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Farm animals, including livestock and poultry, play essential economic, social, and 
cultural roles and are indispensable in human welfare. Farm Animal Connectome 
database (FACdb) is a comprehensive resource that includes the association networks 
among gene expression, gut microbiota, and metabolites in farm animals. Although 
some databases present the relationship between gut microbes, metabolites, and 
gene expression, these databases are limited to human and mouse species, with 
limited data for farm animals. In this database, we calculate the associations and 
summarize the connections among gene expression, gut microbiota, and metabolites 
in farm animals using six correlation or distance calculation (including Pearson, 
Spearman, Cosine, Euclidean, Bray–Curtis, and Mahalanobis). FACdb contains over 
55 million potential interactions of 73,571 genes, 11,046 gut microbiota, and 4,540 
metabolites. It provides an easy-to-use interface for browsing and searching the 
association information. Additionally, FACdb offers interactive visualization tools 
to effectively investigate the relationship among the genes, gut microbiota, and 
metabolites in farm animals. Overall, FACdb is a valuable resource for understanding 
interactions among gut microbiota, metabolites, and gene expression. It contributes 
to the further utilization of microbes in animal products and welfare promotion. 
Compared to mice, pigs or other farm animals share more similarities with humans 
in molecular, cellular, and organ-level responses, indicating that our database 
may offer new insights into the relationship among gut microbiota, metabolites, 
and gene expression in humans.
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Highlights

 • FACdb integrates gene expression, gut microbiota, and metabolite data for farm animals, 
filling a critical gap in current databases.

 • Offers over 55 million interactions among 73,571 genes, 11,046 gut microbiota, and 
4,540 metabolites.

 • Features a user-friendly interface with tools for efficient browsing and visualization of 
complex associations.
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 • FACdb reveals molecular and cellular similarities between farm 
animals and humans, with applications in both agriculture and 
human health research.

Introduction

Gut microbiota, which parasitizes the host’s intestinal tract, 
affects the intestinal barrier and immune function by producing 
various metabolites (Fan et al., 2021; De Vos et al., 2022; Willson 
et al., 2018; Zhang et al., 2016). These metabolites have a significant 
impact on intestinal homeostasis and host health. The relationship 
between gut microbiota and food digestion and absorption 
(Bergamaschi et al., 2020), immune system development (Li X. et al., 
2022), growth, and development (Li et  al., 2021) has been well 
established. The dysbiosis of gut microbiota can lead to the emergence 
and progression of enteritis, pancreatitis, and other diseases (Lavelle 
and Sokol, 2020; Lee et al., 2022; Zhu et al., 2019). Manipulating gut 
microbiota through exogenous factors is an imperative therapeutic 
intervention for the host diseases (Azimirad et al., 2020; Kanika et al., 
2015; Wang et al., 2021). Therefore, comprehending the interaction 
mechanism between gut microbiota and hosts is imperative.

The metabolites of gut microbiota are diverse, including short-chain 
fatty acids, bile acids, and trimethylamine-N-oxide (TMAO) (Donia and 
Fischbach, 2015; Krautkramer et al., 2021). These molecules interact 
with various host cell receptors (De Vos et al., 2022; Yonezawa et al., 
2007; Zheng et  al., 2019), including Toll-like receptors (TLRs), G 
protein-coupled receptors (GPCRs), and endogenous cannabinoid 
receptors, to regulate the signal pathways and impact physiological 
functions (Bates et al., 2006; Hu et al., 2018), such as the intestinal barrier 
and secretion (Wang L. et al., 2023). The development of molecular tools 
and techniques such as macrogenomics, metabonomics, lipidomics, and 
macrotranscriptomics has enabled the gradual decoding of complex 
interactions between hosts and various microorganisms (Baker, 2023; Li 
L. -Y. et al., 2022; Pérez-Cobas et al., 2013; Walsh et al., 2017; Zhou et al., 
2023). Several databases have been published to describe the target genes 
of gut microbiota and their microbial metabolites in humans and mice 
(Cheng et al., 2022; Wu et al., 2020). Understanding the connection 
between gut microbiota, their metabolites, and target genes establishes 
the basis for investigating the regulatory function of gut microbiota in 
the growth, development, and diseases of the host.

