant 
taxa between sample groups, we performed analysis of compositions 
of microbiomes with bias correction (ANCOM-BC), which can 
estimate unknown sampling fractions and correct for bias resulting 
from differences through a log-linear regression model. Then, we used 
Phylogenetic Investigation of Communities by Reconstruction of 
Unobserved States 2 (PICRUSt2), which can predict microbial 
functions based on 16S marker gene sequences. To examine variations 
in microbial metabolism, predicted orthologs were collapsed into the 
Kyoto Encyclopedia of Genes and Genomes pathways, followed by 
differential abundance (DA) analysis using ANOVA-Like Differential 
Expression tool version 2 (ALDEx2). Correction for multiple testing 
was performed using the Benjamini–Hochberg method; thus, 
Q-values of <0.05 were considered to indicate statistical significance 
for both DA methods.

To examine interactions between microbiomes, co-occurrence 
network analysis was performed using sparse inverse covariance 
estimation for ecological association inference (SPIEC-EASI) via 
graphical lasso algorithms. Signed distance was computed to 
transform associations into dissimilarities. Topological properties of 
networks, including clustering coefficient, average path length, average 
dissimilarity, modularity, edge density, and positive edge ratio, were 
examined using the igraph package in R. Only nodes with >3 degrees 
are shown in the figures.

Statistical analyses and data visualization were performed using R 
software (ver. 4.1.2; R Development Core Team, Vienna, Austria). 
QIIME artifacts were imported into the R environment using the 
qiime2R package and then transformed into phyloseq objects using 

the phyloseq package. Centered log-ratio transformation of raw feature 
counts was performed before conducting statistical analyses of 
microbial abundance. The Wilcoxon rank-sum test was conducted to 
compare nonparametric distributions of alpha diversity between 
sample groups, and p-values of <0.05 were considered to indicate 
statistical significance.

3 Results

3.1 Baseline characteristics

Study participants included 31 patients with pancreatic cancer 
and 24 healthy controls. No significant difference was noted in the 
baseline characteristics between the two groups (Table 1). The median 
ages of patients with pancreatic cancer and healthy controls were 69 
and 65 years, respectively (p = 0.81). In total, males constituted 58.1% 
(n = 18) and 66.7% (n = 16) of patients with pancreatic cancer and 
healthy controls, respectively (p = 0.61). The prevalence rates of 
diabetes mellitus (p = 0.31), smoking history (p = 0.93), drinking 
history (p = 0.20), and history of antibiotics use (p = 0.06) were not 
significantly different between the two groups. Although body mass 
index was significantly different between the two groups, none of the 
groups met the criteria for obesity (median body mass index: 21.7 and 
24.7 kg/m2 for patients with pancreatic cancer and healthy controls, 
respectively). Pancreatic cancer was more frequent in the head than 
in the body or tail (n = 17, 54.8% vs. n = 14, 45.2%). In total, 14 
(45.2%) tumors were resectable, 7 (22.6%) were borderline resectable, 
5 (16.1%) were locally advanced, and 5 (16.1%) were metastatic. The 
median serum level of carbohydrate antigen 19–9 (CA 19–9) was 

TABLE 1 Baseline characteristics and periodontal information between the patient with pancreatic cancer and healthy control.

Pancreatic cancer (n = 31, %) Healthy control (n = 24, %) p-value

Median age (year) (range) 69 (36–83) 65 (36–80) 0.81

Male 18 (60.0) 16 (66.7) 0.61

Diabetes (n = 31/23) 8 (25.8) 4 (17.4) 0.31

Smoking (n = 25/23) 2 (8.0) 2 (8.7) 0.93

Alcohol (n = 25/12) 9 (36.0) 7 (58.3) 0.20

BMI (SD) (kg/m2) (n = 31/17) 21.7 (2.2) 24.7(2.7) <0.001

History of antibiotic use 5 (16.1) 0 (0.0) 0.06

Tumor location and resectability

  Head/Body/Tail 17 (54.8)/9 (29.0)/5 (16.1)

