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Introduction: Human epigenetics, specifically DNA methylation, and the gut 
microbiome are dynamic systems influenced by environmental factors, such as 
diet and earlylife exposures, with profound implications for health and disease. 
Metabolites produced by the gut microbiome interact with the host, shaping 
physiological processes. While prior research has linked Bifidobacterium 
abundance to anxiety and cortisol function, the role of DNA methylation as 
a potential mechanism underlying these associations remains unexplored. 
This study examines the relationship between the relative abundance of 
Bifidobacterium species in the gut and DNA methylation of hypothalamic–
pituitary–adrenal (HPA) axis genes in a pediatric cohort. We hypothesized that 
Bifidobacterium abundance would predict DNA methylation at key HPA genes 
associated with stress response, including NR3C1, FKBP5, and more.
Methods: Multiple linear regression and regularized canonical correlation analysis 
(rCCA) were used.
Results: There were significant associations between Bifidobacterium abundance 
and DNA methylation at HPA gene loci, while control analyses showed no 
association with global methylation levels. rCCA further pinpointed specific 
Bifidobacterium species, such as B. angulatum and B. adolescentis, as strong 
contributors to the first canonical component, correlating with CpG sites 
influencing HPA gene methylation.
Discussion: These findings suggest that microbiome-derived metabolites, such 
as folate, may modulate DNA methylation and stress physiology. This work 
provides new insights for exploring how the gut microbiome impacts mental 
health and stress resilience, offering potential pathways for microbiome-
targeted interventions.
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1 Introduction

Epigenetics, encompassing the biomolecular processes that 
regulate gene expression without altering the underlying DNA 
sequence, has emerged as a key player in health and disease. This 
dynamic system has been linked to a wide array of conditions, 
including cancer (Dawson and Kouzarides, 2012), obesity and diabetes 
(Ling and Rönn, 2019), as well as developmental (Zhao et al., 2007), 
psychiatric (Peña et  al., 2014), and neurodegenerative disorders 
(Migliore and Coppedè, 2009). Critically, certain life stages, such as 
embryonic development (Kessler et al., 2018), early childhood (Lewis 
and Olive, 2014), and adolescence, appear to be  particularly 
susceptible windows during which epigenetic programming is shaped 
by environmental exposures such as diet, environmental toxins, 
maternal behavior, or childhood abuse (Alegría-Torres et al., 2011; 
Niwa et al., 2016; Ochi and Dwivedi, 2023). Similarly, the microbiome, 
the community of microorganisms residing within and on the human 
body, also plays an important role in host physiology and health 
(Shreiner et  al., 2015). Gut microbiome composition also has 
associations with cancer (Schwabe and Jobin, 2013), metabolic 
diseases such as obesity and diabetes (Devaraj et al., 2013), and a range 
of developmental (Vuong and Hsiao, 2017), psychiatric (Kelly et al., 
2015), and neurodegenerative disorders (Roy Sarkar and Banerjee, 
2019). Notably, many of the same early life exposures that influence 
the epigenetic programming also impact gut microbiome composition 
and function, highlighting an intricate interplay between the two 
systems (Dong and Gupta, 2019).

Early-life stress (ELS) impacts hypothalamic–pituitary–adrenal 
(HPA) axis function, at least partially, through epigenetic regulation, 
particularly DNA methylation (Parade et  al., 2021). In parallel, 
substantial evidence from animal studies demonstrates that ELS alters 
gut microbiome composition, which subsequently influences HPA 
function, contributing to anxiety and depression-like behaviors (Bailey 
et al., 2004; Rea et al., 2016; Dinan and Cryan, 2012; Hantsoo and 
Zemel, 2021). Emerging research suggests similar effects in humans 
(Rosin et al., 2021; Keskitalo et al., 2021; Vogel et al., 2020; Flannery 
et al., 2020). Although bidirectional communication between the brain 
and gut microbiome—via neural, endocrine, and inflammatory 
pathways—is well established, the specific mechanisms remain unclear 
(Osadchiy et al., 2019). A compelling hypothesis is that ELS-induced 
changes in the gut microbiome alter levels of biosynthesized metabolites, 
which in turn regulate host epigenetic processes affecting HPA function 
(Kok et al., 2018; Louwies et al., 2020; Marín-Tello et al., 2022).