However, farm animals, which provide a plentiful source of meat, 
eggs, and dairy products for human and play an essential role in society, 
have been less studied in this context. Moreover, intestinal microbiota 
also impacts the animals’ ability to convert feed into nutrients and the 
quality of the meat and eggs (Wessels, 2022). Dietary interventions 
aimed at regulating these gut microbiota can potentially improve the 
overall health of farm animals and enhance the quality of agricultural 
and related products (Liao and Nyachoti, 2017). Dietary supplements 
may address animal illnesses by interfering with gut microbiota, 
facilitating nutrient absorption, and augmenting the nutritive value of 
meat and egg-based foods (Fathima et  al., 2022). Despite the 
importance of these interactions, there remains a dearth of databases 
that incorporate the network of connections between gene expression, 

gut microbiota, and metabolites specifically in farm animals. This lack 
of comprehensive resources hinders our understanding of the impact 
of gut microbiota on farm animal health and productivity.

To address this gap, we constructed the Farm Animal Connectome 
database (FACdb). The primary objective of FACdb is to investigate 
the function of gut microbiota in farm animals by integrating 
genomics, intestinal microflora, and metabolic data. The novelty of 
FACdb lies in its comprehensive approach to mapping the associations 
between these biological layers—gene expression, gut microbiota, and 
metabolites—specifically in farm animals. Furthermore, the FACdb 
features a user-friendly interface that allows for easy information 
browsing and searchability, along with interactive visualization tools, 
thus making complex data more accessible and actionable. FACdb is 
publicly available without login requirements at http://compbiol.
top:2023/FACdb/ or http://122.224.251.240:2023/FACdb/.

We hope this database will offer novel insights into the complex 
correlations between intestinal microflora, metabolites, and host gene 
expression, ultimately advancing research in farm animal health, 
productivity, and the broader fields of microbiome research.

Materials and methods

Data sources

For the construction of the FACdb database, a valuable collection 
of omics resources from various sources was obtained. These resources 
included literature sources (Chen et al., 2023; Liu et al., 2020; Mu et al., 
2022) and manually collected data. The raw data collection focused on 
three essential types of data: gene expression, gut microbiota, and 
metabolites, to facilitate the construction of connectomes.

Each sample of each species had at least three types of omics data to 
investigate the interrelationships among the three types of datasets in farm 
animal species. Through the processing of multivariate data, cleansed data 
of four farm animal species were integrated into the database: Sus scrofa 
(pig), Bos taurus (cattle), Ovis aries (sheep), and Gallus gallus (chicken). 
The sample numbers for each species are provided in Table 1.

Data integrationAs for gut microbiota data, quality control of the 
16S sequence reads was performed using Trimmomatic (version 
0.39) (Bolger et al., 2014) to discard adaptors and low-quality reads 
with the following criteria: bases were cut off the start or the end of a 
read if receiving a quality score of <3; Reads were truncated at any 
site receiving an average quality score of <20 over a 5-bp sliding 
window, discarding the truncated reads that were shorter than 36 bp. 
The remaining reads were further denoised into amplicon sequence 
variants (ASVs) using DADA2 (Callahan et al., 2016) in QIIME2 
(Bolyen et al., 2019) according to the default parameters. Based on 
the Greengeens2 (version 2022.10) (McDonald et al., 2023), we got 
the final taxonomy matrix through a species comparison annotation 
using a q2-feature-classifier (Bokulich et al., 2018).

As for single-cell RNA sequencing (scRNA-seq) data, Trim Galore1 
was used for quality control of raw data and junction trimming with the 
default parameters. Then, we mapped the raw data of each species to 
their reference genomes downloaded from the NCBI database2 and 

1 https://github.com/FelixKrueger/TrimGalore

2 https://ftp.ncbi.nlm.nih.gov/genomes/refseq/

Abbreviations: FACdb, Farm Animal Connectome database; TPM, Transcripts per 

kilobase of exon model per million mapped reads; NCBI, National Center for 

Biotechnology Information; PMID, PubMed Unique Identifier.
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performed transcript quantification using Salmon (version 1.10.1), 
separately. The count gene expression matrix was normalized to 
transcripts per kilobase of exon model per million mapped reads (TPM).

Data standardization

In order to ensure the compatibility and comparability of the 
integrated cleansed data in the FACdb database, a rigorous data 
standardization and normalization process was conducted. This 
step was essential to address discrepancies and variations across 
different studies and platforms and construct structured data for 
FACdb. Structured data refers to the aligned information of three 
types of omics data samples for each species, encompassing both 
the data related to each omics type and their associated 
attribute information.

Gene expression
The gene expression data was standardized by applying a log 2 

transformation to the expression values.

