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A novel machine learning-assisted approach for formula optimization, termed UD-
SVR, is introduced by combining uniform design with support vector regression. This 
method was employed to optimize both the formulation and fermentation conditions 
for pyrroloquinoline quinone (PQQ) production by Acinetobacter calcoaceticus. 
In just two rounds of 66 experimental treatments, UD-SVR effectively optimized a 
formulation involving eight factors at the shake-out level scale, enhancing PQQ 
production from 43.65 mg/L to 73.40 mg/L—an impressive 68.15% increase. Notably, 
the optimized formulation is also cost-effective, featuring minimized consumption of 
pivotal elements like carbon and nitrogen sources. The machine learning-supported 
UD-SVR method presents an inclusive resolution for optimizing experimental 
designs and analyses in multi-factor, multi-level formulations, characterized by 
robust guidance, lucid interpretability, and heightened efficiency in optimization.

KEYWORDS

Acinetobacter calcoaceticus, PQQ, uniform design, support vector regression, 
formulation optimization

1 Introduction

Pyrroloquinoline quinone (PQQ), stands as a pivotal cofactor among the oxidoreductases 
residing on bacterial cell membranes (Duine and Frank, 1980). Beyond its involvement in 
enzymatic catalysis during redox reactions, PQQ assumes a critical role in electron transfer 
mechanisms (Song et al., 2023), showcasing robust antioxidant characteristics (Gao et al., 2004; 
Willner et al., 2007). Its profound impacts extend to promoting metabolic activities, growth, 
development, and fostering resilience (Yao et al., 2024; Rucker et al., 2021). It represents a novel 
biocomposite material within the industrial domain, offering unparalleled safeguarding for 
biomolecules (Liang et al., 2015).

Presently, the primary approaches for PQQ production encompass chemical synthesis and 
microbial fermentation (Choi et al., 2008). Despite the higher production achieved through 
chemical synthesis, this method is encumbered by intricate synthesis steps, elevated production 
costs (Paz et al., 1996; Qin et al., 2022), difficulties in managing by-products, low product recovery 
rates, and environmental pollution concerns. In contrast, microbial fermentation stands out for 
its straightforward process, gentle reaction conditions, cost-effectiveness, and enhanced 
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productivity (Ke et al., 2021), establishing itself as the predominant 
method for industrial-scale PQQ production in contemporary times 
(Ren et al., 2023). The current forefront of PQQ production via microbial 
fermentation revolves around the selection of superior high-production 
strains, as well as the optimization of culture media compositions and 
fermentation condition (Liu et al., 2020; Luna and Boiardi, 2008). For 
instance, utilized artificial neural networks and response surface 
methodology to fine-tune the culture media components for the 
Methylobacillus sp. Zju323 strain. Their investigation pinpointed cobalt 
chloride hexahydrate, magnesium sulfate heptahydrate, and 
p-Aminobenzoic acid as three pivotal factors significantly impacting 
PQQ production, resulting in a notable 35% increase in PQQ production 
post-optimization. Furthermore, Zhang et al. (2022) employed a hybrid 
approach combining atmospheric pressure room temperature plasma 
mutagenesis with high-throughput screening, successfully identifying a 
mutant strain exhibiting heightened PQQ production, enhancing PQQ 
production from 31.4 mg/L to 48.4 mg/L.