Folate, also known as vitamin B9, plays an essential role in cellular 
function and is a key regulator of epigenetic processes. It drives 
one-carbon metabolism, a sophisticated network of metabolic pathways 
that provide the methyl groups necessary for DNA methylation (McKay 
and Mathers, 2011). Folate deficiency can lead to aberrant DNA 
methylation and disease etiology (Crider et al., 2012). Folate cannot 
be synthesized by mammals and must, therefore, be obtained from other 

sources. Interestingly, 13% of microbiome reference genomes contain all 
genes required for folate synthesis. An additional 39% of microbiome 
genomes can synthesize folates in the presence of pABA, an upstream 
intermediate obtained through diet or from other intestinal microbes 
(Engevik et al., 2019). Dietary folate is primarily absorbed in the small 
intestine, while folate produced by gut bacteria enters the bloodstream 
via transporters in the colon (Magnúsdóttir et al., 2015; Said, 2011; Yoshii 
et al., 2019). Animal studies estimate that at least 18% of circulating folate 
originates from bacterial production (Asrar and O’Connor, 2005; Park 
et al., 2013). The presence of colon folate transporters and the higher 
absorption rate of colon-derived folate compared to dietary intake 
suggest a significant role of bacterially synthesized folate in host 
physiology (Qiu et  al., 2006; Lakoff et  al., 2014). Consequently, the 
composition of the host microbiome and the abundance of folate-
producing bacterial strains may influence bioavailable folate and impact 
epigenetic processes, such as DNA methylation.

Multiple studies suggest that microbiome-mediated effects on the 
host epigenome play a role in various disease states, including cancer 
(Asrar and O’Connor, 2005), immune-mediated disorders (Zheng 
et al., 2020), inflammatory bowel disease (Aleksandrova et al., 2017), 
and obesity and diabetes (Sharma et al., 2020). This study builds on 
previous research by examining the association between the genus 
Bifidobacterium and HPA gene DNA methylation in a healthy 
pediatric cohort. Bifidobacteria are among the most beneficial gut 
microbiota, contributing significantly to host health through functions 
such as folate production (Rossi et al., 2011). Numerous studies in 
rodent models have demonstrated the anxiolytic, antidepressant, and 
HPA-axis-modulating effects of Bifidobacteria (Yunes et al., 2020), 
with an expanding body of evidence supporting similar findings in 
humans (Altaib et al., 2021; Akkasheh et al., 2016).

In this study, we  hypothesized that the relative abundance of 
Bifidobacterium species would predict DNA methylation patterns in 
key HPA-axis genes previously linked to early life stress, including 
NR3C1, FKBP5, AVP, CRH, CRHR1, and CRHR2. To test these 
hypotheses, we  employed two analytical approaches: a traditional 
multiple linear regression model and regularized canonical correlation 
analysis (rCCA) (Leurgans et  al., 1993). rCCA is an integrative, 
correlation-based method that identifies latent features shared across 
multimodal datasets. This approach facilitates a systems biology 
perspective, bypasses the need for multiple hypothesis testing, and 
accounts for numerous small effect sizes. rCCA is particularly well-
suited for scenarios where the number of measured features exceeds 
the sample size, as is typical in modern omics studies (González et al., 
2009). Understanding these associations during early life is especially 
critical, as both the microbiome and the epigenome are highly 
responsive to environmental influences during this 
developmental stage.

2 Methods

2.1 Parent study

Our study was based on a subset of participants prospectively 
followed as part of the Environmental influences on Child Health 
Outcomes (ECHO) Program. ECHO is a consortium of 69 established 
pediatric cohort studies collecting new data under a common protocol 
since 2019 (Gillman and Blaisdell, 2018) with the primary aim to 

Abbreviations: CpG, Cytosine and guanine nucleotides connected via a 

phosphodiester bond; DNA, Deoxyribonucleic acid; ECHO, Environmental 

influences on Child Health Outcomes; ELS, Early-life stress; HPA, Hypothalamic–

pituitary–adrenal; PC1, First principal component; PC2, Second principal 

component; PCA, Principal Component Analysis; PCR, Polymerase Chain Reaction; 

rCCA, Regularized canonical correlation analysis; rRNA, Ribosomal ribonucleic acid.
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study the effects of early-life environmental exposures on child health. 
Single and cohort-specific institutional review boards monitored 
human subject activities and the centralized ECHO Data Analysis 
Center. All participants provided written informed consent.

