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Introduction: Human epigenetics, specifically DNA methylation, and the gut
microbiome are dynamic systems influenced by environmental factors, such as
diet and earlylife exposures, with profound implications for health and disease.
Metabolites produced by the gut microbiome interact with the host, shaping
physiological processes. While prior research has linked Bifidobacterium
abundance to anxiety and cortisol function, the role of DNA methylation as
a potential mechanism underlying these associations remains unexplored.
This study examines the relationship between the relative abundance of
Bifidobacterium species in the gut and DNA methylation of hypothalamic—
pituitary—adrenal (HPA) axis genes in a pediatric cohort. We hypothesized that
Bifidobacterium abundance would predict DNA methylation at key HPA genes
associated with stress response, including NR3C1, FKBP5, and more.

Methods: Multiple linear regression and regularized canonical correlation analysis
(rCCA) were used.

Results: There were significant associations between Bifidobacterium abundance
and DNA methylation at HPA gene loci, while control analyses showed no
association with global methylation levels. rCCA further pinpointed specific
Bifidobacterium species, such as B. angulatum and B. adolescentis, as strong
contributors to the first canonical component, correlating with CpG sites
influencing HPA gene methylation.

Discussion: These findings suggest that microbiome-derived metabolites, such
as folate, may modulate DNA methylation and stress physiology. This work
provides new insights for exploring how the gut microbiome impacts mental
health and stress resilience, offering potential pathways for microbiome-
targeted interventions.

KEYWORDS

gut microbiome, Bifidobacterium, Bifidobacteria, DNA methylation, epigenetics,
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1 Introduction

Epigenetics, encompassing the biomolecular processes that
regulate gene expression without altering the underlying DNA
sequence, has emerged as a key player in health and disease. This
dynamic system has been linked to a wide array of conditions,
including cancer (Dawson and Kouzarides, 2012), obesity and diabetes
(Ling and Ronn, 2019), as well as developmental (Zhao et al., 2007),
psychiatric (Pefia et al, 2014), and neurodegenerative disorders
(Migliore and Coppede, 2009). Critically, certain life stages, such as
embryonic development (Kessler et al., 2018), early childhood (Lewis
and Olive, 2014), and adolescence, appear to be particularly
susceptible windows during which epigenetic programming is shaped
by environmental exposures such as diet, environmental toxins,
maternal behavior, or childhood abuse (Alegria-Torres et al., 2011;
Niwa et al., 2016; Ochi and Dwivedi, 2023). Similarly, the microbiome,
the community of microorganisms residing within and on the human
body, also plays an important role in host physiology and health
(Shreiner et al, 2015). Gut microbiome composition also has
associations with cancer (Schwabe and Jobin, 2013), metabolic
diseases such as obesity and diabetes (Devaraj et al., 2013), and a range
of developmental (Vuong and Hsiao, 2017), psychiatric (Kelly et al.,
2015), and neurodegenerative disorders (Roy Sarkar and Banerjee,
2019). Notably, many of the same early life exposures that influence
the epigenetic programming also impact gut microbiome composition
and function, highlighting an intricate interplay between the two
systems (Dong and Gupta, 2019).

Early-life stress (ELS) impacts hypothalamic—pituitary—adrenal
(HPA) axis function, at least partially, through epigenetic regulation,
particularly DNA methylation (Parade et al, 2021). In parallel,
substantial evidence from animal studies demonstrates that ELS alters
gut microbiome composition, which subsequently influences HPA
function, contributing to anxiety and depression-like behaviors (Bailey
et al., 2004; Rea et al.,, 2016; Dinan and Cryan, 2012; Hantsoo and
Zemel, 2021). Emerging research suggests similar effects in humans
(Rosin et al., 2021; Keskitalo et al., 2021; Vogel et al., 2020; Flannery
etal., 2020). Although bidirectional communication between the brain
and gut microbiome—via neural, endocrine, and inflammatory
pathways—is well established, the specific mechanisms remain unclear
(Osadchiy et al., 2019). A compelling hypothesis is that ELS-induced
changes in the gut microbiome alter levels of biosynthesized metabolites,
which in turn regulate host epigenetic processes affecting HPA function
(Kok et al., 2018; Louwies et al., 2020; Marin-Tello et al., 2022).