  Resectable/Borderline resectable/Locally advanced/

metastatic
14 (45.2)/7 (22.6)/5 (16.1)/5 (16.1)

Median CA 19–9 (SD) (U/ml) 41.0 (6,131.4)

Periodontal information

  Tooth brushing/day ≤ 2 (n = 27/10) 14 (51.9) 4 (40.0) 0.52

  Median severe periodontitis (SD) 4.0 (10.8) 4.0 (10.7) 0.91

  Severe periodontitis 22 (73.3) 17 (70.8) 1.00

  Median missing (SD) 1.5 (7.4) 2.0 (4.1) 0.42

  Missing 20 (66.7) 16 (66.7) 1.00

  Median missing & severe periodontitis (SD) 7.5 (13.0) 5.5 (12.6) 0.33

BMI, body mass index; SD, Standard Deviation; CA 19–9, Carbohydrate antigen 19–9.
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41.0 U/mL. Periodontal information revealed no difference in daily 
toothbrushing frequency (≤2 times a day: 51.9% vs. 40.0%, p = 0.52), 
median severity of severe periodontitis (4.0 vs. 4.0, p = 0.91), and 
number of missing teeth (1.5 vs. 2.0, p = 0.42) between the two groups.

3.2 Relative abundance of microbiota at 
phylum and genus levels

The relative abundance of the predominant microbiota was 
analyzed at the phylum and genus levels in saliva, fecal, and blood 
samples from patients with pancreatic cancer and healthy 
controls (Figures  1A,B). At the phylum level, Firmicutes was 
dominant in the saliva, fecal, and blood samples of patients with 
pancreatic cancer and healthy controls. Saliva samples exhibited 
a high abundance of Actinobacteria, whereas fecal samples 
showed a prevalence of Verrucomicrobia. At the genus level, 
distinct variations in microbial composition were observed 
between saliva, fecal, and blood samples of the two groups. PCoA 
results of unweighted UniFrac distance confirmed differences in 
microbial composition of saliva, fecal, and blood samples 
between patients with pancreatic cancer and healthy controls 
(Supplementary Figure 1).

3.3 Alpha and beta diversities

No significant difference was observed in the alpha diversity 
indices between saliva samples of patients with pancreatic cancer and 
those of healthy controls (median Shannon index: 6.45 vs. 6.22; 
p = 0.42). However, Shannon indices of fecal samples were higher in 
healthy controls than in patients with pancreatic cancer (median 
Shannon index: 6.19 vs. 6.52; p = 0.013). The blood microbiome 
showed higher richness and evenness in patients with pancreatic 
cancer than in healthy controls (median Shannon index: 8.00 vs. 7.49; 
p < 0.001; Figure 2A).

Beta diversity analysis using the Bray–Curtis distance revealed 
significant differences in microbial composition of saliva, fecal, and 
blood samples between patients with pancreatic cancer and healthy 
controls (saliva: R2 = 0.07, p = 0.014; feces: R2 = 0.13, p = 0.001; blood: 
R2 = 0.21, p = 0.001) (Figure 2B).

PERMANOVA based on Bray–Curtis dissimilarity showed no 
significant association between BMI and microbial composition in 
saliva (R2 = 0.025, p = 0.463), but significant associations in fecal 
(R2 = 0.038, p = 0.022) and blood samples (R2 = 0.063, p = 0.003). 
After adjusting for BMI, group differences between patients with 
pancreatic cancer and controls remained significant (fecal: R2 = 0.105, 
p = 0.001; blood: R2 = 0.165, p = 0.001).