Eligibility criteria for the parent study included mothers >18 years 
old, term gestation: 37–41 weeks, healthy singleton pregnancy, no 
evidence of uncontrolled medical conditions (i.e., hypertension, 
pre-eclampsia, uncontrolled diabetes) or medical conditions that 
could potentially impact the safety of a participant during a study visit, 
no history of major psychiatric illness, English speaking, consent to 
baby brain imaging, and the longitudinal nature of the study; infants 
had no significant congenital anomalies, and infants had no history of 
neurological trauma or disorder (e.g., epilepsy). Inclusion criteria for 
the subset used in this study included participants who came to the 
lab during the study recruitment period. Participants’ recruitment 
occurred in person at a research visit or remotely.

2.2 Demographics

Demographic information was collected by parental report and is 
summarized in Table 1 and Supplementary Figures 1, 2. Our sample 
size was determined by the largest number of eligible participants 

available to us within the ECHO dataset, given the study’s inclusion/
exclusion criteria. This approach maximized statistical power while 
ensuring that all available relevant data were utilized. To reduce 
temporal variability across biospecimen types while maintaining a 
well powered sample from an extant dataset, only participants with 
fecal and saliva samples collected within 365 days of one another were 
included in the analyses (M = 77.5 days; SD = 110). To account for 
missing data on age (n = 30 out of N = 142), we  employed data 
imputation with the R package “mice” using the pmm method, which 
produced the most similar age distribution and did not change the 
overall age range. After imputation, age ranged from 1 month to 
15 years old (N = 142; Mage = 4.27, SD = 3.89), and 40% were females. 
No other variables were imputed. 76% of the participants reported 
non-Latino/Hispanic ethnicity, and 77.5% of the participants reported 
White as their race. Race and ethnicity were determined via parent 
report. Written consent was obtained from parents or legal guardians 
in accordance with ethics approval from the host institution’s 
Institutional Review Board.

2.3 Stool and saliva collection

Saliva was collected from participants in the lab using Oragene 
(DNA Genotek, Ottawa, Ontario, Canada) saliva collection kits. DNA 
was extracted with a standard isolation kit (DNA Genotek’s PT-L2P-
5). Sample yield and purity were assessed spectrophotometrically 
using NanoDrop ND-1000 (ThermoScientific, Wilmington, DE) 
methods. Stool samples were collected by parents in OMR-200 tubes 
(OMNIgene GUT, DNA Genotek, Ottawa, Ontario, Canada), stored 
on ice, and brought within 24 h to the laboratory in RI, where they 
were immediately frozen at −80°C. Stool samples were not collected 
if the infant had taken antibiotics within the last two weeks. Samples 
were transported to Wellesley College (Wellesley, MA) on dry ice for 
further processing. Nucleic acids were extracted from 200 μL of each 
stool sample using the RNeasy PowerMicrobiome kit automated on 
the QIAcube (Qiagen, Germantown, MD), excluding the DNA 
degradation steps. Cell lysing steps were performed using the Qiagen 
PowerLyzer 24 Homogenizer (Qiagen, Germantown, MD) at 2500 
speed for 45 s, then samples were transferred to the QIAcube to 
complete the protocol, and extracted DNA was eluted in a final 
volume of 100 μL.

2.4 Sequencing of metagenomes

Extracted DNA was sequenced at the Integrated Microbiome 
Resource (IMR, Dalhousie University, NS, Canada) (Aleksandrova 
et al., 2017). To sequence metagenomes, a pooled library (max 96 
samples per run) was prepared using the Illumina Nextera Flex Kit for 
MiSeq and NextSeq (a PCR-based library preparation procedure) 
from 1 ng of each sample, where samples were enzymatically sheared 
and tagged with adaptors, PCR amplified while adding barcodes, 
purified using columns or beads, and normalized either using Illumina 
beads or manually. Samples were then pooled onto a plate and 
sequenced on the Illumina NextSeq 550 platform using 150 + 150 bp 
paired-end “high output” chemistry, generating ~400 million raw 
reads and ~120 Gb of sequence. Samples were deposited in NCBI 
GenBank under BioProject PRJNA695570. Mean read depth across 

TABLE 1  Participant demographics.