Folate, also known as vitamin B9, plays an essential role in cellular
function and is a key regulator of epigenetic processes. It drives
one-carbon metabolism, a sophisticated network of metabolic pathways
that provide the methyl groups necessary for DNA methylation (McKay
and Mathers, 2011). Folate deficiency can lead to aberrant DNA
methylation and disease etiology (Crider et al., 2012). Folate cannot
be synthesized by mammals and must, therefore, be obtained from other

Abbreviations: CpG, Cytosine and guanine nucleotides connected via a
phosphodiester bond; DNA, Deoxyribonucleic acid; ECHO, Environmental
influences on Child Health Outcomes; ELS, Early-life stress; HPA, Hypothalamic—
pituitary—adrenal; PC1, First principal component; PC2, Second principal
component; PCA, Principal Component Analysis; PCR, Polymerase Chain Reaction;

rCCA, Regularized canonical correlation analysis; rRNA, Ribosomal ribonucleic acid.
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sources. Interestingly, 13% of microbiome reference genomes contain all
genes required for folate synthesis. An additional 39% of microbiome
genomes can synthesize folates in the presence of pABA, an upstream
intermediate obtained through diet or from other intestinal microbes
(Engevik et al,, 2019). Dietary folate is primarily absorbed in the small
intestine, while folate produced by gut bacteria enters the bloodstream
via transporters in the colon (Magntsdottir et al., 2015; Said, 2011; Yoshii
etal, 2019). Animal studies estimate that at least 18% of circulating folate
originates from bacterial production (Asrar and O'Connor, 2005; Park
et al., 2013). The presence of colon folate transporters and the higher
absorption rate of colon-derived folate compared to dietary intake
suggest a significant role of bacterially synthesized folate in host
physiology (Qiu et al., 2006; Lakoff et al., 2014). Consequently, the
composition of the host microbiome and the abundance of folate-
producing bacterial strains may influence bioavailable folate and impact
epigenetic processes, such as DNA methylation.

Multiple studies suggest that microbiome-mediated effects on the
host epigenome play a role in various disease states, including cancer
(Asrar and O’Connor, 2005), immune-mediated disorders (Zheng
etal., 2020), inflammatory bowel disease (Aleksandrova et al.,, 2017),
and obesity and diabetes (Sharma et al., 2020). This study builds on
previous research by examining the association between the genus
Bifidobacterium and HPA gene DNA methylation in a healthy
pediatric cohort. Bifidobacteria are among the most beneficial gut
microbiota, contributing significantly to host health through functions
such as folate production (Rossi et al., 2011). Numerous studies in
rodent models have demonstrated the anxiolytic, antidepressant, and
HPA-axis-modulating effects of Bifidobacteria (Yunes et al., 2020),
with an expanding body of evidence supporting similar findings in
humans (Altaib et al., 2021; Akkasheh et al., 2016).

In this study, we hypothesized that the relative abundance of
Bifidobacterium species would predict DNA methylation patterns in
key HPA-axis genes previously linked to early life stress, including
NR3C1, FKBP5, AVP, CRH, CRHRI, and CRHR2. To test these
hypotheses, we employed two analytical approaches: a traditional
multiple linear regression model and regularized canonical correlation
analysis (rCCA) (Leurgans et al., 1993). rCCA is an integrative,
correlation-based method that identifies latent features shared across
multimodal datasets. This approach facilitates a systems biology
perspective, bypasses the need for multiple hypothesis testing, and
accounts for numerous small effect sizes. rCCA is particularly well-
suited for scenarios where the number of measured features exceeds
the sample size, as is typical in modern omics studies (Gonzélez et al.,
2009). Understanding these associations during early life is especially
critical, as both the microbiome and the epigenome are highly
environmental  influences

responsive  to during  this

developmental stage.