Acinetobacter calcoaceticus (A. calcoaceticus) is a Gram-negative 
bacterium in the family Moraxellaceae of the class Gammaproteobacteria. 
It is strictly aerobic, grows at temperatures ranging from 20°C to 35°C, 
and is widely distributed in soil, water, wastewater, and food. It also 
exhibits notable halotolerance and plant growth–promoting properties 
(Oteino et  al., 2015). Our laboratory previously isolated an 
A. calcoaceticus strain capable of fermentative PQQ production. Notably, 
its PQQ biosynthetic pathway requires only four genes, compared with 
six in Klebsiella pneumoniae and seven in Methylobacterium extorquens 
AM1, representing a streamlined system for cofactor synthesis 
(Schwarzenbacher et  al., 2004; Puehringer et  al., 2008). Moreover, 
A. calcoaceticus exhibits broad substrate specificity and high product 
purity, utilizing carbon sources such as ethanol, methanol, glycerol and 
polyols. These characteristics underscore the organism’s strong potential 
for fermentative PQQ production. However, under standard media 
compositions and fermentation conditions, PQQ production reached 
only 43.65 mg/L. Optimization of fermentation parameters is therefore 
essential to enhance yield; yet traditional one-factor-at-a-time 
experiments are time-consuming, costly and fail to capture interactive 
effects, and although orthogonal and uniform designs address some 
interactions, their low resolution limits efficacy (Duine and Frank, 1980; 
Yuan et al., 2007). To overcome these constraints, machine-learning–
assisted methods have been increasingly applied to fermentation 
optimization (Sharma and Mishra, 2023; Xu et al., 2025). Support vector 
machines (SVM) (Che et  al., 2017), in particular, excel with small 
datasets, prompting us to develop a uniform design–support vector 
regression (UD-SVR) strategy for medium and process parameter 
optimization. This innovative technique, rooted in machine learning 
principles, optimized eight key fermentation parameters encompassing 
carbon and nitrogen levels, fermentation temperature, pH, among 
others, tailored specifically for A. calcoaceticus. Following two iterative 
cycles comprising 66 optimization trials, the PQQ fermentation 
production surged to 73.40 mg/L, showcasing a substantial 68.15% 
enhancement over the initial production levels.

2 Materials and methods

2.1 Strain and medium

The PQQ-producing A. calcoaceticus CDWB36, isolated and 
characterized by our laboratory, is securely preserved in a − 80°C 

freezer, encapsulating its biological essence for further 
scientific exploration.

Liquid LB medium: peptone 10.0 g/L, yeast powder 5.0 g/L, 
sodium chloride 10.0 g/L, pH 7.0 ± 0.2. Solid LB medium: liquid LB 
medium supplemented with 15.0 g/L agar. Initial fermentation 
medium: yeast powder 10.0 g/L, anhydrous ammonium sulfate 
2.0 g/L, L-glutamic acid 1.0 g/L, L-tyrosine 1.0 g/L, Na2HPO4 2.0 g/L, 
KH2PO4 1.4 g/L, MgSO4·7H2O 1.0 g/L, calcium chloride 0.4 g/L, trace 
elements solution 0.4 g/L, pH adjusted to 7.0 ± 0.2, inoculum volume 
1%, temperature 28°C. Trace elements solution: FeSO4·7H2O 
80.0 mg/L, ZnSO4·7H2O 22.5 mg/L, NaCl 15.0 mg/L, KI 0.3 mg/L, 
H3BO3 3.0 mg/L, CuSO4 5.0 mg/L.

2.2 Bacterial culture and fermentation

The strain was introduced into LB medium and cultured at 
28°C for 24 h. A small portion was subsequently transferred into 
150 mL Erlenmeyer flasks containing 50 mL of LB liquid 
fermentation medium for continued activation. After24 hours of 
shaking at 180 rpm and 28°C, the fermentation medium was 
inoculated with 1% of the activated culture and incubate at 180 rpm 
and 28°C for 7 days.

2.3 Measurement method for PQQ 
production

Using spectral analysis (Letokhov, 1975), we  detected various 
concentrations (1, 2, 5, 10, 20, 25, 50, 100 mg/L) of PQQ standard 
solutions. To eliminate interference, the absorbance value of the blank 
fermentation medium was subtracted during sample testing. A 
standard curve was established with PQQ concentration on the x-axis 
and OD330 on the y-axis (Supplementary Figure S1).

For cultures subjected to different fermentation conditions, each 
treatment was sampled three times, with each replicate measured in 
duplicate. Subsequently, 1 mL of fermentation liquid was centrifuged 
at 4°C and 12,000 rpm for 2 min. The supernatant was then collected, 
and the absorbance at 330 nm (OD330) was measured using a Hitachi 
UV3000 spectrophotometer. The PQQ concentrations were calculated 
by averaging the OD330 values from three replicates, based on the 
standard curve.