 ( )2log 1x x=′ +

Specifically, x  represents the original expression value. This 
transformation was employed to stabilize the variance and achieve a 
more symmetrical data distribution.

Gut microbiota
The gut microbiota data was normalized using 

column normalization.

 
xx
x

′ =
∑

This normalization method involved calculating the relative 
abundance of each microbial taxon (x) by dividing the abundance of 
the taxon by the sum of abundances across all taxa in a sample ( x∑ ). 
This approach ensures that the relative abundance of each taxon is 
represented proportionally.

Metabolites
The cleansed metabolite data was standardized by applying a 
( )2log x  to the abundance values. Log2-transformed metabolite 

abundances were scaled using the Pareto scaling method.
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s
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Specifically, x  represents the original abundance value. The Pareto 
scaling method involves dividing each log2-transformed abundance 
value by the square root of the standard deviation of that metabolite 

across all samples. This scaling approach helps to reduce the influence 
of metabolites with high variances.

Data extension

After applying the above standardization and normalization 
techniques, the three types of omics data were, respectively, linked to 
external databases. Gene data were mapped to String-DB3 (Szklarczyk 
et  al., 2021), gut microbiota was linked to taxon ID in NCBI 
Taxonomy,4 and metabolite data were mapped to HMDB5 (Wishart 
et al., 2022). Finally, three types of structured data were obtained, and 
the data quantities for each category are shown in Table 2.

Correlation calculation

The data from the structured dataset are calculated by using six 
different methods to construct connectomes of three types of 
biological components: genes, gut microbiota, and metabolites. The 
six methods are introduced as follows:

Pearson correlation coefficient (Pearson and Galton, 1997): 
Measures the linear relationship between two variables. It is used 
when the variables have a linear relationship and follow a 
normal distribution.

Spearman’s rank correlation coefficient (Spearman, 1904): 
Measures the rank correlation between two variables. This 
non-parametric method is useful for non-linear relationships or when 
data is not normally distributed.

Cosine similarity (Manning et al., 2008): Measures the similarity 
between two vectors based on the angle between them. It is effective 
for high-dimensional data where magnitude is less important 
than direction.

Euclidean distance (Aggarwal et al., 2001): Measures the straight-
line distance between two points in a multidimensional space. It is 
widely used in clustering and classification tasks.

Bray–Curtis dissimilarity (Bray and Curtis, 1957): Measures the 
dissimilarity between two vectors. It is commonly used in ecology to 
compare the relative abundance of species or features.

Mahalanobis distance (Mahalanobis, 1936): Measures the distance 
between two vectors, accounting for correlations and covariance 
structure. It is useful for multivariate data and when variables 
are correlated.

3 https://string-db.org/

4 https://www.ncbi.nlm.nih.gov/taxonomy/

5 https://hmdb.ca/

TABLE 2 The amount of omics data in FACdb for each organism.

Sus 
scrofa

Bos 
taurus

Ovis 
aries

Gallus 
gallus

Gene 15,606 16,030 14,257 12,309

Gut microbiota 652 98 401 9,895

Metabolite 751 217 1957 1,615

TABLE 1 The amount of samples in FACdb for each organism.

Sus 
scrofa

Bos 
taurus

Ovis 
aries

Gallus 
gallus

Sample 34 23 12 35

https://doi.org/10.3389/fmicb.2025.1557285
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://string-db.org/
https://www.ncbi.nlm.nih.gov/taxonomy/
https://hmdb.ca/
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And the six correlation or distance calculation methods are shown 
in Table 3.

Since the structured data samples are aligned, the three types of 
biological entities are characterized as follows: genes by expression 
levels, gut microbiota by abundance values, and metabolites by peak 
area measurements within the samples.

To address the heterogeneity of different data types, the cleansed 
data undergo standardization or normalization to obtain structured 
data. These structured data are then subjected to preprocessing steps. 
Prior to the calculation of Euclidean and Mahalanobis distances, PCA 
(Hotelling, 1933) is applied to reduce dimensionality, mitigating the 
effects of the “curse of dimensionality” while preserving high-variance 
samples to capture differential relationships within the network. 
Subsequently, three types of interactions, namely, gene-gut microbiota, 
gene-metabolite, and gut microbiota-metabolite, constructed the 
connectivity network in FACdb, encompassing the relationships 
among the four species.