FIGURE 1

Relative abundance in each specimen. Bar plots represent the relative abundance of predominant microbiota constituents at the phylum (A) and genus 
(B) levels for each sample. HC, healthy control; PC, patient with pancreatic cancer.

https://doi.org/10.3389/fmicb.2025.1555479
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Kim et al. 10.3389/fmicb.2025.1555479

Frontiers in Microbiology 05 frontiersin.org

3.4 Differentially abundant taxa between 
patients with pancreatic cancer and 
healthy controls

DA analysis revealed distinct microbial profiles between the two 
groups. Saliva samples of patients with pancreatic cancer had a 
significantly higher abundance of Cyanobacteria, Bulleidia, 
Lactobacillus, and Saccharimonadaceae than those of healthy 
controls. Furthermore, Enterobacter and Sellimonas were more 
abundant in the fecal samples of patients with pancreatic cancer than 
in those of healthy controls, whereas Alistipes, Ruminococcus, and 
Slackia were more abundant in the fecal samples of healthy controls 
than in those of patients with pancreatic cancer. Acetobacter, 
Butyricicoccus, Ochrobactrum, Prevotella, Ralstonia, Ruminococcus, 
Sellimonas, Weeksellaceae, and Lachnospiraceae were enriched in the 

blood samples of patients with pancreatic cancer, whereas 
Actinobacteria, Verrucomicrobia, Akkermansia, Enterococcus, 
Erysipelatoclostridium, Gemella, Neisseria, Parvimonas, Rothia, and 
Streptococcus were enriched in the blood samples of healthy controls 
(Figure 3).

3.5 Microbial interactions in blood samples 
of patients with pancreatic cancer

The microbial interactions in blood samples differed between 
patients with pancreatic cancer and healthy controls (Table  2; 
Figure 4). The co-occurrence network of the blood microbiome had 
a higher clustering coefficient for healthy controls (99%) than for 
patients with pancreatic cancer (71%). The average path length, a 

FIGURE 2

Comparative analysis of microbial diversity between patients with pancreatic cancer and matched healthy controls in each specimen. Alpha diversity, 
measured via Shannon’s entropy, was higher in fecal samples and lower in blood samples of healthy controls. (A) Beta diversity analysis using the Bray–
Curtis distance indicated significant differences among sample types, allowing differentiation between patients with pancreatic cancer and healthy 
controls (B). HC, healthy control; PC, patient with pancreatic cancer. Statistical significance (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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metric indicating the compactness and strength of microbial 
interactions, was calculated by determining the average number of 
steps along the shortest paths for all possible pairs of network 
nodes. The average path length was lower in healthy controls (0.68) 
than in patients with pancreatic cancer (1.67). This suggests a more 
compact network and stronger microbial interactions in healthy 
controls than in patients with pancreatic cancer (Table 2).

This analysis revealed a notable prevalence of interactions, particularly 
that of Bacteroidetes with other microbiota, in the blood samples of 
patients with pancreatic cancer (Figure 4A). The microbial network of 
healthy controls revealed that Firmicutes was the most abundant key 
microorganism at the phylum level in blood samples (Figure 4B).

4 Discussion

Studies have analyzed the differences in the microbiome of patients 
with pancreatic cancer and healthy controls. However, the results have 

been inconsistent, and studies focusing on blood samples are limited. A 
comprehensive PubMed search identified eight microbiome studies on 
saliva samples (Torres et al., 2015; Olson et al., 2017; Fan et al., 2018; Lu 
et al., 2019; Vogtmann et al., 2020; Wei et al., 2020; Chen et al., 2023), 
seven on fecal samples (Ren et al., 2017; Half et al., 2019; Matsukawa 
et al., 2021; Kartal et al., 2022; Chen et al., 2023; Hashimoto et al., 2023; 
Yang et  al., 2023), and none on blood samples from patients with 
pancreatic cancer (Table 3). By comparing the significant taxa identified 
in our study with those reported in other studies, we  identified 
similarities. Saliva samples of patients with pancreatic cancer exhibited a 
significant increase in the abundance of Lactobacillus, consistent with the 
finding of other studies. Enterobacter was significantly abundant in the 
fecal samples of patients with pancreatic cancer in our study as well as 
other studies. The current study compared the microbiome profiles of 
patients with pancreatic cancer and healthy controls based on 16S rRNA 
sequencing of saliva, fecal, and blood samples. This study identified 
features that differentiated the microbial composition of patients with 
pancreatic cancer from that of healthy controls.

