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The purpose of this study was to identify whether the gut microbiota and metabolites 
of newly diagnosed acute myeloid leukemia (AML) patients displayed specific 
characteristic alterations and whether these changes could be used as potential 
biomarkers for predicting the disease. Notably, the gut microbiota and metabolites 
of AML patients exhibited significant structural and quantitative alterations at 
the time of their initial diagnosis. Beneficial bacteria, including Faecalibacterium, 
Collinsella, Lacticaseibacillus, and Roseburia, as well as butyric acid and acetic 
acid, were found to be considerably reduced in newly diagnosed AML patients. 
In contrast, Enterococcus and Lactobacillus, especially Enterococcus, were 
significantly enriched. Further investigation indicated that Enterococcus could 
serve as a potential intestinal marker, showing a strong negative correlation with 
the levels of acetic and butyric acid. Importantly, assays aimed at identifying 
AML demonstrated that Enterococcus, butyric acid, and acetatic acid exhibited 
excellent predictive effectiveness. Colonizing Enterococcus from patients were 
isolated for pathogen investigation, which revealed that these bacteria possess 
several strong virulence factors and multiple drug-resistance gene characteristics. 
Therefore, we speculate that the increase of Enterococcus may contribute to the 
development and progression of AML.
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Introduction

Recent advancements in multi-omics technology have generated significant interest in 
exploring the role of gut microbiota in the treatment and prognosis of acute myeloid leukemia 
(AML). Research indicates that low baseline microbiota diversity is a strong independent 
predictor of infection during AML induction chemotherapy (IC). Specifically, prolonged use 
of carbapenems (over 72 h) is associated with significantly lower α-diversity, while higher 
baseline levels of Porphyromonadaceae seem to offer protection against infection. Therefore, 
assessing gut microbiota can aid in stratifying infection risk, and optimizing antibiotic dosing 
may help reduce subsequent infectious complications in AML patients (Galloway-Peña et al., 
2016; Galloway-Peña et al., 2020). Moreover, gut microbiota analysis can identify patients at 
high-risk of developing bloodstream infections (BSIs), with the gut microbiota of 
Barnesiellaceae, Christensenellaceae, and Faecalibacterium being significantly reduced in 
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high-risk patients, while Erysipelotrichaceae and Veillonella were 
significantly increased, which may be a promising avenue for future 
research (Montassier et  al., 2016). Disruptions in microbiota, 
characterized by reduced diversity and domination by specific 
microbiota such as Enterococcus, Klebsiella, Escherichia, 
Staphylococcus, and Streptococcus during hematopoietic stem cell 
transplantation (HSCT), have been linked to higher mortality rates 
(Peled et  al., 2020). Additionally, it has been observed that both 
Faecalibacterium and Roseburia were significantly reduced in the gut 
microbiota of AML patients. These reductions are negatively 
correlated with peripheral leukocyte levels and the percentage of bone 
marrow (BM) blast cells and may contribute to decreased butyric acid 
production, which impairs the intestinal barrier and promotes the 
development of AML (Wang et al., 2022). Another study confirmed 
that the microbiota of AML patients at baseline was enriched in 
frequently pathogenic species (e.g., Enterococcus, Staphylococcus) 
while being depleted in Faecalibacterium and Ruminococcus, both 
known butyric acid producer (Rashidi et al., 2023). Intensive treatment 
of AML can transiently impairs gut barrier function and induce 
persistent changes in the composition and metabolic activity of the gut 
microbiota, alterations that are associated with cachectic symptoms 
(Pötgens et  al., 2023). However, it is important to note that the 
majority of studies have focused on the longitudinal comparisons 
encompassing pre-and post-chemotherapy assessments, pre-and post-
transplantation evaluations, BSI, and prognostic predictions. Given 
that AML patients commonly receive multiple antibiotics during IC, 
significant disruptions to their gut microbiota are inevitable (Rashidi 
et al., 2022; Ramirez et al., 2020).

Is it possible that the gut microbiota was already structurally 
altered in patients with newly diagnosed AML? Metagenomic analysis 
has demonstrated its potential to distinguish healthy individuals from 
cancer patients and serve as diagnostic bacterial markers in various 
diseases. For instance, Bacteroides fragilis and Fusobacterium 
nucleatum have been identified in colorectal cancer (Cheng et al., 
2020), while Akkermansia muciniphila, Rikenellaceae and Bacteroides 
are linked to non-small cell lung cancer (Vernocchi et  al., 2020). 
Therefore, this study aims to hypothesize whether detection of 
characteristically altered gut microbiota and associated metabolites 
could aid in screening for AML.