Database content

After literature retrieval and experimental data collection, the 
multi-omics data of genes, gut microbiota, and metabolites from four 
species, namely pigs, cattle, sheep, and chickens, were obtained. These 
omics data were subjected to data cleansing, yielding cleansed data. 
Subsequently, structured data were obtained through sample 
alignment operations, ensuring alignment across the different types 
of data (Figure 1).

During the data integration process, on the one hand, we linked 
the structured data from different omics to corresponding data in 
external databases, enriching the information content. On the other 
hand, we employed six different computational methods to construct 
correlation networks among the three omics. In summary, FACdb 
encompasses a vast collection of potential interactions, comprising 
more than 55 million associations involving 73,571 genes, 11,046 gut 
microbiota, and 4,540 metabolites. It offers an intuitive interface that 
facilitates browsing and searching for information associated with 

associations. Moreover, FACdb provides interactive visualization tools 
to enable efficient exploration of the intricate relationships among 
genes, gut microbiota, and metabolites in farm animals.

Based on the integrated data, we have successfully constructed 
and deployed the FACdb (Farm Animal Connectome database), 
which provides a comprehensive database tool with convenient search 
functionality and interactive visualization. FACdb allows users to 
efficiently explore and analyze the complex relationships among genes, 
gut microbiota, and metabolites.

Database construction and deployment

FACdb was constructed using a modern decoupled architecture 
with front-end and back-end separation. The front-end was built 
using Vite 4.0.0,6 Vue.js 3.0.3,7 TypeScript 4.8.48, Element Plus 2.3.0,9 
and Font Awesome 6.3.010 to create a responsive and interactive user 
interface. The back-end was developed with Express 4.16.1,11 Node.js 
18.14.2,12 and JavaScript to handle server-side logic and data access. 
To enable fast queries and data retrieval, FACdb stores all integrated 
multi-omics data directly in a Redis 5.0.713 in-memory database. Redis 
provides rapid caching and lookup of the large association networks 
and underlying gene, gut microbiota, and metabolite data. 
Containerization technologies were leveraged by deploying the 
database within Docker14 containers for simplified distribution and 
deployment. The decoupled architecture, Redis caching, and 

6 https://vitejs.dev/

7 https://vuejs.org/

8 https://www.typescriptlang.org/

9 https://element-plus.org/

10 https://fontawesome.com/

11 https://expressjs.com/

12 https://nodejs.org/

13 https://redis.com/

14 https://www.docker.com/

TABLE 3 The calculation methods of constructing connectomes.

Correlation methods Formula Goal

Pearson correlation coefficient (Pearson and Galton, 1997)
( )( )

( ) ( )
1

2 2
1 1

x x y y
r

x x y y

n
i iixy n n

i ii i

− −
=

− −

=

= =

∑

∑ ∑

Measures the linear relationship between two 

variables.

Spearman’s rank correlation coefficient (Spearman, 1904) ( ) ( )
( ) ( )( )

( ) ( )
cov ,

,
R X R Y

rs R X R Y
R X R Y

ρ
σ σ

= =
Measures the rank correlation between two 

variables.

Cosine similarity (Manning et al., 2008) ( )
( ) ( )

·cos 1
2 2

1 1

A BA B
A B A B

n
i ii

n n
i ii i

θ
×

= =
×

=

= =

∑

∑ ∑

Measures the directional consistency or 

similarity between two vectors.

Euclidean distance (Aggarwal et al., 2001) ( ) ( ), 2

1
d x y x y

n
i i

i
= −

=
∑

Measures the Euclidean distance between two 

vectors.

Bray–Curtis dissimilarity (Bray and Curtis, 1957)
( )min ,

1 2 , ,
, ,

S S
D

S S
A i B i

Bray Curtis
A i B i

∑
= −

∑ + ∑−
Measures the dissimilarity between two 

vectors.

Mahalanobis distance (Mahalanobis, 1936) ( ) ( ) ( ), 11 2 1 2 1 2Dis x x x x S x xT
mahalanobis = − −− Measures the Mahalanobis distance between 

two vectors.
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containerization allow FACdb to serve interactive exploration and 
analysis of large-scale farm animal multi-omics networks through an 
intuitive web interface. The database is currently deployed on Linux 
on x86_64 (Ubuntu Server 20.04.2 LTS) and is publicly accessible 
without login requirements.

Results

Overview of web interface and functions

To ensure that users can use the FACdb datasets, an online website 
was developed to browse and query the information. The website is 
divided into Home, Browse, Search, Statistics, Download, and About.