Previous studies on saliva samples have shown inconsistent findings 
regarding alpha diversity in patients with pancreatic cancer (Olson et al., 
2017; Lu et al., 2019; Vogtmann et al., 2020; Wei et al., 2020). However, 
alpha diversity showed no significant difference between patients with 
pancreatic cancer and healthy controls in the current study, consistent 
with the findings of a few studies (Torres et al., 2015; Chen et al., 2023). 
Fecal samples of patients with pancreatic cancer exhibited decreased 
alpha diversity and a significant difference in beta diversity, consistent 
with the findings of other studies (Li J. J. et al., 2021; An et al., 2022; Kohi 
et al., 2022; Sidiropoulos et al., 2024).

While it is well-known that BMI, especially overweight, can 
influence the composition of the microbiome (Xu et al., 2022), it is also 
established that pancreatic cancer patients often have significantly 

FIGURE 3

Bar plot showing the effect size of the difference between the abundance of each taxon in patients with pancreatic cancer and healthy controls. Effect 
sizes were estimated via differential abundance analysis using analysis of compositions of microbiomes with bias correction (ANCOM-BC) and 
expressed as log-fold change divided by the estimate of standard error. HC, healthy control; PC, patient with pancreatic cancer; P, phylum level; G, 
genus level; B, blood sample; F, fecal sample; LFC, log-fold change.

TABLE 2 Comparison of network topological properties between 
patients with pancreatic cancer and healthy controls.

Pancreatic cancer Healthy control

Clustering coefficient 0.711 0.992

Modularity 0.487 0.150

Positive edge percentage 74.340 99.378

Edge density 0.017 0.053

Natural connectivity 0.010 0.049

Average dissimilarity 0.994 0.983

Average path length 1.670 0.684

https://doi.org/10.3389/fmicb.2025.1555479
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Kim et al. 10.3389/fmicb.2025.1555479

Frontiers in Microbiology 07 frontiersin.org

poorer BMI (Bachmann et al., 2009). Notably even after adjusting for 
BMI using PERMANOVA, the differences in microbial composition 
between groups remained significant, supporting the interpretation 
that disease-related factors play a larger role in shaping the microbiome 
than BMI alone.

Network analysis of the blood microbiome revealed a higher 
clustering coefficient and lower average path length in healthy controls 
than in patients with pancreatic cancer, indicating greater complexity 
and strength of microbial interactions. Microbial ecosystems with 
higher clustering coefficients have been shown to exhibit greater 
stability and metabolic activity, supporting the notion that the 

observed reduction in our cancer cohort may reflect ecological 
fragility of the microbiome (Guo et al., 2022). Therefore, in patients 
with pancreatic cancer, the complexity and compactness of microbial 
interactions are reduced. This result is consistent with that of other 
studies reporting similar patterns in microbial interaction network in 
other cancer types (Liu et  al., 2019; Zhou et  al., 2020; Uriarte-
Navarrete et al., 2021).

This study found distinctive microbiomes, such as Lactobacillus, 
Enterobacter, and Prevotella in saliva, fecal, and blood samples of patients 
with pancreatic cancer, respectively. Lactobacillus was consistently 
elevated in the saliva of patients with pancreatic cancer, which is consistent 

FIGURE 4

Network analysis of blood samples from patients with pancreatic cancer (A) and healthy controls (B). Lines between dots indicate the significant 
correlation of species (p < 0.05). The size of the node is proportional to the relative abundance of species. The nodes are colored according to the 
phylum to which the species belongs.
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TABLE 3 Studies on the association between microbiome and pancreatic cancer at oral (A), stool (B), and blood (C).