In this study, we performed a comparative analysis of the gut 
microbiota and metabolites between healthy individuals and newly 
diagnosed AML patients, organized along a horizontal axis. 
Additionally, we also investigated the potential of gut microbiota and 
metabolites from newly diagnosed AML patients as intestinal 
biomarkers, while also exploring their molecular epidemiology 
of Enterococcus.

Materials and methods

Participants and clinical characteristics

We enrolled 32 consecutive patients newly diagnosed with AML 
in the study. All patients were undergoing their first cycle of IC from 
March to September 2023 at the Department of Hematology at the 
First Hospital of Lanzhou University. The diagnosis of AML was based 
on the World Health Organization (WHO) classification criteria for 
myeloid neoplasms, which defines it as a greater than 20% presence of 

myeloid blasts in circulation and/or bone marrow examination 
(Newell and Cook, 2021; Rattanathammethee et al., 2020). Participants 
who met any of the following criteria were excluded: (a) recent 
antibiotic treatment within the past month, (b) recent use of probiotics 
within the past month, (c) comorbidities involving other cancers, and 
(d) a diagnosis of acute promyelocytic leukemia. Additionally, 
we  recruited healthy control subjects from outpatient clinics and 
medical examination centers during the same period to exclude 
individuals with metabolic, digestive, cardiovascular, endocrine, and 
neurological disorders. Initial demographic and hematological 
parameters of all participants were obtained by reviewing the 
electronic medical records.

Sample collection

Fecal samples were obtained from all participants, and placed into 
sterile preservation tubes, which were then promptly stored at −80°C 
for further analysis of gut microbiota and metabolite. All biological 
sampling and data collection was completed prior to the 
administration of any treatment.

Fecal 16S rRNA sequencing

Bacterial stool DNA extraction
Total Bacterial genomic DNA was extracted using the CTAB 

method, and the quality of DNA extraction was assessed using SDS 
and UV spectrophotometry. The V3-V4 hypervariable region of the 
16S ribosomal RNA gene was amplified using a primer set 
corresponding to primers 341\u00B0F (5’-CCTACGGGN
GGCWGCAG-3′) and 805 R (5’-GACTACHVGGGTATCTAATCC-3′). 
The PCR products were purified with AMPure XT beads (Beckman 
Coulter Genomics, Danvers, MA, USA), and quantified using a Qubit 
(Invitrogen, USA). The purified PCR products were then recovered 
with AMPure XT beads. Amplicon pools were prepared for 
sequencing, and both the size and quantity of the amplicon library 
were evaluated using Walker et al., 2023 Bioanalyzer (Agilent, USA) 
as well as with the Library Quantification Kit for Illumina (Kapa 
Biosciences, Woburn, MA, USA). Finally, the libraries were sequenced 
on NovaSeq platform PE250.

Analysis of sequencing data
For the bipartite data obtained by sequencing, it is first necessary 

to split the data of the samples based on the barcode information and 
remove the splice and barcode sequences. By data splicing and filtering: 
(a) Remove primer sequences and balanced base sequences from 
RawData. (Software: cutadapt, v1.9); (b) Splicing and merging each 
pair of paired-end reads into one longer tag according to the overlap 
region (Software: FLASH, v1.2.8); (c) Performing quality scanning on 
sequencing reads, with the scanning window defaulted to 100 bp, and 
when the average quality value is below 20, the read is truncated from 
the start of the window to the 3′ termination. (Software: fqtrim); (d) 
Remove sequences whose length after truncation is less than 100 bp; 
(e) Remove sequences whose N content after truncation is more than 
5%; (f) Remove chimeric sequences. (Software: Vsearch, v2.3.4). Then 
quite divisive amplicon denoising algorithm 2 (DADA2) denoise-
paired for length filtering and denoising. Amplicon Sequence Variants 
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(ASVs) feature sequences and ASVs feature abundance tables were 
obtained and singletons ASVs were removed.