Age

Mean ± SD 4.27 ± 3.89

Range 1 m–15y

Sex (%)

Male 59.2

Female 40.8

Ethnicity (%)

Hispanic/Latino 23.9

Non-Hispanic/Latino 76.1

Race (%)

Asian 0.70

Asian Indian 1.41

Black or African American 5.63

Black or African American\

American Indian or Alaska 

Native

0.70

White 77.50

White\Black or African 

American

3.52

White\Black or African 

American\American Indian 

or Alaska Native

0.70

White\Other Asian 0.70

Mixed race 3.52

Unknown 4.23

Decline to answer 1.41

Summary of participant demographic information.
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all samples in this study was 7,841,324, with a standard deviation of 
3,409,844.

2.5 DNA methylation microarrays

DNA was treated with sodium bisulfite using the EZ-96 DNA 
Methylation Kit (Zymo Research, Irvine, CA). DNA methylation was 
quantified using the Infinium MethylationEPIC BeadChip run on an 
Illumina iScan System (Illumina, San Diego, CA). Raw IDAT files 
were exported for preprocessing in R with the minfi package, and 
standard quality control analyses were performed, including quantile 
normalization, checking for sex mismatches, and excluding 
low-intensity samples (p detection < 0.01) (Aryee et al., 2014). Three 
samples did not pass our quality control pipeline due to low intensity. 
Using the R package EpiDISH (Epigenetic Dissection of Intra-Sample 
Heterogeneity, 3.8) RPC method, we  estimated the proportion of 
epithelial cells per sample.

2.6 Analyzing metagenomes

Metagenomic data were analyzed using the bioBakery workflow 
with all necessary dependencies and default parameters (McIver et al., 
2018). Briefly, KneadData (v0.7.10) was used to trim and filter raw 
sequence reads and to separate human and 16S ribosomal rRNA gene 
reads from bacterial sequences in both fecal and oral samples. Samples 
that passed quality control were taxonomically profiled to the genus 
level using MetaPhlAn (v3.0.7) (Beghini et al., 2021).

2.7 Bifidobacterium composite

We created a composite variable by summing across all 
Bifidobacterium strains measured in our sample 
(Supplementary Table 1). Relative abundance values were normalized 
within individual participants such that the total sum equaled 100%. 
For each composite, we summed the normalized relative abundances 
that belonged to the same genus-level group, Bifidobacterium. This 
summation approach was used to reduce dimensionality and to reflect 
total genus-level abundance, allowing us to focus on broader microbial 
patterns rather than individual taxa that may be highly sparse.

2.8 Statistical analyses

2.8.1 Principal component analyses
A commonly used method to detect patterns in DNA methylation 

data is principal component analysis (PCA) (Sharma et al., 2020; Rossi 
et al., 2011; Yunes et al., 2020; Altaib et al., 2021), a dimensionality 
reduction procedure (Akkasheh et al., 2016). PCA is used to develop 
a smaller number of latent variables, called principal components, 
with the first principal component (PC1) accounting for the most 
variance in the observed variables (Akkasheh et al., 2016). To address 
the multiple testing burden associated with analyzing numerous CpG 
sites per gene of interest and to reduce the risk of Type II error, 
we  applied principal component analysis (PCA) to all CpG sites 
annotated to each gene of interest. PCA was conducted within each 

gene separately, using methylation values from individual CpG sites 
annotated to that gene. This approach allowed us to capture the major 
axes of variability in methylation within each gene while reducing 
dimensionality and multicollinearity among sites. We acknowledge 
that this method may reduce site-specific interpretability but 
prioritized gene-level summaries to facilitate downstream analyses 
and reduce Type I error. The first and second principal components 
(PC1; PC2) of each gene were used as outcome variables in regression 
models (Supplementary Table 2).