Author (publication 
year, country)

Sample size alpha-
diversity

Result: increased Result: decreased

(A)

Wei et al. (2020, China) PC 41/HC 69 ↓ Bacilli, Streptococcus, Firmicutes, Actinomyces, Rothia, 

Leptotrichia, Lactobacillus, Escherichia_coli, 

Enterobacteriales

Selenomonas, Porphyromnas, Prevotella, 

Capnocytophaga, Alloprevotella, Tannerella, 

Neisseria

Fan et al. (2018, 

United States)

PC 361/HC 371 Porphyromonas gingivalis, Aggregatibacter 

actinomycetemcomitans

Fusobacteria, Leptotrichia

Lu et al. (2019, China) PC 30/HC 25 ↑ Leptotrichia, Fusobacterium, Rothia, Actinomyces, 

Corynebacterium, Atopobium, Peptostreptococcus, 

Catonella, Oribacterium, Filifactor, Campylobacter, 

Moraxella, Tannerella

Haemophilus, Porphyromonas, 

Paraprevotella

Olson et al. (2017, Canada) PC 40/IPMN 39/

HC 58

↓ Firmicutes, Bacilli, Lactobacillales, Streptococcaceae, 

Streptococcus, Streptococcus thermophilus

Proteobacteria, Gammaproteobacteria, 

Pasteurellales, Pasteurellaceae, 

Haemophilus, Haemophilus parainfluenzae, 

Betaproteobacteria, Neisseriales, 

Neisseriaceae, Neisseria, Neisseria flavescens

Chen et al. (2023, China) PC 40/CP 15/HC 39 Firmicutes, Verrucomicrobia, Veillonella, 

Peptostreptococcus, Akkermansia, Parvimonas, 

Solobacterium, Olsenella, Escherichia, Shigella

Vogtmann et al. (2020, Iran) PC 273/HC 285 ↑ Enterobacteriaceae, Lachnospiraceae G7, 

Bacteroidaceae, Staphylococcaceae

Haemophilus

Torres et al. (2015, 

United States)

PC 8/other diseases 

78/HC 22

Leptotrichia, Porphyromonas Neisseria, Aggregatibacter

Our study (2024, Korea) PC 31/HC 24 Cyanobacteria, Bulleidia, Lactobacillus, 

Saccharimonadaceae, Chloroplast

(B)

Matsukawa et al. (2021, 

Japan)

PC 24/HC 18 Klebsiella pneumoniae, Clostridium bolteae, C. 

symbiosum, Streptococcus mutans, Alistipes shahii, 

Bacteroides species, Parabacteroides species, 

Lactobacillus

Ren et al. (2017, China) PC 24/HC 18 Prevotella, Veillonella, Klebsiella, Selenomonas, 

Hallella, Enterobacter, Cronobacter

Gemmiger, Bifidobacterium, Coprococcus, 

Clostridium IV, Blautia, Flavonifractor, 

Anaerostipes, Butyricicoccus, Dorea

Yang et al. (2023, China) PC 44/HC 50 ↑ Streptococcus

Chen et al. (2023, China) PC 40/CP 15/HC 39 Prevotella, Coprobacter, Proteobacteria, 

Peptostreptococcus, Actinomyces, Bifidobacterium, 

Campylobacter, Coprobacillus, Escherichia-Shigella

Hashimoto et al. (2023, 

Japan)