The α-diversity and β-diversity analysis were performed based on 
the obtained ASVs feature sequences and ASVs feature abundance 
tables. Where α-diversity analysis was mainly assessed by chao1 and 
Shannon index (calculated based on ASVs levels). Differences in 
α-diversity metrics were tested using the non-parametric Mann–
Whitney test. β-diversity analyses usually start by calculating the 
distance matrix between samples based on Bray-Curtis metrics, which 
is mainly done by Principal coordinates analysis (PCoA) and 
Nonmetric Multidimensional Scaling (NMDS) methods to observe 
the differences between the samples.

Targeted metabolomics profiling and 
analysis

To characterize the metabolomic profile of short-chain fatty acids 
(SCFAs) in fecal samples from AML patients, we conducted targeted 
metabolomics using a SHIMADZU GC2030-QP2020 NX gas 
chromatography-mass spectrometer, equipped with an HP-FFAP 
capillary column. The samples were first thawed on ice, pretreated 
with 50% H2SO4 and extraction solution (25 mg/L of internal 
standard 2-methylvaleric acid and methyl tert-butyl ether) to extract 
metabolites, and then the appropriate amount of the analytes to 
be measured was transferred to the HP-FFAP capillary for quantitative 
detection. The standard curve was plotted according to the detection 
level of the standards, and then the concentration of the analyte was 
calculated according to the standard curve.

Isolation, identification, and antimicrobial 
susceptibility testing of intestinal bacteria 
colonizing newly diagnosed AML patients

Clinical fecal specimens were initially cultured on Columbia Blood 
Agar plates to promote bacterial growth. Species identification was 
carried out using matrix-assisted laser desorption ionization time-of-
flight mass spectrometry (MALDI-TOF MS, bioMerieux, France). This 
method relies on detecting the mass-to-charge ratios of bacterial 
ribosomal proteins and is widely used in microbiology applications 
(Ashfaq et  al., 2022). Additionally, the minimum inhibitory 
concentration (MIC) of various antimicrobial agents was determined 
using the VITEK 2 Compact system (bioMérieux, France) (Sengupta 
et al., 2021). Quality control for antimicrobial susceptibility testing (AST) 
was performed with Staphylococcus aureus ATCC 25923 and 
Enterococcus faecalis (E. faecalis) ATCC 29212. The MIC results were 
evaluated based on the interpretation criteria established by the Clinical 
and Laboratory Standards Institute CLSI M100 (Pierce et al., 2023).

Sequencing of gut colonizing 
Enterococcus. faecium of newly diagnosed 
AML patients

The molecular characterization of Enterococcus faecium 
(E. faecium) isolates ware conducted using Next Generation 
Sequencing (NGS) (Wensel et  al., 2022; Larson et  al., 2023). For 

genomic DNA extraction, a plant Genomic DNA kit (Tiangen, 
DP305) was utilized. The DNA concentration was measured with a 
NanoDrop™ 2000 (Thermo Scientific, Waltham, MA) 
spectrophotometer and verified through agarose gel electrophoresis. 
The libraries were prepared using the TruePrep™ DNA Library Prep 
Kit V2 for Illumina (Vazyme) and were subsequently sequenced on an 
Illumina NovaSeq platform (Illumina Inc., San Diego, CA, USA).

The raw sequenced reads are first quality-checked using FastQC 
(Version 0.11.9) and MultiQC (Version 1.10.1). Once the raw reads 
pass quality control, adapter sequences in the samples are trimmed 
using Trim Galore (Version 0.6.6). The trimmed reads are then 
assembled using the de novo assembly tool called Unicycler (Version 
0.4.5).1 The assembled genomic data can be analyzed using a variety 
of bioinformatics tools. Antibiotic resistance (AMR) genes from the 
Comprehensive Antibiotic Resistance Database (CARD)2 were used 
for identification. We searched the Public Database for Molecular 
Typing and Microbial Genome Diversity (PubMLST)3 for sequence 
types (ST) of all isolates. We also analyzed the virulence factors (VFs) 
of E. faecium according to the Virulence Factor Database (VFDB).4