Browse
On the Browse page, users can explore the basic information of 

gene expression, gut microbiota, and metabolite data (Figures 2A,B). 
By clicking the buttons under “Organism,” users can directly view data 
related to a specific species (Figure 2A). These details are displayed in 
the “Dataset Browse” section. Specifically, users can also perform 
targeted searches for gene, gut microbiota, or metabolite data of a 
particular species by selecting the species, dataset type, and specific 
molecular item. The retrieved data information table will be displayed 
at the bottom of the “Dataset Browse” section (Figure 2B). The gene 
information includes ID, Organism, Samples, Data, Gene Name, 
STRING protein ID, Throughput, Accession, Title, Year, Journal, 
Authors, Condition, DOI, and PMID. The gut microbiota information 
includes ID, Organism, Samples, Data, TaxonID, Gut Microbiota, 

FIGURE 1

The flow chart of FACdb. Various samples from multiple organisms (pigs, cattle, sheep, and chickens) data were collected from public literature 
retrieval and experiments. The raw data for each organism, including gene expression, gut microbiota and metabolites, undergo processing and 
analysis. The raw omics data were cleaned, aligned, and processed to obtain structured data. And the structured data was integrated and subjected to 
correlation calculations to form interconnected networks. Finally, the FACdb web interface was constructed based on the Redis database, providing 
users with interactive data visualization.

https://doi.org/10.3389/fmicb.2025.1557285
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
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Taxon, Rank, Measurement Technique, Tissue, Accession, Title, Year, 
Journal, Authors, Condition, DOI, and PMID. The metabolite 
information includes ID, Organism, Samples, Data, Metabolite, 
HMDB ID, Measurement Technique, Title, Year, Journal, Authors, 
Condition, DOI, and PMID.

By clicking the “Network” link, users can view a network 
visualization in a pop-up window. This network revolves around the 
selected item as the central node and displays the direct associations 
between the three types of items (gene, gut microbiota, and metabolite 
data) based on a specific correlation method and threshold condition. 
Genes are represented by orange-yellow triangles, gut microbiota by 
light blue ellipses, and metabolites by deep purple circles. The edge 
values between items indicate the association weights (correlation or 
distance). Users can further restore the network by selecting the 
desired “Relation” and corresponding “Threshold” from the dropdown 
menu in the pop-up window (Figure 2C).

By clicking the “Details” link, users can view further detailed 
information about the selected item in a pop-up window (Figure 2D). 
This information includes essential details such as literature sources 
and data types. Users can utilize the PMID link to access the 
corresponding literature in the PubMed database.15

For different data table information, we have provided targeted 
external database extensions. For example, in the Gene information 

15 https://pubmed.ncbi.nlm.nih.gov/

data table, clicking on the “Gene ID” will redirect users to the PPI 
network of that gene in the STRING database (Figure 3A). Clicking 
on the “Gene Name” will lead to gene-related information in the NCBI 
database. Clicking “Accession” will allow users to access the original 
data and project information. Similarly, in the gut microbiota 
information data table, clicking on “Taxon” will trace the Taxonomy 
Browser information of that microorganism (Figure  3B). In the 
metabolite information data table, clicking on “HMDB ID” will 
provide access to the structure and other information of that 
metabolite in the HMDB database (Figure 3C).

Within the content of the Browse page, the microbial data for each 
species is matched with its taxonomy. The data is classified and 
summarized based on the hierarchical classification of “Kingdom, 
Phylum, Class, Order, Family, Genus, and Species.” The taxonomy tree 
graph displays the quantity information of taxonomy matches, and the 
radial tree graph represents the corresponding hierarchical 
relationships (Figure  4A). Users can interactively explore the 
visualized results by selecting the desired species from the “Species” 
dropdown menu. Additionally, users have the option to download the 
image results. Users can click on specific nodes in the radial tree graph 
to expand or collapse detailed information.

Search
The search page in FACdb offers users a more precise search 

method and provides detailed information of connectivity network 
data. Users can input their search criteria in the search input box by 
selecting “Organism” and “Dataset” and entering the specific item 

FIGURE 2

Screenshot of Browse page from FACdb. (A,B) Browse page. Users can select species cards. The retrieval results table is displayed below, with options 
to filter by “Species,” “Data Type,” and corresponding data name. (C) Pop-up window for data connection network corresponding to “Network” upon 
clicking, allowing users to filter network edges based on “Correlation Relationship Type” and “Threshold”. (D) Pop-up window for detailed information 
corresponding to “Detail” upon clicking.

https://doi.org/10.3389/fmicb.2025.1557285
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name. They can also set the “Relation” and “Threshold” values to 
retrieve highly targeted networks within FACdb. To assist users, 
we have provided category-specific examples within the search input 
box for reference (Figure 4B). Unlike the Browse page, the Search page 
also provides information on the edge weights of the networks. Users 
can interact with the page to sort and view the networks information 
based on the edge weights or export and download them for 
further analysis.