2.8.2 Multiple linear regression
The Bifidobacterium composite was used as a predictor variable in 

multiple linear regression models while controlling for sex, age, 
sequencing depth, and time between saliva and fecal sample collection. 
Importantly, we did not include the estimated epithelial cell count 
percentage as a covariate due to high multicollinearity with all PC1s, 
which has been found by other groups (Leurgans et al., 1993). We also 
created a proxy measure of global methylation by first defining the 
top  50% variable CpG sites across samples and averaging them 
together per individual (the variable is referred to as ‘Global50p’). This 
variable was used as a control analysis to assess if Bifidobacterium 
levels are associated with DNA methylation globally or specifically to 
our genes of interest. We limited global DNA methylation analysis to 
the top  50% most variable CpG sites to reduce dimensionality, 
improve interpretability, and focus on sites with greater biological 
variability, which are more likely to reflect meaningful differences 
across individuals. This approach is commonly used in epigenomic 
studies to enrich for signal over noise and to increase statistical power 
in downstream analyses. To more closely evaluate the relationships 
between Bifidobacterium and DNA methylation, we  assessed the 
location of CpG sites with the largest loading values onto the first 
principal component.

2.8.3 Association-based mediation analyses
Given that both the microbiome and epigenome exhibit significant 

variability during early development, age could act as a confounding 
variable influencing associations between the two. To address this, 
we  incorporated age as a covariate in all models. Furthermore, to 
explicitly evaluate the role of age, we performed an association-based 
mediation analysis to quantify the proportion of the relationship 
between Bifidobacterium abundance and HPA gene DNA methylation 
that is mediated by age.

2.8.4 Regularized canonical correlation analysis 
(rCCA)

Regularized canonical correlation analysis (rCCA) was used to 
identify a set of orthogonal linear combinations, or canonical (latent) 
variates, that maximized the shared variability between two datasets. 
Components (canonical variates) for each dataset were calculated 
separately and optimized to maximize the correlation between the 
corresponding variates. rCCA was selected as an alternative to 
multiple regression given the presence of multiple intercorrelated 
outcome variables.

A scree plot (Supplementary Figure 3) was generated, and the 
elbow point was identified at dimension = 3, where the decrease in 
canonical correlation notably slowed. Accordingly, we  also tested 
ncomp = 3 to assess whether results differed substantially. To further 
validate findings, cross-validation was performed using the tune.rcc 

https://doi.org/10.3389/fmicb.2025.1558809
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Harker et al.� 10.3389/fmicb.2025.1558809

Frontiers in Microbiology 05 frontiersin.org

function in the mixOmics R package to optimize the Ridge 
regularization parameters (lambda1, lambda2). Default settings were 
applied, which implemented 10-fold leave-one-out cross-validation. 
The optimal parameters returned were lambda1 = 1 and 
lambda2 = 0.7503, which were then used in the rcc function with 
method = “ridge” (Supplementary Figure  4). These results were 
compared to those obtained using the shrinkage method.

The analysis included 142 samples and two datasets: X 
(Bifidobacterium abundance, 9 variables) and Y (NR3C1 CpG site 
DNA methylation, 113 variables). Both datasets were preprocessed 
using the shrinkage method to ensure optimal regularization. Strains 
with a total sum count < 1 across all individuals were excluded 
(Supplementary Table 1). The regularization parameters applied were 
0.7637 for the X dataset and 0.0564 for the Y dataset. The rcc function 
(mixOmics) was then used to perform rCCA with a correlation 
threshold of 0.3, extracting two components for further analysis.

Statistical significance was evaluated via permutation testing with 
10,000 iterations, randomly shuffling sample labels of one dataset to 
generate a null distribution of canonical correlations. To aid 
interpretation of canonical variates, loadings were examined to 
identify the most influential CpGs and strains contributing to 
observed associations, focusing on features with absolute correlation 
coefficients > 0.3. This threshold was determined to balance 
interpretability with statistical rigor in detecting moderate associations.

3 Results

3.1 Relative abundance of Bifidobacterium 
significantly predicts HPA-gene DNA 
methylation

The Bifidobacterium composite variable was a significant predictor 
of DNA methylation Principal Component 1 (PC1) of all genes except 
CRH. In contrast, the Bifidobacterium composite only predicted one 
PC2, specifically CRH PC2 (Table 2; Supplementary Figure 5). In the 
control analysis, Bifidobacterium was not a significant predictor of 
global50p DNA methylation (b = −8.231e-04, p = 0.11). Principal 
component analysis (PCA) calculates correlations between CpG sites 
and the first principal component (PC1), referred to as loading values. 
CpG sites correlated with PC1 exhibit co-variation; when one site 
increases in methylation, the others increase or decrease 
proportionally. Consequently, PC1s represent higher methylation 
values at CpG sites with positive loadings and lower methylation at 

sites with negative loadings. In our analysis, the PC1s were mostly 
influenced by positive loadings (Figure 1).