Statistical analysis

GraphPad Prism 10.2.0 (La Jolla, California, USA) was applied for 
graph development. Statistical analysis was performed using the SPSS 
software package V.26 (SPSS, Chicago, USA). The Shapiro–Wilk test 
was utilized for normality tests. Normally distributed data are 
presented as mean ± standard deviation (M ± SD) and analyzed by 
Student’s t-test or unpaired t-tests. Otherwise, non-normally 
distributed continuous variables are expressed as median (interquartile 
range, IQR) and performed using the Mann–Whitney U test. Venn 
diagrams were utilized to display areas of overlap in the gut microbiota 
between the AML and HC groups. A random forest plot was used to 
demonstrate the importance of different genera of bacteria. Univariate 
analysis based on the relative abundances of microbiota was 
performed using the linear discriminant analysis effect size (LEfSe) 
method. Receiver operating characteristic curve (ROC) analysis is a 
powerful tool for assessing the performance of gut microbiota and 
metabolites in predicting AML. Spearman correlations were 
constructed to analyze correlations between gut microbiota and 
metabolites and clinical characteristics. All significance tests were 
two-sided, and *p < 0.05, **p < 0.01, and ***p < 0.001 were considered 
statistically significant.

Results

Participant characteristics

We recruited 32 patients with newly diagnosed AML, comprising 
16 males and 16 females, with an average age of 51 years. Additionally, 
we included 30 healthy control (HC) subjects, consisting of 18 males 

1  https://github.com/rrwick/Unicycler

2  https://card.mcmaster.ca/

3  https://pubmlst.org/

4  https://www.mgc.ac.cn/cgi-bin/VFs/genus.cgi?Genus=Enterococcus
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and 12 females, with an average age of 56 years during a parallel 
period. We ensured that there were no significant differences in age 
(p  = 0.2232), sex (p  = 0.4374), height (p  = 0.483), and weight 
(p  = 0.674) between the two cohorts, and excluded them from 
interfering with the gut microbiota to ensure comparability. The 
clinical characteristics of the 32 newly diagnosed AML patients are 
outlined in Table 1, while the initial demographic and hematological 
parameters that exhibited statistically significant differences between 
all patients and the 30 healthy controls are delineated in Table  2. 
According to 2022 European LeukemiaNet guidelines (DiNardo et al., 
2023), the 32 patients were classified into two risk categories: 10 with 
favorable risk and 20 with unfavorable risk. The top 5 genes with the 
highest frequency of mutations were as follows: FLT3-ITD (34.38%), 
NRAS (25%), NPM1 (15.83%), WT1 (15.83%), and ASXL1 (15.83%).

Characterizations of gut microbiota 
diversity in newly diagnosed AML patients

To investigate the changes in gut microbiota among newly 
diagnosed AML patients, we utilized ASVs (Rashidi et al., 2022) for 

analysis. In total, we identified a total of 8,154 ASVs in fecal samples 
from 62 individuals. The number of ASVs in AML (ASVs = 5,485) and 
HC (ASVs = 4,428) was found to be comparable (p = 0.070), possibly 
due to a significant proportion of shared microorganisms (32.07%). 
However, a notable portion of ASVs was unique to each group, with 
67.93% specific to AML patients and 48.66% specific to HC 
(Figures 1A,B).

We then assessed α-diversity, which estimates species richness and 
evenness of gut microbiota, using the Chao1 and Shannon indices. 
Neither Chao1 (p = 0.074) nor Shannon (p = 0.447) showed significant 
differences between the two groups (Figures  1C,D). Additionally, 
we  evaluated β-diversity, which examines species differentiation 
between different environmental communities, using PCoA and 
NMDS based on Bray-Curtis metrics. This analysis revealed distinct 

TABLE 1  Clinical characteristics of newly diagnosed AML patients.

Clinical characteristics Number

Age at baseline, (M ± SD)y 50.63 ± 15.49

Sex

 � Male (%) 16 (50%)

 � Female (%) 16 (50%)

Baseline WBC count, median (range), 

(х109/L)
20.11 (10.12–43.18)

Percentage of myeloid blasts, median 

(range), (%)
59.7 (27–86)

Genetic mutation (N, %)

 � FLT3-ITD 11 (34.38)

 � NRAS 8 (25%)

 � NPM1 5 (15.63)

 � WT1 5 (15.63)

 � ASXL1 5 (15.63)

 � CEBPA bZIP 4 (12.5)

 � IDH2 4 (12.5)

 � PTPN11 3 (9.38)

 � FLT3-TKD 3 (9.38)

 � TP53 2 (6.25)

 � KRAS 2 (6.25)

 � KIT 2 (6.25)

 � Others* 13 (40.63)

Risk category (N, %)

 � Favorable 10 (31.25)

 � Un-favorable (Intermediate and Adverse) 20 (62.5)

 � Missing data 2 (6.25)

* WBC, white blood cells; Others: DNMT3A; CSF3R; IDH1; MLLT3: KMT2A; ASXL3; 
CSMD1; JAK3; JAK2; SRSF; TET2; AML1-ETO (RUNX1-RUNX1T1); ABL1; U2AF1; ETV.