Statistics, download, and about
The Statistics page presents the aggregated data in FACdb using 

visual charts. It includes an overview of statistics on the three types of 
omics data in FACdb and the connectivity network edges. Additionally, 
this page showcases the top 10 items for each type of data in terms of 
the number of edges in different species connectivity networks under 
three different correlation drivers (Figure 5A).

All data in FACdb are shared under the knowledge sharing 
license agreement, and we provide a download interface for users 
to download the data from FACdb and go for the extended 
databases (Figure 5B). To facilitate users to understand and use our 
database, we  have developed an “About” page to query the 
explanations meaning of specific items in FACdb and the detail 
information of our team.

Statistics analysis on database contents

In FACdb, we conducted a comprehensive statistical analysis to 
examine the quantity and associations between three types of items 
within each species, including genes, gut microbiota, and metabolites.

Distribution and classification of data in FACdb
We conducted a comprehensive statistical analysis of sample 

distribution and the corresponding distribution of each omics data 
within each species in the FACdb database. To ensure the successful 
construction of interconnected components in FACdb, we applied a 
series of standardization processes and filtering operations. Samples 
with data from all three omics types (genes, gut microbiota, and 
metabolites) were selected based on stringent criteria, and the 
distribution of samples meeting the data conditions and exhibiting 
high quality were illustrated in Figure 6A, with 34 samples for pigs, 23 
for cattle, 12 for sheep, and 35 for chickens (Figure 6A).

Furthermore, a pie chart was generated to visually represent the 
distribution of three omics data types among different species in 
FACdb. The distribution of genes is notably uniform across the four 
species (Figure 6B), indicating a relatively stable and conservative 
genetic evolution among farm animals in the transcriptional 
sequencing of genes. In contrast, gut microbiota distribution 

FIGURE 3

The schematic diagram of links and external database extensions in FACdb. (A) Conceptual diagram illustrating the association of “Gene Names” from 
FACdb gene data with “protein ID” from the STRING-DB. (B) Conceptual diagram illustrating the association of “Taxon” from FACdb gut microbiota data 
with NCBI Taxonomy. (C) Conceptual diagram illustrating the association of “HMDB ID” from FACdb metabolite data with HMDB.
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displays significant variations. Specifically, the gut microbiota data 
for pigs (652), cattle (98), and sheep (401) show minimal differences, 
while chickens (9895) exhibit a distinct lead (Figure  6C). This 
disparity can be  attributed to the use of 16S sequencing for 
microbiota analysis in pigs, cattle, and sheep, and metagenomic 
sequencing for chickens, enriching the diversity of gut microbiota 
data in FACdb. The distribution of metabolite data, in comparison, 
shows moderate differences, with fewer entries for pigs (751) and 
cattle (217) and more for sheep (1957) and chickens (1615) 
(Figure 6D).

Additionally, for the scalability assessment of the FACdb database, 
we matched gene, gut microbiota, and metabolite data with external 
databases, including String-DB, NCBI Taxonomy, and HMDB (see 
Figure 3 for matching details). Due to minimal differences in genes, 
Figures 2E,F primarily showcase the distribution of gut microbiota 
and metabolite data matched with external databases. Figure  6E 
compares gut microbiota data for the four species in FACdb with 
NCBI Taxonomy. The substantial reduction in discrepancies caused 
by sequencing methods is evident, particularly in chickens, where the 
matched count in NCBI is 1923 out of 9,895 (Figure 6E). Figure 6F 
demonstrates the comparison of metabolite data for the four species 
in FACdb with HMDB, emphasizing the matching distribution 
between the metabolite of these family animals and human metabolite. 
Overall, the matching results for the metabolite of these four species 

to the human metabolite are relatively stable: pig (565/751), cattle 
(183/217), sheep (678/1957), and chicken (819/1615) (Figure 6F).