3.2 Age does not fully account for the 
associations between Bifidobacterium and 
HPA-gene DNA methylation

The relationship between PC1 DNA methylation of all genes (and 
CRH PC2) with Bifidobacterium was significantly mediated by age; the 
proportion mediated ranged from 57–62% (Table 3; full mediation 
results are included in Supplementary Table  3). These results 
demonstrate that while age is a significant factor driving the 
association between Bifidobacterium and DNA methylation, it does 
not fully mediate the relationship. It is known that Bifidobacterium 
presence reduces with age; thus, we also explored the interaction of 
age and Bifidobacterium abundance. We did not find any significantly 
meaningful results.

3.3 There are strong canonical correlations 
between Bifidobacterium and NR3C1 DNA 
methylation

Regularized canonical correlation analysis (rCCA) was performed 
to investigate the relationships between microbial species (dataset X) 
and CpG sites (dataset Y), focusing on their contributions to the first 
two canonical components (full rCCA loading values are included in 
Supplementary Table 4). The canonical correlations between the two 
datasets were strong for the first (r = 0.64; permuted p < 0.0001; 
Supplementary Figure  6) and second canonical variates (r = 0.56; 
permuted p = 0.7676). For canonical variates 1, microbial features 
such as angulatum (0.36), catenulatum (0.18), and adolescentis (0.17) 
displayed strong positive loadings, indicating their significant role in 
explaining the variation captured by this dimension. Conversely, 
dentium (−0.52) and pullorum (−0.25) had strong negative loadings, 
suggesting opposing contributions. Similarly, CpG sites such as 
cg06521673 (0.61), cg03746860 (0.56), and cg19641581 (0.56) were 
among the most influential positive contributors, while cg24801588 
(−0.70), cg05048928 (−0.77), and cg14438279 (−0.63) had significant 
negative contributions. For canonical variate 2, microbial features 
breve (0.10) and bifidum (0.09) positively contributed, whereas 
dentium (−0.59) and pullorum (−0.43) exhibited strong negative 
associations. CpG sites such as cg15740681 (0.82) and cg23273257 

TABLE 2  Bifidobacterium significantly predicts HPA gene DNA methylation omnibus and PCA results for HPA genes predicting Bifidobacterium.

Omnibus results PC1 PC2

Gene F p R2 B p B p

NR3C1 52.16 <2.2e-16 0.60 −0.17 0.002 −0.02 0.76

FKBP5 46.41 <2.2e-16 0.58 0.19 0.00 −0.08 0.24

AVP 42.98 <2.2e-16 0.56 0.19 0.00 −0.11 0.13

CRH 6.59 7.06e-05 0.16 −0.14 0.08 0.23 0.00

CRHR1 53.01 <2.2e-16 0.61 −0.18 0.00 0.06 0.45

CRHR2 42.72 <2.2e-16 0.56 −0.15 0.01 −0.02 0.77

Multiple R2 is reported. DF for every model = 4, 137.
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(0.64) strongly influenced canonical variate 2 positively, while 
cg25535999 (−1.18), cg19176661 (−0.78), and cg19645279 (−0.74) 
negatively impacted this dimension. These findings suggest distinct 
sets of microbial species and CpG sites driving variability in the 
canonical components, with positive loadings reflecting coordinated 
biological processes and negative loadings indicating opposing 
relationships. Component 1 was dominated by microbial 
contributions, particularly angulatum and catenulatum, while 
Component 2 was more heavily influenced by CpG methylation sites 
such as cg15740681 and cg23273257. Together, these results highlight 
the complex interplay between the microbiome and epigenome, 
offering valuable insights into potential shared pathways or 
mechanisms underlying these associations. Figure 2 represents the 
categorization of the relationship between NR3C1 CpG methylation 
sites and Bifidobacterium species.

4 Discussion

This is the first study to investigate gut microbiome composition 
in relation to HPA gene DNA methylation. We  assessed the 
relationships between a probiotic-folate-producing genus, 
Bifidobacterium, and DNA methylation of key HPA genes, including 
NR3C1, FKBP5, AVP, CRH, CRHR1, and CRHR2. Results revealed 
robust associations between DNA methylation at CpG sites across 
the gene body for all HPA genes examined. Additionally, the 
abundance of Bifidobacterium species does not predict global DNA 
methylation, indicating that its impact on DNA methylation is 
more specifically linked to cortisol-related genes rather than overall 
DNA methylation levels. Finally, association-based mediation 
analysis revealed that factors beyond age partially drive 
these associations.