2 Methods
2.1 Parent study

Our study was based on a subset of participants prospectively
followed as part of the Environmental influences on Child Health
Outcomes (ECHO) Program. ECHO is a consortium of 69 established
pediatric cohort studies collecting new data under a common protocol
since 2019 (Gillman and Blaisdell, 2018) with the primary aim to
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study the effects of early-life environmental exposures on child health.
Single and cohort-specific institutional review boards monitored
human subject activities and the centralized ECHO Data Analysis
Center. All participants provided written informed consent.

Eligibility criteria for the parent study included mothers >18 years
old, term gestation: 37-41 weeks, healthy singleton pregnancy, no
evidence of uncontrolled medical conditions (i.e., hypertension,
pre-eclampsia, uncontrolled diabetes) or medical conditions that
could potentially impact the safety of a participant during a study visit,
no history of major psychiatric illness, English speaking, consent to
baby brain imaging, and the longitudinal nature of the study; infants
had no significant congenital anomalies, and infants had no history of
neurological trauma or disorder (e.g., epilepsy). Inclusion criteria for
the subset used in this study included participants who came to the
lab during the study recruitment period. Participants’ recruitment
occurred in person at a research visit or remotely.

2.2 Demographics
Demographic information was collected by parental report and is

summarized in Table 1 and Supplementary Figures 1, 2. Our sample
size was determined by the largest number of eligible participants

TABLE 1 Participant demographics.

Age
Mean + SD 427 +£3.89
Range 1 m-15y
Male 59.2
Female 40.8
Hispanic/Latino 23.9
Non-Hispanic/Latino 76.1

Asian 0.70
Asian Indian 1.41
Black or African American 5.63
Black or African American\ 0.70
American Indian or Alaska

Native

White 77.50
White\Black or African 3.52
American

White\Black or African 0.70
American\American Indian

or Alaska Native

White\Other Asian 0.70
Mixed race 3.52
Unknown 423
Decline to answer 1.41

Summary of participant demographic information.
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available to us within the ECHO dataset, given the study’s inclusion/
exclusion criteria. This approach maximized statistical power while
ensuring that all available relevant data were utilized. To reduce
temporal variability across biospecimen types while maintaining a
well powered sample from an extant dataset, only participants with
fecal and saliva samples collected within 365 days of one another were
included in the analyses (M = 77.5 days; SD = 110). To account for
missing data on age (n =30 out of N =142), we employed data
imputation with the R package “mice” using the pmm method, which
produced the most similar age distribution and did not change the
overall age range. After imputation, age ranged from 1 month to
15 years old (N = 142; M,,. = 4.27, SD = 3.89), and 40% were females.
No other variables were imputed. 76% of the participants reported
non-Latino/Hispanic ethnicity, and 77.5% of the participants reported
White as their race. Race and ethnicity were determined via parent
report. Written consent was obtained from parents or legal guardians
in accordance with ethics approval from the host institution’s
Institutional Review Board.

2.3 Stool and saliva collection

Saliva was collected from participants in the lab using Oragene
(DNA Genotek, Ottawa, Ontario, Canada) saliva collection kits. DNA
was extracted with a standard isolation kit (DNA Genotek’s PT-L2P-
5). Sample yield and purity were assessed spectrophotometrically
using NanoDrop ND-1000 (ThermoScientific, Wilmington, DE)
methods. Stool samples were collected by parents in OMR-200 tubes
(OMNIgene GUT, DNA Genotek, Ottawa, Ontario, Canada), stored
on ice, and brought within 24 h to the laboratory in RI, where they
were immediately frozen at —80°C. Stool samples were not collected
if the infant had taken antibiotics within the last two weeks. Samples
were transported to Wellesley College (Wellesley, MA) on dry ice for
further processing. Nucleic acids were extracted from 200 pL of each
stool sample using the RNeasy PowerMicrobiome kit automated on
the QIAcube (Qiagen, Germantown, MD), excluding the DNA
degradation steps. Cell lysing steps were performed using the Qiagen
PowerLyzer 24 Homogenizer (Qiagen, Germantown, MD) at 2500
speed for 45 s, then samples were transferred to the QIAcube to
complete the protocol, and extracted DNA was eluted in a final
volume of 100 pL.