TABLE 2  Participant characteristics.

Participant 
characteristics

HC (n = 30) AML (n = 32) p-
value

Sex (male; female) 18(male);12(female) 16(male);16(female) 0.4374

Age, years 

(mean ± SD)
55.6 ± 10.1a 50.6 ± 15.5a 0.2232

Body temperature 

(°C)
36.6 (36.5–36.63)b 36.6 (36.5–36.85)b 0.158

Height (cm) 167 ± 6.5a 166 ± 6.9a 0.483

Weight (kg) 63.2 ± 8.9a 62.1 ± 11.1a 0.674

WBC (х109/L) 5.82 ± 2.00a 20.11 (10.12–43.18)b <0.001

NEUT (%) 60.37 ± 9.94a 22.2 (16.95–45.55)b <0.001

MONO (%) 5.9 (5.4–6.4)b 19.85 (4.25-49)b 0.005

RBC (х1012/L) 4.75 ± 0.34a 2.35 ± 0.73a <0.001

HB (g/L) 148. ± 12.27a 72.76 ± 17.74a <0.001

PLT (х109/L) 200 ± 60a 42 (29-78)b <0.001

PT (sec) 11.25 (10.86–11.5)b 13.594 ± 1.86a <0.001

APTT (sec) 31.35 (29.88–33.3)b 29.32 ± 34.16a 0.0077

FIB (g/L) 2.76 ± 0.62a 3.57 (2.92–4.32)b <0.001

DD (ug/ml) 0.26 (0.16–0.51)b 1.39 (0.88–3.83)b <0.001

FDP (ug/ml) 0.71 (0.58–1.34)b 3.89 (2.04–8.95)b <0.001

DBIL (μmol/L) 2.89 ± 0.85a 3.94 ± 2.20a 0.0294

ALB (g/L) 45.39 ± 2.79a 38.09 ± 4.51a <0.001

TG (mmol/L) 3.81 ± 0.76a 2.96 (2.31–3.30)b <0.001

LDL (mmol/L) 2.52 ± 0.51a 1.9 (1.4–2.18)b <0.001

HDL (mmol/L) 1.19 ± 0.26a 0.69 ± 0.23a <0.001

CK (U/L) 94.5 (75–148.75)b 37 ± 18.91a <0.001

LDH (U/L) 186.44 ± 42.44a 463 (390.5–720.5)b <0.001

PCT (ng/ml) 0.02 ± 0.01a 0.17 (0.09–0.29)b <0.001

CRP (mg/L) 0.55 (0.26–2.45)b 32.34 (15.3–61.84)b <0.001

anormal distribution and variance-aligned, M ± SD, unpaired t-test.  
babnormal distribution, median (interquartile spacing IQR), Mann–Whitney test. NEUT, 
neutrophil percentage; MONO, monocytes percentage; RBC, red blood cells; HB, 
hemoglobin; PLT, platelet; PT, prothrombin time; APTT, activated partial thromboplastin 
time; FIB, fibrinogen; DD, DD dimer; FDP, fibrinogen degradation products; DBIL, direct 
bilirubin; ALB, albumin; TG, triglyceride; LDL, low-density lipoprotein; HDL, high-density 
lipoprotein; CK, creatine kinase; LDH, lactate dehydrogenase; PCT, procalcitonin; CRP, 
c-reactive protein.
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FIGURE 1