2.4 Optimization process of UD-SVR

In the optimization process, we used the hybrid-level module of 
DPS software to generate a uniform design for the experimental 
designs. The experiments were then conducted, and the PQQ 
productions under various treatments were measured. Next, nonlinear 
feature screening with an SVR model was conducted to identify the 
key factors influencing PQQ production. Based on the retained 
factors, an SVR prediction model was trained to forecast PQQ 
production across all possible treatment combinations (Xiao et al., 
2021). Frequency-based statistical optimization was subsequently 
applied to the predicted values to determine the optimal level for each 
factor. Depending on the outcome, either a new round of uniform 
design was initiated or the optimization process was concluded (Fang 
et al., 2013).
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2.5 Modeling and evaluation

The SVR model (Tan and Zhang, 2016) was constructed utilizing 
functions from the Python sklearn library. The optimization of 
hyperparameters was executed through 5-fold cross-validation (5-CV), 
including kernel functions, C, and γ. The predictive performance of the 
model was evaluated using the mean square error (MSE) (Yuan et al., 
2007), calculated by the formula below (Equation 1):

 
( )−

=
2ˆi iy y

MSE
n  

(1)

Here, iy , ˆiy  and n are the observed value, predicted value and 
sample size, respectively. Based on the 5-CV strategy, model 
optimization was performed over different kernel functions and the 
hyperparameters C and γ. The candidate kernel types included linear, 
polynomial, radial basis function (RBF), and sigmoid. The penalty 
parameter C was searched within the range [2−5, 215], and the kernel 
coefficient γ was varied from 2−15 to 23. The hyperparameter tuning 
was conducted using the GridSearchCV function from the Python 
package scikit-learn. Lower MSE scores across the parameter grid 
indicate better predictive performance of the corresponding 
hyperparameter combination.

2.6 Nonlinear feature screening

Given a dataset D = {yi, xij} (i = 1, 2, …, n; j = 1, 2, …, m), 
containing n samples (treatments) and m features (factors), we first 
performed 5-CV with SVR using all m features to compute the initial 
cross-validation MSE, denoted as MSE0. Subsequently, for each feature 
j, we removed that feature and performed the 5-CV to obtain MSEj 
(j = 1, 2, …, m). If the minimum value in the set of MSEj is smaller 
than the initial MSE (MSE0), the feature corresponding to the 
minimum MSEj, is removed, and the next round of screening 
proceeds. Otherwise, the feature selection process terminates.

2.7 Full combination prediction and 
frequency statistical optimization

Through a nonlinear feature screening process, features with 
minimal influence on PQQ yield were eliminated to reduce the impact 

of irrelevant factors on model performance. Subsequently, an SVR 
prediction model was constructed using only the retained factors, with 
the optimal kernel function and hyperparameters determined via 
5-CV. All possible treatment combinations based on the levels of the 
retained factors were then generated and used as inputs to the trained 
model, yielding predicted PQQ production values. Based on these 
predictions, treatments with high expected yields (using a threshold 
of 50 mg/L in this study) were selected. The frequency of occurrence 
of each factor level among these high-yield treatments was then 
analyzed; a higher frequency suggests a greater likelihood that the 
corresponding level contributes to enhanced PQQ production. If the 
most frequent level of a given factor coincides with the upper or lower 
bound of its tested range, this implies that the optimal level may lie 
beyond the current range, warranting a subsequent round of uniform 
design experiments with an expanded level range in the 
indicated direction.