2.4 Sequencing of metagenomes

Extracted DNA was sequenced at the Integrated Microbiome
Resource (IMR, Dalhousie University, NS, Canada) (Aleksandrova
et al,, 2017). To sequence metagenomes, a pooled library (max 96
samples per run) was prepared using the Illumina Nextera Flex Kit for
MiSeq and NextSeq (a PCR-based library preparation procedure)
from 1 ng of each sample, where samples were enzymatically sheared
and tagged with adaptors, PCR amplified while adding barcodes,
purified using columns or beads, and normalized either using Illumina
beads or manually. Samples were then pooled onto a plate and
sequenced on the Illumina NextSeq 550 platform using 150 + 150 bp
paired-end “high output” chemistry, generating ~400 million raw
reads and ~120 Gb of sequence. Samples were deposited in NCBI
GenBank under BioProject PRINA695570. Mean read depth across
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all samples in this study was 7,841,324, with a standard deviation of
3,409,844.

2.5 DNA methylation microarrays

DNA was treated with sodium bisulfite using the EZ-96 DNA
Methylation Kit (Zymo Research, Irvine, CA). DNA methylation was
quantified using the Infinium MethylationEPIC BeadChip run on an
Mlumina iScan System (Illumina, San Diego, CA). Raw IDAT files
were exported for preprocessing in R with the minfi package, and
standard quality control analyses were performed, including quantile
normalization, checking for sex mismatches, and excluding
low-intensity samples (p detection < 0.01) (Aryee et al., 2014). Three
samples did not pass our quality control pipeline due to low intensity.
Using the R package EpiDISH (Epigenetic Dissection of Intra-Sample
Heterogeneity, 3.8) RPC method, we estimated the proportion of
epithelial cells per sample.

2.6 Analyzing metagenomes

Metagenomic data were analyzed using the bioBakery workflow
with all necessary dependencies and default parameters (Mclver et al.,
2018). Briefly, KneadData (v0.7.10) was used to trim and filter raw
sequence reads and to separate human and 16S ribosomal rRNA gene
reads from bacterial sequences in both fecal and oral samples. Samples
that passed quality control were taxonomically profiled to the genus
level using MetaPhlAn (v3.0.7) (Beghini et al., 2021).

2.7 Bifidobacterium composite

We created a composite variable by summing across all
Bifidobacterium
(Supplementary Table 1). Relative abundance values were normalized

strains ~ measured in  our  sample
within individual participants such that the total sum equaled 100%.
For each composite, we summed the normalized relative abundances
that belonged to the same genus-level group, Bifidobacterium. This
summation approach was used to reduce dimensionality and to reflect
total genus-level abundance, allowing us to focus on broader microbial

patterns rather than individual taxa that may be highly sparse.

2.8 Statistical analyses

2.8.1 Principal component analyses

A commonly used method to detect patterns in DNA methylation
data is principal component analysis (PCA) (Sharma et al., 2020; Rossi
et al,, 2011; Yunes et al., 2020; Altaib et al., 2021), a dimensionality
reduction procedure (Akkasheh et al., 2016). PCA is used to develop
a smaller number of latent variables, called principal components,
with the first principal component (PC1) accounting for the most
variance in the observed variables (Akkasheh et al., 2016). To address
the multiple testing burden associated with analyzing numerous CpG
sites per gene of interest and to reduce the risk of Type II error,
we applied principal component analysis (PCA) to all CpG sites
annotated to each gene of interest. PCA was conducted within each
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gene separately, using methylation values from individual CpG sites
annotated to that gene. This approach allowed us to capture the major
axes of variability in methylation within each gene while reducing
dimensionality and multicollinearity among sites. We acknowledge
that this method may reduce site-specific interpretability but
prioritized gene-level summaries to facilitate downstream analyses
and reduce Type I error. The first and second principal components
(PC1; PC2) of each gene were used as outcome variables in regression
models (Supplementary Table 2).