The ASV sequences and gut microbiota diversity in newly diagnosed AML patients and HC group. (A) Standard Boxplots of ASVs in AML and HC groups 
(non-normal distribution, Mann Whitney test). (B) Venn diagram of the observed AVSs in AML and HC (shared microorganisms: 1759, 32.07%; AML 
specific microorganisms: 3726, 67.93%). (C,D) A nonparametric test was used to compare the Chao 1 (non-normal distribution, Mann Whitney test) and 
Shannon index (a normal distribution with uneven variance, Mann–Whitney test). (E,F) PCoA 3D and 2D of faecal microbiota in AML and HC. The 
significance of two separated clusters was measured with the Adonis test (p = 0.016). (G,H) NMDS 3D and 2D of fecal microbiota in AML and HC. The 
coefficient of coercion (stress) is used to measure the merit of the NMDS analysis results, and it is usually considered that when stress<0.2, it can 
be represented by a two-dimensional dot plot of NMDS, which is graphically interpretable.
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microbiota profiles between the AML and HC groups (p = 0.016, 
stress = 0.18), indicating a significant shift in microbial composition 
among newly diagnosed AML patients (Figures  1E–H). We  also 
controlled for potential influences of age and gender on gut microbial 
diversity in both groups through more detailed comparisons 
(Supplementary Figures S1A–F).

Distribution, relative abundance and 
alterations of gut microbiota at phylum 
and genus level in newly diagnosed AML 
patients

To identify the detailed alterations in bacterial composition, 
we conducted a comprehensive analysis of relative abundances at 
both the phylum and genus levels. Initially, we found that the five 
most prevalent bacterial phylum among AML patients were 
Firmicutes (51.44%), Bacteroidota (19.50%), Actinobacteriota 
(15.45%), Proteobacteria (8.73%), and Verrucomicrobiota (3.94%). 
In contrast, the top five most abundant bacterial phylum in the HC 
group were Firmicutes (49.5%), Actinobacteriota (16.36%), 
Proteobacteria (15.50%), Bacteroidota (13.04%), and 
Verrucomicrobiota (4.16%) (Figure  2A). Comparison revealed 
increased abundance of Firmicutes and Bacteroidota, while 
decreased abundance of Proteobacteria, Actinobacteriota and 
Verrucomicrobiota was observed in AML patients, but there was no 
statistical difference: Firmicutes (p  = 0.6595), Actinobacteriota 
(p = 0.4602), Proteobacteria (p = 5,804), Bacteroidota (p = 5,998), 
and Verrucomicrobiota (p = 0.6218) (Figure 2B). Furthermore, at 
the genus level, a total of 870 bacterial genera were detected across 
the two groups, of which 197 showed differences in abundance. 
Among the top  10 abundances of genera with significant 
differences, Enterococcus (p  < 0.0001) and Lachnoclostridium 
(p  = 0.0154) were found to be  enriched, while Roseburia 
(p  = 0.0003), Ligilactobacillus (p  = 0.0004), Faecalibacterium 
(p = 0.0025), Collinsella (p = 0.0057), Desulfovibrio (p = 0.0194), 
Klebsiella (p = 0.0241), Ruminococcus (p = 0.0264), Agathobacter 
(p = 0.0294) were reduced in newly diagnosed AML patients, as 
depicted in Figures  2C,D. Additionally, it was observed that 
Enterococcus shows considerable abundance and importance 
among the diverse species identified in the Random Forest plot 
shown in Figure  2E. Importantly, we  used LEfSe to excavate 
differential species serving as gut biomarker in newly diagnosed 
AML patients. The results confirmed that Enterococcaceae (LDA 
value = 4.726, p  < 0.00001), Enterococcus (LDA value = 4.726, 
p < 0.00001), and E. faecium (LDA value = 4.713, p < 0.00001) were 
the most valuable gut biomarker (Figure 2F). ROC curve analyses 
indicated that Enterococcus demonstrated an AUC value of 0.8615, 
while Faecalibacterium yielded an AUC value of 0.7208 
(Figures 2H,I). An AUC closer to 1 indicates superior diagnostic 
efficacy, with values falling within specific ranges denoting different 
levels of accuracy: excellent (AUC ≥ 0.9), very good 
(0.8 ≤ AUC < 0.9), good (0.7 ≤ AUC < 0.8), sufficient 
(0.6 ≤ AUC < 0/7), bad (0.5 ≤ AUC <0.6) and index not useful 
(AUC <05) (Jahangiri et al., 2019). Consequently, we concluded 
that Enterococcus is a strong predictor of newly diagnosed AML.

We conducted a detailed analysis of the relationship between 
differential gut microbiota and risk stratification in AML patients. 