FIGURE 1

Directionality and CpG site location of HPA-gene DNA methylation and Bifidobacterium abundance. Graph depicts the number of CpG sites and their 
gene location with a significant positive (blue) or negative (orange) relationship with Bifidobacterium relative abundance.

TABLE 3  HPA gene DNA methylation and Bifidobacterium proportion mediated by age.

Bifidobacterium

Gene Estimate 95% CI lower 95% CI upper p-value

NR3C1 (PC1) 0.60 0.46 0.77 <2e-16

FKBP5 (PC1) 0.57 0.42 0.74 <2e-16

AVP (PC1) 0.58 0.43 0.77 <2e-16

CRH (PC2) 0.50 0.33 0.74 <2e-16

CRHR1 (PC1) 0.57 0.44 0.72 <2e-16

CRHR2 (PC1) 0.62 0.46 0.80 <2e-16

Mediation results for HPA gene DNA methylation and Bifidobacterium mediated by age.
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We further probed associations between Bifidobacterium 
abundance and NR3C1 DNA methylation through a multi-omic 
regularized canonical correlation model. Findings revealed a complex 
interplay between Bifidobacterium and HPA-related CpG methylation 
sites, underscoring shared biological pathways linking the microbiome 
and epigenome related to stress and anxiety. Notably, canonical variate 
1 was heavily influenced by Bifidobacterium species such as angulatum, 
catenulatum, and adolescentis, alongside CpG sites like cg06521673 
and cg03746860, which positively loaded onto this dimension. This 
alignment may point to coordinated biological processes where 
specific microbial communities influence methylation patterns in a 
concerted manner. Conversely, negative loadings for features such as 
dentium and cg24801588 suggest opposing roles within 
these interactions.

Similarly, canonical variate 2 demonstrated distinct patterns, with 
CpG sites like cg15740681 and cg23273257 exerting strong positive 
influences, while microbial species such as dentium and CpG sites like 
cg25535999 contributed negatively. DNA methylation at open sea 
CpG sites can have functional regulatory consequences. Using 
mSTARR-seq, Lea et al. (2018) identified thousands of methylation-
dependent enhancer elements in open sea regions that directly 
modulate gene expression. Additionally, synthetic methylation studies 
in yeast and human cell lines show that methylation in these regions 
can alter chromatin accessibility and transcription factor binding (Lea 

et al., 2018; Shipony et al., 2020). These results suggest that while 
microbial communities dominate some dimensions of this interplay, 
others are primarily driven by epigenetic variations. Taken together, 
these findings offer valuable insights into how microbial and 
epigenetic interactions may converge in influencing stress physiology 
and anxiety phenotypes, potentially providing a framework for 
understanding shared mechanisms underlying mental health.

Considering the established links between HPA dysregulation 
(Murphy et al., 2022), epigenetic mechanisms (Keverne and Binder, 
2020), and microbiome composition (Kelly et  al., 2015) in 
psychiatric disorders, the epigenetic modifying potentials of 
microbiome metabolites are not well studied (Stilling et al., 2014). 
While the current study cannot ascertain the direction of effects or 
an associative relationship, it provides evidence that levels of the 
probiotic genus, Bifidobacterium spp., may influence DNA 
methylation of HPA genes. If such a pathway can be established in 
future mechanistic studies, microbiome-modifying exposures such 
as diet, exercise, and probiotics could be explored specifically as 
epigenetic-targeting psychiatric treatments. Slight alterations in 
DNAm are known to impact genetic regulation and downstream 
function (Jones, 2012). For example, our lab previously 
demonstrated that peripheral DNA methylation of HPA-related 
genes is predictive of the diurnal cortisol slope (Lewis et al., 2021). 
Importantly, gut microbiota composition may impact the 