2.8.2 Multiple linear regression

The Bifidobacterium composite was used as a predictor variable in
multiple linear regression models while controlling for sex, age,
sequencing depth, and time between saliva and fecal sample collection.
Importantly, we did not include the estimated epithelial cell count
percentage as a covariate due to high multicollinearity with all PCls,
which has been found by other groups (Leurgans et al., 1993). We also
created a proxy measure of global methylation by first defining the
top 50% variable CpG sites across samples and averaging them
together per individual (the variable is referred to as ‘Global50p’). This
variable was used as a control analysis to assess if Bifidobacterium
levels are associated with DNA methylation globally or specifically to
our genes of interest. We limited global DNA methylation analysis to
the top 50% most variable CpG sites to reduce dimensionality,
improve interpretability, and focus on sites with greater biological
variability, which are more likely to reflect meaningful differences
across individuals. This approach is commonly used in epigenomic
studies to enrich for signal over noise and to increase statistical power
in downstream analyses. To more closely evaluate the relationships
between Bifidobacterium and DNA methylation, we assessed the
location of CpG sites with the largest loading values onto the first
principal component.

2.8.3 Association-based mediation analyses

Given that both the microbiome and epigenome exhibit significant
variability during early development, age could act as a confounding
variable influencing associations between the two. To address this,
we incorporated age as a covariate in all models. Furthermore, to
explicitly evaluate the role of age, we performed an association-based
mediation analysis to quantify the proportion of the relationship
between Bifidobacterium abundance and HPA gene DNA methylation
that is mediated by age.

2.8.4 Regularized canonical correlation analysis
(rCCA)

Regularized canonical correlation analysis (rCCA) was used to
identify a set of orthogonal linear combinations, or canonical (latent)
variates, that maximized the shared variability between two datasets.
Components (canonical variates) for each dataset were calculated
separately and optimized to maximize the correlation between the
corresponding variates. rCCA was selected as an alternative to
multiple regression given the presence of multiple intercorrelated
outcome variables.

A scree plot (Supplementary Figure 3) was generated, and the
elbow point was identified at dimension = 3, where the decrease in
canonical correlation notably slowed. Accordingly, we also tested
ncomp = 3 to assess whether results differed substantially. To further
validate findings, cross-validation was performed using the tune.rcc
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function in the mixOmics R package to optimize the Ridge
regularization parameters (lambdal, lambda2). Default settings were
applied, which implemented 10-fold leave-one-out cross-validation.
lambdal =1 and
lambda2 = 0.7503, which were then used in the rcc function with

The optimal parameters returned were
method = “ridge” (Supplementary Figure 4). These results were
compared to those obtained using the shrinkage method.

The analysis included 142 samples and two datasets: X
(Bifidobacterium abundance, 9 variables) and Y (NR3CI CpG site
DNA methylation, 113 variables). Both datasets were preprocessed
using the shrinkage method to ensure optimal regularization. Strains
with a total sum count < 1 across all individuals were excluded
(Supplementary Table 1). The regularization parameters applied were
0.7637 for the X dataset and 0.0564 for the Y dataset. The rcc function
(mixOmics) was then used to perform rCCA with a correlation
threshold of 0.3, extracting two components for further analysis.

Statistical significance was evaluated via permutation testing with
10,000 iterations, randomly shuffling sample labels of one dataset to
generate a null distribution of canonical correlations. To aid
interpretation of canonical variates, loadings were examined to
identify the most influential CpGs and strains contributing to
observed associations, focusing on features with absolute correlation
coefficients > 0.3. This threshold was determined to balance
interpretability with statistical rigor in detecting moderate associations.