PC 5/HC 68 Actinomyces, Streptococcus, Veillonella, Lactobacillus Anaerostipes

Kartal E et al. (2022, EU) PC 57/CP 29/HC 50 Veillonella atypica, Fusobacterium nucleatum/

hwasookii, Alloscardovia omnicolens

Romboutsia timonensis, Faecalibacterium 

prausnitzii, Bacteroides coprocola, 

Bifidobacterium bifidum

Half et al. (2019, Israel) PC 30/pre-

cancerous lesions 6/

HC 13/NAFLD 16

Bacteroidetes, Veillonellaceae, Akkermansia, 

Odoribacter

Firmicutes, Clostridiacea, Lachnospiraceae, 

Ruminococcaceae

Our study (2024, Korea) PC 31/HC 24 ↓ Enterobacter, Sellimonas Alistipes, Ruminococcus, Slackia

(C)

Our study (2024, Korea) PC 31/HC 24 ↑ Acetobacter, Butyricicoccus, Ochrobactrum, Prevotella, 

Ralstonia, Ruminococcus, Sellimonas, Weeksellaceae 

Lachnospiraceae

Actinobacteria, Verrucomicrobia, 

Akkermansia, Enterococcus, 

Erysipelatoclostridium, Gemella, Neisseria, 

Parvimonas, Rothia, Streptococcus

HC, healthy controls; PC, patients with pancreatic cancer; IPMN, intraductal papillary mucinous neoplasm; CP, Chronic pancreatitis; NAFLD, non-alcoholic fatty liver disease.
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with the findings of other studies (Wei et  al., 2020). In contrast, an 
increased abundance of Lactobacillus was reported in the fecal samples of 
patients with pancreatic cancer (Kartal et al., 2022). In a mouse model of 
pancreatic cancer, Lactobacillus influenced macrophage activity, 
potentially contributing to rapid disease progression and mortality 
(Hezaveh et al., 2022). In a comparison of saliva samples between patients 
with precancerous lesions and squamous cell carcinoma, Lactobacillus 
was more abundant in patients with cancer (Li Z. et  al., 2021). The 
abundance of Enterobacter in the fecal samples of patients with pancreatic 
cancer was consistent with that reported in other studies (Ren et al., 2017; 
Nejman et al., 2020). Enterobacter was more abundant in tumor (Nejman 
et al., 2020; Kohi et al., 2022) and bile samples of patients with pancreatic 
cancer (Nejman et al., 2020). In a mouse study, Enterobacter induced 
chronic pancreatitis, elevating the risk of pancreatic cancer development 
(Maekawa et al., 2018). Consistently, Enterobacteriaceae was abundant in 
pancreatic cancer (Geller et al., 2017). Prevotella was more abundant in 
the saliva samples of healthy controls than in those of patients with 
pancreatic cancer (Wei et al., 2020). In contrast, Prevotella had a higher 
prevalence in the tumors (Nejman et al., 2020) and feces (Ren et al., 2017) 
of patients with pancreatic cancer. These findings underscore the complex 
interplay between Lactobacillus, Enterobacter, and Prevotella, and cancer, 
warranting further investigation.

This study had several limitations. First, the study population was 
small, although it was comparable to other studies. Second, as this is 
a single center study, studies from several institutions are needed for 
generalizing the findings. Third, because this study conducted a 
cross-sectional microbiome analysis, additional experimental models 
must establish causality between microbial taxa and pancreatic cancer.

In conclusion, this study identified significant microbial taxa such 
as Lactobacillus, Enterobacter, and Prevotella in patients with 
pancreatic cancer. Network analysis revealed reduced complexity, 
strength, and compactness of microbial interaction patterns in the 
blood samples of patients with pancreatic cancer. Our findings can 
serve as a guide for future research on the complex connection 
between the microbiome and pancreatic cancer.
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SUPPLEMENTARY FIGURE 1

The microbial composition relationships between the sample types were 
assessed between healthy controls and patients with pancreatic cancer. 
Principal coordinate analysis (PCoA) was employed to visualize the 
relationships between samples using unweighted UniFrac distance matrices. 
HC, healthy control; PC, patient with pancreatic cancer. Differences in 
microbial composition between patients with pancreatic cancer and 
healthy controls.
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