Pan-statistical analysis of data in FACdb
Building upon the existing data, we conducted a personalized 

analysis of genes, gut microbiota, and metabolites in FACdb. 
We  performed a quantitative intersection analysis for the 
transcriptomic gene lists of the four species in FACdb and visualized 
the results using a Venn diagram. The analysis revealed that 
48.5% of genes, totaling 9,419, are shared among the four 
species (Figure  7A). Furthermore, approximately 80% of genes 
exist in common among these species, as calculated by 
( ) ( )9418 4472 1585 / 9418 4472 1585 3940+ + + + +  (Figure  7B), 
indicating a certain level of genetic conservation in the evolutionary 
perspective of these family animals. Similarly, Figure 7C illustrates the 
quantitative intersection analysis of metabolite compound names 
among the four species, accompanied by an UpSet plot (Figure 7C).

Concerning gut microbiota data, Figure 7D provides a detailed 
account of the number of taxonomy categories (Superkingdom, 
Phylum, Class, Order, Family, Genus, and Species) matched by gut 
microbiota in each family of animals in FACdb (Figure  7D). 
Additionally, Figure  7E presents a detailed Alluvial diagram 
showcasing the hierarchical relationships of gut microbiota data in 
cattle (Figure  7E). For enhanced user interaction, we  have 

FIGURE 4

Screenshot of taxonomy results and Search page from FACdb. (A) Taxonomy results of gut microbiota in FACdb. FACdb provides interactive 
visualizations for gut microbiota data, including a bar chart displaying counts of “Superkingdom, Phylum, Class, Order, Family, Genus, Species” and a 
radial tree graph depicting hierarchical relationships. (B) Search page. Users can precisely retrieve data connection network information based on 
details like “Organism,” “Dataset,” “Relation,” and “Threshold”. Example queries are also provided. The visualization of the connection network and its 
edge information is displayed on the right. Users can click the Export button to download corresponding network and edge information.
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incorporated an interactive radial tree structure visualization of 
microbial taxonomic relationships on the website (refer to 
Figure 4A).

Discussion

Genes, gut microbiota, and metabolites intricately weave a 
complex network of relationships (Durack and Lynch, 2018; Sung 
et al., 2017; Zhang et al., 2024; Zhang et al., 2023). Considering these 
interactions, we have built FACdb, focusing on family animals, to 
unravel the delicate connections between genes, gut microbiota, and 
metabolites. As for data in pigs, we queried gene-centric association 
networks in FACdb and conducted statistical analyses. For instance, 
we searched the Ten-Eleven Translocation (TET) gene family exhibited 
close associations with various gut microbiota and metabolites under 
the condition of Bray-Curtis <0.01 (details can be  found in 
Supplementary Table S1 and Supplementary Figures S1A,B, S2–S4). 
Notably, the TET gene family (TET1, TET2, TET3) demonstrated 
proximity to superkingdom: Bacteria, phylum: Bacteroidota, class: 
Bacteroidia, and order: Bacteroidales. Further investigation, guided by 
previous studies, unveiled genes associated with antibiotic resistance 
in the pig gut microbiome, including TET genes encoding resistance 
to tetracycline antibiotics. These genes showed strong associations 
with bacterial genera recognized as cohabitants of the pig gut 
microbiome, such as Bacteroides spp. (Holman et al., 2017; Valeriano 
et al., 2017). These findings underscore the nuanced relationships 
among genes, gut microbiota, and more within biological processes as 

captured in FACdb. Similarly, in the case of sheep data, a statistical 
analysis of genus: Akkermansia data under conditions of three 
correlations (>0.85) and three distances (< 1) revealed a plethora of 
first-degree neighbor genes and metabolites (Supplementary Table S2; 
Supplementary Figure S1C). Previous research indicates that 
Akkermansia Muciniphila, a mucin-degrading symbiotic bacterium, 
is a promising probiotic candidate, potentially playing an indispensable 
role in metabolic activities within the mucosal layer (Zhang et al., 
2019). These instances exemplify the wealth of intricate relationships 
embedded in the biological data of FACdb, shedding light on the 
interplay between genes, gut microbiota, and metabolites across 
different species.