3 Results

3.1 Relative abundance of Bifidobacterium
significantly predicts HPA-gene DNA
methylation

The Bifidobacterium composite variable was a significant predictor
of DNA methylation Principal Component 1 (PC1) of all genes except
CRH. In contrast, the Bifidobacterium composite only predicted one
PC2, specifically CRH PC2 (Table 2; Supplementary Figure 5). In the
control analysis, Bifidobacterium was not a significant predictor of
global50p DNA methylation (b = —8.231e-04, p = 0.11). Principal
component analysis (PCA) calculates correlations between CpG sites
and the first principal component (PC1), referred to as loading values.
CpG sites correlated with PC1 exhibit co-variation; when one site
increases in methylation, the others increase or decrease
proportionally. Consequently, PCls represent higher methylation
values at CpG sites with positive loadings and lower methylation at

10.3389/fmicb.2025.1558809

sites with negative loadings. In our analysis, the PC1s were mostly
influenced by positive loadings (Figure 1).

3.2 Age does not fully account for the
associations between Bifidobacterium and
HPA-gene DNA methylation

The relationship between PC1 DNA methylation of all genes (and
CRH PC2) with Bifidobacterium was significantly mediated by age; the
proportion mediated ranged from 57-62% (Table 3; full mediation
results are included in Supplementary Table 3). These results
demonstrate that while age is a significant factor driving the
association between Bifidobacterium and DNA methylation, it does
not fully mediate the relationship. It is known that Bifidobacterium
presence reduces with age; thus, we also explored the interaction of
age and Bifidobacterium abundance. We did not find any significantly
meaningful results.

3.3 There are strong canonical correlations
between Bifidobacterium and NR3C1 DNA
methylation

Regularized canonical correlation analysis (rCCA) was performed
to investigate the relationships between microbial species (dataset X)
and CpG sites (dataset Y), focusing on their contributions to the first
two canonical components (full rCCA loading values are included in
Supplementary Table 4). The canonical correlations between the two
datasets were strong for the first (r = 0.64; permuted p < 0.0001;
Supplementary Figure 6) and second canonical variates (r = 0.56;
permuted p = 0.7676). For canonical variates 1, microbial features
such as angulatum (0.36), catenulatum (0.18), and adolescentis (0.17)
displayed strong positive loadings, indicating their significant role in
explaining the variation captured by this dimension. Conversely,
dentium (—0.52) and pullorum (—0.25) had strong negative loadings,
suggesting opposing contributions. Similarly, CpG sites such as
g06521673 (0.61), cg03746860 (0.56), and cgl9641581 (0.56) were
among the most influential positive contributors, while cg24801588
(—0.70), cg05048928 (—0.77), and cg14438279 (—0.63) had significant
negative contributions. For canonical variate 2, microbial features
breve (0.10) and bifidum (0.09) positively contributed, whereas
dentium (—0.59) and pullorum (—0.43) exhibited strong negative
associations. CpG sites such as cg15740681 (0.82) and cg23273257

TABLE 2 Bifidobacterium significantly predicts HPA gene DNA methylation omnibus and PCA results for HPA genes predicting Bifidobacterium.

Omnibus results

F p
NR3CI 52.16 <2.2e-16 0.60 —0.17 0.002 —0.02 0.76
FKBP5 46.41 <2.2e-16 0.58 0.19 0.00 —0.08 0.24
AVP 42.98 <2.2e-16 0.56 0.19 0.00 —0.11 0.13
CRH 6.59 7.06e-05 0.16 —0.14 0.08 0.23 0.00
CRHRI 53.01 <2.2e-16 0.61 —0.18 0.00 0.06 0.45
CRHR2 42.72 <2.2e-16 0.56 —0.15 0.01 —-0.02 0.77

Multiple R2 is reported. DF for every model = 4, 137.
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FIGURE 1
Directionality and CpG site location of HPA-gene DNA methylation and Bifidobacterium abundance. Graph depicts the number of CpG sites and their
gene location with a significant positive (blue) or negative (orange) relationship with Bifidobacterium relative abundance.

TABLE 3 HPA gene DNA methylation and Bifidobacterium proportion mediated by age.

Bifidobacterium
Estimate 95% CI lower 95% Cl upper
NR3CI (PC1) 0.60 0.46 0.77 <2e-16
FKBP5 (PC1) 057 0.42 0.74 <2e-16
AVP (PC1) 0.58 0.43 0.77 <2e-16
CRH (PC2) 0.50 033 0.74 <2e-16
CRHRI (PC1) 057 0.44 0.72 <2e-16
CRHR2 (PC1) 0.62 0.46 0.80 <2e-16

Mediation results for HPA gene DNA methylation and Bifidobacterium mediated by age.