FIGURE 2

Relationships between NR3C1 CpG methylation sites and Bifidobacterium species. (A) The correlation circle plot reveals distinct associations between 
HPA-related CpG sites and Bifidobacterium strains, with microbial species such as bifidum and breve showing stronger correlations with principal 
components compared to others like pullorum and longum. (B) The relevance network highlights the complex interplay between CpG sites and 
Bifidobacterium species, with bifidum exhibiting multiple significant positive and negative correlations. (C) The heatmap illustrates the correlation 
patterns between CpG sites and Bifidobacterium species, with distinct clusters of CpG sites sharing similar positive and negative patterns across 
species.
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epigenome widely (Kumar et  al., 2014). As such, associations 
between gut microbiome and DNA methylation found is this study 
suggest the potential pathway that gut microbiome composition 
impacts HPA-related gene regulation and downstream physiology. 
However, more research assessing this pathway is necessary.

Microbiome effects on the host epigenome are a likely pathway 
in many disease states (Gillman and Blaisdell, 2018; Aryee et al., 
2014). For instance, the role of microbial metabolites in mediating 
the well-established link between diet and the epigenome has been 
extensively studied over the past decade (McIver et  al., 2018; 
Beghini et al., 2021; Murphy et al., 2022). Changes in microbial 
composition influence epigenetic patterns underlying metabolic 
syndrome (Keverne and Binder, 2020). The gut microbiota plays a 
crucial role in colorectal carcinogenesis by either directly or 
indirectly affecting local epigenetics (Stilling et al., 2014). Various 
microbial manipulation therapies for lung cancer demonstrate 
impressive results through modulating epigenetic homeostasis of 
the lung and the epigenetic aberrations in lung carcinogenesis 
(Barton et al., 2019). Microbiome transplant therapies have also 
demonstrated changes in the behavior and epigenetics of autistic 
individuals (Nabais et al., 2023; Van Puyvelde et al., 2023). Other 
studies have focused on the immediate vicinity of the gut 
microbiome and have found influences on the host’s intestinal 
epigenetics and local homeostasis (El-Sayed et  al., n.d.). Our 
findings add to this growing body of evidence, suggesting that 
associations between microbiome composition, cortisol levels, and 
psychiatric symptoms may be partially driven by microbe-derived 
folate influencing epigenetic regulation of HPA-axis genes.

A limitation of this study is that we were unable to control for 
dietary intake, which impacts microbiome composition. Given the 
harmonized protocols of the ECHO consortium, potential biases 
from individual cohort designs are likely minimized, though 
we acknowledge this as a limitation to this work. It should also 
be acknowledged that limiting the global analysis to the top 50% 
most variable CpG sites may exclude low-variance CpG sites that 
could still be biologically important, particularly those involved in 
stable regulatory functions or developmentally constrained 
pathways. We also did not include a cell composition variable, an 
important covariate in epigenetic studies, due to the high 
collinearity with all of the DNA methylation principal components. 
However, others have shown that including cell-type heterogeneity 
adjustment does not always improve the analysis (Barton et al., 
2019; Nabais et  al., 2023). Since this study only assessed 
Bifidobacterium, future studies could include the relative 
abundance of all known folate producers and other microbiome-
produced metabolites that affect DNA methylation, such as betaine 
and choline (Van Puyvelde et  al., 2023). Future studies could 
include cortisol output to further elaborate on downstream effects 
of the epigenome on host physiology.

In conclusion, microbiome metabolites may influence stress 
physiology through altering the host epigenome (El-Sayed et al., 
n.d.). The interaction between the developing gut microbiome and 
epigenetic processes may play a critical role in brain health 
throughout development (Kaur et al., 2021; Alam et al., 2017). This 
study highlights biologically plausible associations between 
Bifidobacterium and HPA gene DNA methylation in a healthy 
pediatric cohort. While the directionality of effects between the 
microbiome and epigenome remains unclear, evidence suggests a 

bidirectional relationship between these dynamic systems. 
Clarifying this association is crucial to understanding how 
interventions targeting the microbiome, or epigenome, might 
mitigate psychiatric vulnerability. Future longitudinal studies are 
needed to more directly assess temporal order and potential 
causality between microbiome composition and host DNA 
methylation. Additional investigations should explore an integrated 
analysis between the complete gut microbiome and epigenome-
wide DNA methylation. A more comprehensive exploration of 
mental health etiology, along with the intricate pathways 
connecting environmental exposures to biological processes, could 
usher in a new era of understanding and prevention strategies.
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