Gut microbiota is intimately connected to host health, wellness, 
and growth (De Vos et al., 2022). Currently, the database for recording 
gut microbiota chiefly centers on the correlation between diverse 
intestinal microflora and varying physiological states of hosts or the 
impacts of disease interventions on gut microbiota (Cheng et al., 2020; 
Dai et al., 2022; Lei et al., 2023; Qi et al., 2023; Zhang et al., 2021). 
There are also reservations about the correlation between microbial 
genomes, metabolic groups, and human metabolites (Wishart et al., 
2023). While there exists a database capturing the association between 
gut microbiota, microbial metabolites, and target genes in humans 
and mice (Cheng et  al., 2022), research efforts in livestock have 
remained concentrated on the correlation between phenotype and gut 
microbiota (Xu et al., 2022). These farm animals boast considerable 
economic significance and provide humans with diverse meat, eggs, 
and dairy products. A comprehensive understanding of how gut 
microbiota in farm animals regulate the host is crucial. Our database 

FIGURE 5

Screenshot of Statistics and Download page from FACdb. (A) Screenshot of statistics page from the FACdb. (B) Screenshot of download page from the 
FACdb.
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addresses the research gap in the regulation of host target genes by gut 
microbiota in farm animals.

FACdb has significant potential to advance research in 
comparative genomics, gut microbiota studies, and veterinary sciences 
(Forcina et al., 2022; Wang C. -Y. et al., 2023). By integrating gut 
microbiota, metabolites, and host genes in farm animals, it enhances 
understanding of genetic and microbial interactions across species 
and aids in identifying regulatory mechanisms for health and disease 
(Dai et al., 2025; Furet et al., 2009; Ito et al., 2024). In microbiota 
research, FACdb provides insights into how microbiota regulate 
immune function, metabolism, and development, which is crucial for 

improving livestock health, productivity, and disease resistance. It also 
supports research into modulating microbiota through diet and 
probiotics. In veterinary sciences, FACdb links microbiota, 
metabolites, and host genes to identify biomarkers for diseases like 
enteritis and pancreatitis, enabling early diagnosis and personalized 
treatments. It also aids in studying the effects of microbiota-based 
therapies on host interactions. FACdb contains 73,571 genes, 11,046 
intestinal flora, and 4,540 metabolites of four representative animal 
species. Six calculation methods were employed to construct an 
association network between these groups, yielding over 55 million 
associations. It facilitates researchers in establishing links between gut 

FIGURE 6

Data distribution plot of FACdb. (A) Pie chart illustrating the distribution of sample counts for four species in the FACdb. (B–D) Pie charts depicting the 
distribution of genes, gut microbiota, and metabolites counts for four species in the FACdb. (E) Bar chart displaying the distribution of gut microbiota 
matched with NCBI Taxonomy data across four species. (F) Bar chart presenting the distribution of metabolites matched with HMDB data across four 
species.
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microbiota, their metabolites, and host target genes. However, the 
current database has limitations in sample numbers and animal 
species. Our next objective is to expand the database by incorporating 

more samples, species, and microorganisms, including viruses and 
archaea. The database we have established has facilitated research into 
the regulatory mechanisms of farm animal intestinal microbiota.

FIGURE 7

Statistical analysis plot of FACdb. (A) Venn diagram depicting the quantity of shared genes across different species in FACdb. Different colored circles 
represent data from distinct species. (B) The upper panel illustrates the gene count from samples of four species. The lower panel shows the gene 
count shared among samples belonging to 1–4 different species. (C) UpSet plot revealing the quantity of shared metabolites across different species in 
FACdb. (D) Comprehensive summary statistics of the counts of gut microbiota data from different species corresponding to “Superkingdom, phylum, 
class, order, family, genus, and species” categories in FACdb. (E) Alluvial diagram illustrating the hierarchical relationships of gut microbiota categories 
in cattle from FACdb.
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Conclusion

We conducted extensive data collection and organization to provide 
information on genes, gut microbiota, and metabolites within the same 
samples across various farm animals, resulting in the development of 
FACdb. Utilizing raw data from published literature and experiments, 
we processed information from three omics dimensions, constructing 
association networks from diverse distances and correlation perspectives 
and aligning with external databases. FACdb web interface enables users 
to query and explore detailed information on the three omics and their 
association networks for each organism as needed. Interactive 
visualizations are provided, and all processed data are available for direct 
download on the website to enhance user-friendly access. FACdb will 
be continuously updated with new species data and high-quality omics 
information, serving as an interactive platform for family animal omics 
research. To our knowledge, FACdb is the first database incorporating 
multi-omics data, including genes, microbiota, and metabolites, across 
various farm animals, providing diverse association networks. In any 
case, FACdb is poised to be a robust tool for researchers exploring the 
biological significance of digestive metabolism, immune processes, and 
disease treatment by investigating family animal connectome networks.
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