Our results showed no significant differences in ASVs (p = 0.1945), 
Chao1 (p  = 0.7352), or Shannon (p  = 0.9496) indices between 
favorable risk and unfavorable risk patients. However, we observed 
that the abundance of Enterococcaceae (p = 0.0002), Enterococcus 
(p = 0.0002), and E. faecium (p = 0.0002) were significantly higher 
in un-favorable risk AML patients, while the abundance of 
Faecalibacterium (p = 0.0027) was significantly lower in this group 
(Figure 2I).

Alterations of fecal microbiota metabolites 
SCFAs in newly diagnosed AML patients

Targeted SCFAs metabolomics analysis was employed to 
quantitatively determine the levels by GC–MS from 40 individuals, 
comprising 20 newly diagnosed AML patients and 20 healthy 
controls. Upon comparing the metabolite abundances, we observed 
significant down-regulation of acetic acid (p = 0.0023) and butyric 
acid (p  = 0.0073) in AML patients (Figure  3A). Subsequently, 
we  performed further functional analysis based on the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) metabolite database 
and found that the differential metabolites butyric acid and acetic 
acid caused significant differences in the relative abundance of 
intestinal protein digestion and absorption (p < 0.00001, 71.43%, 
enrichment score = 111.17, DA Score = −1) as well as carbohydrate 
digestion and absorption (p  < 0.00001, 42.86%, enrichment 
score = 74.4, DA Score = −1) (Figure  3B, 
Supplementary Figures 2A,B). Additionally, ROC curve analysis 
demonstrated that butyric acid assisted in the predictive of AML 
with a ROC-plot AUC value of 0.7450, while acetic acid showed a 
ROC-plot AUC value of 0.7625 (Figures 3B,D). Together, these 
findings collectively suggest that acetic acid and butyric acid may 
play pivotal roles in the progression of AML.

Correlation analysis of gut microbiota and 
metabolites, hematological parameters in 
AML patients

To further elucidate the relationship between gut microbiota, 
we conducted correlation analysis and confirmed that Enterococcus 
exhibited a negative correlation with beneficial microbiota 
Faecalibacterium (r  = −0.6036, p  = 0.000000207) and Roseburia 
(r  = −0.5628, p  = 0.00000192) (Figure  4A). Additionally, our 
metabolite correlation analysis indicated a significant positive 
correlation between acetic acid and butyric acid (r  = 0.783, 
p  < 0.00001) (Figure  4A). In our investigation of the potential of 
microbiota in AML, we  performed a correlation analysis the 
correlation analysis between gut microbiota and metabolites, as well 
as hematological parameters of AML patients, using Spearman 
correlation analysis. We concentrated on the top 10 most abundant 
bacteria, significantly different metabolites, and hematological 
parameters. Ultimately, the results demonstrated that Enterococcus 
was significantly negatively correlated with butyric acid (r = −0.626, 
p = 0.00002) and acetic acid (r = −0.594, p = 0.00007). Conversely, 
Faecalibacterium was significantly positively correlated with acetic 
acid (r = 0.567, p = 0.00017) and butyric acid (r = 0.792, p = 0.00005) 
(Figure 4A).
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Furthermore, among various clinical characteristics, Enterococcus 
showed a positive correlation with DD (r = 0.540, p < 0.001), FDP 
(r = 0.508, p < 0.001), DBIL (r = 0.251, p = 0.049), LDH (r = 0.403, 

p = 0.003), IL-6 (r = 0.424, p = 0.004), CRP (r = 0.417, p = 0.005), PT 
(r = 0.425, p < 0.001), and the percentage of myeloid blasts (r = 0.580, 
p < 0.001). Conversely, it demonstrated a negatively correlated with 

FIGURE 2

Relative abundance of gut microbiota at phylum and genus level in AML patients. (A) Species accumulation histogram of the top 10 most abundant 
bacteria of all samples at the phylum level. (B) Comparison of the relative abundance of the top 5 abundance at the phylum level (Mann–Whitney U 
test). (C) Species accumulation histograms of the top 10 most abundant bacterial genera for significantly different samples at the genus level. 
(D) Comparison of the relative abundance for the main detected genera (Mann–Whitney U test). (E) Random-forest plot. Point plot of species 
(variables) importance: the horizontal coordinate is a measure of importance, and the vertical coordinate is a species name in order of importance. The 
bar chart shows the relative abundance of the corresponding species. (F) Cladograms and Histograms were generated from LEfSe and LDA scores and 
shown bacterial taxa that were significantly different in abundance between AML and HC. LDA scores is applied to estimate the effect size. (G,H) ROC 
curve analysis of fecal Enterococcus and Faecalibacterium in the predictive capacity of AML. (I) Changes in the characterization of gut microbiota 
between the favorable risk (n = 10) and unfavorable risk (n = 20) group (Mann–Whitney U test).
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PLT (r  = −0.412, p  < 0.001), RBC (r  = −0.556, p  < 0.001), HB 
(r = −0.521, p < 0.001), ALB (r = −0.421, p < 0.001), TG (r = −0.507, 
p < 0.001), LDL (r = −0.529, p < 0.001), HDL (r = −0.438, p < 0.001), 