3 Results

3.1 Initial fermentation medium and the 
upper and lower limits of each factor

Utilizing the fermentation parameters delineated in the 
methodology sections (2.1) as the foundational framework, the 
PQQ production for the A. calcoaceticus stood at 43.65 mg/L. Initial 
experimental findings underscored the substantial impact of eight 
factors—namely, yeast powder, anhydrous ammonium sulfate, 
L-glutamic acid, L-tyrosine, calcium chloride quantities within the 
fermentation composition, along with the inoculation volume, 
fermentation temperature, and pH levels—on the PQQ production 
of the A. calcoaceticus. Consequently, this investigation proceeded 
to refine these eight key factors through the utilization of 
UD-SVR. The stipulated ranges for each factor were delineated in 
Table 1, while the outcomes of the initial 40 systematically designed 
treatments (N1 ~ N40) by UD and their corresponding PQQ 
production were detailed in Supplementary Table S1. Within this 
cohort of 40 treatments, the pinnacle PQQ production reached 
65.56 mg/L, marking a notable 50% escalation compared to the 
foundational formula. Notably, five treatments exhibited production 
surpassing 50 mg/L, representing 12.5% of all treatments, while 13 
treatments demonstrated production exceeding 43 mg/L, 
representing 32.5%. The lowest PQQ production recorded was 
10.12 mg/L.

TABLE 1 The predetermined ranges for each factor in the initial optimization phase.

Factor 
levels

Yeast 
powder 
x1 (g/L)

Anhydrous 
ammonium 

sulfate x2 
(g/L)

L-glutamic 
acid x3 (g/L)

L-tyrosine 
x4 (g/L)

Calcium 
chloride 
x5 (g/L)

Temperature 
x6 (°C)

Inoculum 
volume x7 

(%)

pH 
x8

L1 7 1.0 0.5 0.5 0.2 26 0.1 6.1

L2 10 1.5 1.0 1.0 0.3 27 0.3 6.3

L3 13 2.0 1.5 1.5 0.4 28 0.5 6.5

L4 16 2.5 2.0 2.0 0.5 29 0.7 6.7

L5 19 3.0 2.5 2.5 0.6 - 0.9 6.9
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3.2 Optimal kernel function selection and 
nonlinear factor screening results

Using PQQ production data from the initial set of 40 
treatments as the dependent variable (y), and the eight factors 
slated for optimization as independent variables (x1-x8), the RBF 
emerged as the optimal choice following SVR and the criterion of 
minimizing MSE during a 5-CV. Additionally, after a process of 
nonlinear factor screening, six key factors were singled out: the 
levels of yeast powder (x1), anhydrous ammonium sulfate (x2), 
L-glutamic acid (x3), L-tyrosine (x4), as well as the fermentation 
temperature (x6) and pH level (x8). Within the prescribed ranges 
for each factor as outlined in Table  1, the impact of calcium 
chloride (x5) content and inoculation volume (x7) on PQQ 
production was deemed negligible. Details of the factor screening 
procedure were elaborated in Table 2.

3.3 Frequency statistical optimization 
through full combination prediction

Through meticulous feature selection, a new dataset was curated, 
featuring 6 input characteristics and 40 samples. The RBF was chosen 
as the optimal function, with hyperparameters C and γ fine-tuned 
through grid search to construct an SVR training model. The resulting 
model achieved a 5-CV MSE of 19.97 and a coefficient of 
determination (R2) of 0.88 (Supplementary Figure S2), indicating 
strong predictive performance. Subsequently, predictions were 
generated for the PQQ production across all 125,000 comprehensive 
combinations of x1 (5 levels), x2 (5 levels), x3 (5 levels), x4 (5 levels), x6 
(4 levels), and x8 (5 levels).

The average prediction among the 125,000 values stands at 
33.92 mg/L, with the highest reaching 63.24 mg/L and the lowest at 
10.86 mg/L. Notably, 719 instances surpass the 50 mg/L in these 
forecasts. Subsequently, a thorough examination of the frequency 
distribution of each retained factor’s levels was conducted based on 
these instances (Figure 1). In scenarios where the prediction exceeds 
50 mg/L, a predominant pattern emerges concerning yeast powder 
usage: instances featuring 7 mg/L and 10 mg/L are prevalent, with 318 
and 306 occurrences respectively, while instances with 13 mg/L of 
yeast powder are notably fewer at 95. This observation underscores 
that an increase in yeast powder quantity does not necessarily translate 
to improved outcomes. Consequently, for the forthcoming 
optimization phase, a reduction in yeast powder quantity warrants 
exploration. The trajectory of anhydrous ammonium sulfate usage 
mirrors that of yeast powder, signaling a necessity for further 
reduction in its utilization during the subsequent optimization 
iteration. Regarding L-glutamic acid, there is a trend towards 