(0.64) strongly influenced canonical variate 2 positively, while
g25535999 (—1.18), cg19176661 (—0.78), and cg19645279 (—0.74)
negatively impacted this dimension. These findings suggest distinct
sets of microbial species and CpG sites driving variability in the
canonical components, with positive loadings reflecting coordinated
biological processes and negative loadings indicating opposing
relationships. Component 1 was dominated by microbial
contributions, particularly angulatum and catenulatum, while
Component 2 was more heavily influenced by CpG methylation sites
such as cg15740681 and ¢g23273257. Together, these results highlight
the complex interplay between the microbiome and epigenome,
offering valuable insights into potential shared pathways or
mechanisms underlying these associations. Figure 2 represents the
categorization of the relationship between NR3CI CpG methylation

sites and Bifidobacterium species.

Frontiers in Microbiology

4 Discussion

This is the first study to investigate gut microbiome composition
in relation to HPA gene DNA methylation. We assessed the
relationships between a probiotic-folate-producing genus,
Bifidobacterium, and DNA methylation of key HPA genes, including
NR3C1, FKBP5, AVP, CRH, CRHR1, and CRHR?2. Results revealed
robust associations between DNA methylation at CpG sites across
the gene body for all HPA genes examined. Additionally, the
abundance of Bifidobacterium species does not predict global DNA
methylation, indicating that its impact on DNA methylation is
more specifically linked to cortisol-related genes rather than overall
DNA methylation levels. Finally, association-based mediation
analysis revealed that factors beyond age partially drive
these associations.
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We further probed associations between Bifidobacterium
abundance and NR3CI DNA methylation through a multi-omic
regularized canonical correlation model. Findings revealed a complex
interplay between Bifidobacterium and HPA-related CpG methylation
sites, underscoring shared biological pathways linking the microbiome
and epigenome related to stress and anxiety. Notably, canonical variate
1 was heavily influenced by Bifidobacterium species such as angulatum,
catenulatum, and adolescentis, alongside CpG sites like cg06521673
and cg03746860, which positively loaded onto this dimension. This
alignment may point to coordinated biological processes where
specific microbial communities influence methylation patterns in a
concerted manner. Conversely, negative loadings for features such as
€g24801588 opposing
these interactions.

dentium and suggest roles  within

Similarly, canonical variate 2 demonstrated distinct patterns, with
CpG sites like cg15740681 and ¢g23273257 exerting strong positive
influences, while microbial species such as dentium and CpG sites like
€g25535999 contributed negatively. DNA methylation at open sea
CpG sites can have functional regulatory consequences. Using
mSTARR-seq, Lea et al. (2018) identified thousands of methylation-
dependent enhancer elements in open sea regions that directly
modulate gene expression. Additionally, synthetic methylation studies
in yeast and human cell lines show that methylation in these regions

can alter chromatin accessibility and transcription factor binding (Lea
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et al., 2018; Shipony et al., 2020). These results suggest that while
microbial communities dominate some dimensions of this interplay,
others are primarily driven by epigenetic variations. Taken together,
these findings offer valuable insights into how microbial and
epigenetic interactions may converge in influencing stress physiology
and anxiety phenotypes, potentially providing a framework for
understanding shared mechanisms underlying mental health.
Considering the established links between HPA dysregulation
(Murphy etal., 2022), epigenetic mechanisms (Keverne and Binder,
2015) in
psychiatric disorders, the epigenetic modifying potentials of

2020), and microbiome composition (Kelly et al,

microbiome metabolites are not well studied (Stilling et al., 2014).
While the current study cannot ascertain the direction of effects or
an associative relationship, it provides evidence that levels of the
probiotic genus, Bifidobacterium spp., may influence DNA
methylation of HPA genes. If such a pathway can be established in
future mechanistic studies, microbiome-modifying exposures such
as diet, exercise, and probiotics could be explored specifically as
epigenetic-targeting psychiatric treatments. Slight alterations in
DNAm are known to impact genetic regulation and downstream
function (Jones, 2012). For example, our lab previously
demonstrated that peripheral DNA methylation of HPA-related
genes is predictive of the diurnal cortisol slope (Lewis et al., 2021).
Importantly, gut microbiota composition may impact the
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epigenome widely (Kumar et al.,, 2014). As such, associations
between gut microbiome and DNA methylation found is this study
suggest the potential pathway that gut microbiome composition
impacts HPA-related gene regulation and downstream physiology.
However, more research assessing this pathway is necessary.