decreased usage, peaking at 1.0 g/L (235 occurrences), with a notable 
presence of 224 occurrences at 0.5 g/L as well. While no extrapolation 
is imperative in the next optimization cycle, it is crucial to consider 
both the 0.5 g/L and 1.0 g/L levels. Contrary to the trends observed in 
anhydrous ammonium sulfate and L-glutamic acid, the trend in 
L-tyrosine usage necessitates extrapolation towards increased 
quantities. Despite the instances with a L-tyrosine usage of 2.0 g/L 
(251 occurrences) being fewer than those at 2.5 mg/L (306 
occurrences), the highest predicted value corresponds to a L-tyrosine 
usage of 2.0 g/L. Hence, for the subsequent optimization phase, 
extrapolation based on the 2.0 g/L and 2.5 g/L levels is advised. The 
temperature trend aligns with the pattern observed in L-tyrosine 
usage, warranting extrapolation based on 28°C and 29°C in the 
forthcoming optimization cycle. Notably, a conspicuous peak is 
evident at a pH value of 6.5, suggesting that it can be fixed at 6.5 
without necessitating further extrapolation.

3.4 Second-round uniform design

Informed by the initial round of factor screening and statistical 
frequency optimization, three factors—calcium chloride, inoculum 
volume, and pH—have been earmarked for stabilization. Notably, 
calcium chloride and inoculum volume, lacking in retained 
significance, are consequently anchored at their median values of 
0.4 g/L and 0.4%, respectively. The pH level, as per the statistical 
frequency optimization outcomes, is set at a fixed value of 6.5. 
Subsequent to the statistical frequency optimization findings, yeast 
powder, anhydrous ammonium sulfate, L-glutamic acid, L-tyrosine, 
and fermentation temperature—comprising a total of five factors—
have been utilized to craft a uniform design of 26 treatments across 
2–3 levels. The specific ranges for each factor are meticulously outlined 
in Table 3, while the intricate particulars of every treatment and the 
corresponding quantified PQQ production are catalogued in 
Supplementary Table S2.

Within the cohort of 26 treatments during the subsequent phase, 
the pinnacle production peaks at 71.42 mg/L, representing a 
notable 63.62% surge in contrast to the foundational formulation. This 
pinnacle attainment aligns with yeast powder at 5.0 g/L, anhydrous 
ammonium sulfate at 1 g/L, L-glutamic acid at 0.5 g/L, L-tyrosine at 
2.0 g/L, and a constant temperature of 30°C. Noteworthy is the 
presence of 15 groups surpassing the 50.0 mg/L production, 
constituting 57.69% of the aggregate, alongside 22 groups surpassing 
43.0 mg/L, accounting for 84.62%. The treatment production with the 
lowest PQQ production registers at 30.81 mg/L. Evidently, subsequent 
to the initial optimization phase, a substantial upsurge in PQQ 
production is discernible across each treatment in the ensuing round 
(p value of t-test is 2.3043e-05).

TABLE 2 Nonlinear factor screening process and MSE values.

Screening 
rounds

Baseline 
MSE

x1 x2 x3 x4 x5 x6 x7 x8 Excluded 
factors

1 24.42 23.20 22.29 22.47 22.43 21.51 22.10 21.47 22.14 x7

2 21.47 22.20 21.72 22.60 22.84 19.97 21.36 - 21.31 x5

3 19.97 20.81 20.02 21.15 22.41 - 21.16 - 20.80 -
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3.5 Full combination prediction and 
optimal combination verification

Utilizing the 26 treatments as the training set from the second 
round experiment, the radial basis kernel emerged as the optimal 
choice for the kernel function. Following meticulous grid 
optimization, the pivotal hyperparameters C and γ were pinpointed, 
culminating in the construction of a robust SVR training model. 
Forecasts were made for PQQ production across all 108 
comprehensive treatment combinations, encompassing yeast 
powder (3 levels), anhydrous ammonium sulfate (2 levels), 
L-glutamic acid (2 levels), L-tyrosine (3 levels), and fermentation 
temperature (3 levels). The zenith of these predictions peaked at 
70.25 mg/L, linked to yeast powder at 5 g/L, anhydrous ammonium 
sulfate at 0.5 g/L, L-glutamic acid at 0.5 g/L, L-tyrosine at 2 g/L, 
and a temperature set at 30°C. This formula harmonized closely 
with the optimal blend derived from the second-round uniform 
design, with the sole alteration being the decrease in anhydrous 
ammonium sulfate from 1.0 g/L to 0.5 g/L, underscoring the 
model’s robust predictive capacity. Subsequent experimental 

validation of this formula production a notable PQQ production 
of 73.40 mg/L, showcasing a remarkable 68.15% enhancement 
compared to the standard formulation.

4 Conclusion

Optimization of a complex 8-factor formulation was 
meticulously undertaken using the UD-SVR method across two 
rounds of uniform design, encompassing a total of 66 treatments. 
The measured PQQ content surged impressively from the initial 
scheme’s 43.65 mg/L to a notable  73.40 mg/L. The refined 
formulation tailored for PQQ production by A. calcoaceticus 
featured precise fermentation conditions: yeast powder at 5 g/L, 
anhydrous ammonium sulfate at 0.5 g/L, L-glutamic acid at 
0.5 g/L, L-tyrosine at 2.0 g/L, Na2HPO4 at 2.0 g/L, KH2PO4 at 
1.4 g/L, MgSO4·7H2O at 1.0 g/L, and calcium chloride at 
0.4 g/L. Essential trace elements were meticulously included: 
FeSO4·7H2O at 80.0 mg/L, ZnSO4·7H2O at 22.5 mg/L, KI at 
0.3 mg/L, H3BO3 at 3.0 mg/L, CuSO4 at 5.0 mg/L, NaCl at 

FIGURE 1

Frequency distribution of the six retained factors. (A–F) represent the frequency distributions of yeast powder, anhydrous ammonium sulfate, 
L-glutamic acid, L-tyrosine, temperature, and pH, respectively. The left y-axis of each subgraph corresponds to the predicted PQQ production values 
(scatterplot), while the right y-axis represents the frequency of occurrence for each level (blue line plot).

TABLE 3 Predefined ranges for each factor in the second round of optimization.

Factor levels Yeast powder 
x1 (g/L)

Anhydrous 
ammonium sulfate 

x2 (g/L)

L-glutamic acid x3 
(g/L)

L-tyrosine x4 (g/L) Temperature x6 (°C)

L1 5 0.5 0.5 2.0 28

L2 7 1.0 1.0 2.5 29

L3 9 - - 3.0 30
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15.0 mg/L, maintaining a pH of 6.5. The inoculation rate stood at 
0.5%, with a fermentation temperature set at 30°C and a duration 
of 7 days.

In comparison to the initial formulation, the optimized scheme 
not only substantially amplified PQQ production from A. calcoaceticus 
but also effectively curtailed fermentation costs. Noteworthy 
adjustments included halving the yeast powder requirement from 
10.0 g/L to 5.0 g/L, marking a significant 50% reduction. Furthermore, 
the initial formulation, demanding a total nitrogen source of 4.0 g/L 
(anhydrous ammonium sulfate: L-glutamic acid: L-tyrosine = 2:1:1), 
was refined in the optimized scheme to a more efficient 3.0 g/L ratio 
(0.5:0.5:2). The optimized strategy also challenged the nitrogen source 
ratio derived from single-factor experiments by elevating the 
proportion of L-tyrosine.

This study primarily honed the PQQ production capacity of 
A. calcoaceticus at the laboratory flask level. Future pursuits should 
encompass the integration of mutagenesis techniques to cultivate 
high-production strains and further refine fermentation conditions at 
the bioreactor and industrial scales to augment PQQ 
production capacity.
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