Microbiome effects on the host epigenome are a likely pathway
in many disease states (Gillman and Blaisdell, 2018; Aryee et al.,
2014). For instance, the role of microbial metabolites in mediating
the well-established link between diet and the epigenome has been
extensively studied over the past decade (Mclver et al., 2018;
Beghini et al., 2021; Murphy et al., 2022). Changes in microbial
composition influence epigenetic patterns underlying metabolic
syndrome (Keverne and Binder, 2020). The gut microbiota plays a
crucial role in colorectal carcinogenesis by either directly or
indirectly affecting local epigenetics (Stilling et al., 2014). Various
microbial manipulation therapies for lung cancer demonstrate
impressive results through modulating epigenetic homeostasis of
the lung and the epigenetic aberrations in lung carcinogenesis
(Barton et al., 2019). Microbiome transplant therapies have also
demonstrated changes in the behavior and epigenetics of autistic
individuals (Nabais et al., 2023; Van Puyvelde et al., 2023). Other
studies have focused on the immediate vicinity of the gut
microbiome and have found influences on the host’s intestinal
epigenetics and local homeostasis (El-Sayed et al., n.d.). Our
findings add to this growing body of evidence, suggesting that
associations between microbiome composition, cortisol levels, and
psychiatric symptoms may be partially driven by microbe-derived
folate influencing epigenetic regulation of HPA-axis genes.

A limitation of this study is that we were unable to control for
dietary intake, which impacts microbiome composition. Given the
harmonized protocols of the ECHO consortium, potential biases
from individual cohort designs are likely minimized, though
we acknowledge this as a limitation to this work. It should also
be acknowledged that limiting the global analysis to the top 50%
most variable CpG sites may exclude low-variance CpG sites that
could still be biologically important, particularly those involved in
stable regulatory functions or developmentally constrained
pathways. We also did not include a cell composition variable, an
important covariate in epigenetic studies, due to the high
collinearity with all of the DNA methylation principal components.
However, others have shown that including cell-type heterogeneity
adjustment does not always improve the analysis (Barton et al.,
2019; Nabais et al., 2023). Since this study only assessed
Bifidobacterium, future studies could include the relative
abundance of all known folate producers and other microbiome-
produced metabolites that affect DNA methylation, such as betaine
and choline (Van Puyvelde et al., 2023). Future studies could
include cortisol output to further elaborate on downstream effects
of the epigenome on host physiology.

In conclusion, microbiome metabolites may influence stress
physiology through altering the host epigenome (El-Sayed et al.,
n.d.). The interaction between the developing gut microbiome and
epigenetic processes may play a critical role in brain health
throughout development (Kaur et al., 2021; Alam et al., 2017). This
study highlights biologically plausible associations between
Bifidobacterium and HPA gene DNA methylation in a healthy
pediatric cohort. While the directionality of effects between the
microbiome and epigenome remains unclear, evidence suggests a
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bidirectional relationship between these dynamic systems.
Clarifying this association is crucial to understanding how
interventions targeting the microbiome, or epigenome, might
mitigate psychiatric vulnerability. Future longitudinal studies are
needed to more directly assess temporal order and potential
causality between microbiome composition and host DNA
methylation. Additional investigations should explore an integrated
analysis between the complete gut microbiome and epigenome-
wide DNA methylation. A more comprehensive exploration of
mental health etiology, along with the intricate pathways
connecting environmental exposures to biological processes, could
usher in a new era of understanding and prevention strategies.
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