CK (r  = −0.472, p  < 0.001), and NEUT% (r  = −0.457, p  < 0.001) 
(Figure 4B). These findings further suggested Enterococcus may play 
an significant role in the progression of AML.

FIGURE 3

Alterations of fecal microbiota metabolites SCFAs in AML patients. (A) The boxplot of SCFAs in fecal samples of AML patients (n = 20) and controls 
(n = 20) (Mann–Whitney U test). (B) KEGG Enrichment score (the horizontal coordinate represents enrichment score, and the vertical coordinate 
represents the names of enriched KEGG metabolic pathways). (C,D) ROC curve analysis of fecal butyric acid and acetic acid in the predictive 
capacity of AML.
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FIGURE 4

(A,B) Heatmap of Spearman correlations between gut microbiota, metabolites and clinical characteristics (red positive correlation, blue negative 
correlation).
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Isolation and identification of intestinal 
colonization E. faecium in newly diagnosed 
AML patients

Based on the findings of gut microbiological analysis, 
we inoculated all fecal samples onto Columbia Blood Agar plates for 
isolation and culture. The results indicated that no isolate of 
Enterococcus was isolated from any of the 30 healthy individuals, 
meaning that no intestinal colonization was detected in this group. In 
contrast, 21 isolates were isolated from 21 out of 32 AML patients, 
reflecting a colonization rate of 65.63%. This included 2 isolates of 
E. faecalis (9.52%), 2 isolates of Enterococcus galinarum (E. galinarum, 
9.52%), 3 isolates of Enterococcus casseliflaves (E. casseliflaves, 14.29%), 
and 14 isolates of E. faecium (66.67%) (Figure 5A). Further analysis at 
the species level using 16S rRNA sequencing revealed that only 
E. faecium showed considerable differences between the AML and HC 
groups (p < 0.00001) (Figure 5B). In contrast, the following species did 
not show significant differences: E. faecalis (p = 0.1585), Enterococcus 
asini (p  = 0.1409), Enterococcus avermectinum (p  = 0.9671), 
Enterococcus canis (p  = 0.1674), E. casseliflaves (p  = 0.069), 
Enterococcus diestrammenae (p  = 0.3017), E. galinarum (0.4953), 
Enterococcus hirae (p = 0.1674), Enterococcus raffinosus (p = 0.1674), 
Enterococcus rivorum (p = 0.3329) and Enterococcus saccharolyticus 
(p = 0.3017) (Supplementary Table S1). From this, it is evident that the 
profile of the isolates we isolated aligns well with the outcomes of the 
gut microbiome sequencing.

Antimicrobial susceptibility test, AMR 
determinants, and STs of E. faecium

A total of 14 colonized isolates of E. faecium were tested for 
antimicrobial susceptibility, and chosen for NGS. The antimicrobial 
susceptibility profiles demonstrated that the overwhelming majority 
of isolates (92.85%, 13/14) displayed multidrug resistance phenotypes, 
as indicated in Table 3.

Regarding aminoglycosides, high-level gentamicin resistance 
(HLGR) phenotype was observed in 50% of E. faecium isolates (7/14), 
while high-level streptomycin resistance (HLSR) was identified in 
28.57% of E. faecium isolates (4/14). Additionally, three E. faecium 
isolates demonstrated both HLGR and HLSR phenotypes. This 
resistance is primarily attributed to the high detection rates of the 
AAC (6′)-Ii gene (100%) and AAC (6′)-Ie-APH (2″)-Ia (92.86%). 
Furthermore, 13 isolates (92.85%) showed resistance to ciprofloxacin 
(CIP) and levofloxacin (LVX), while 12 isolates (85.7%) exhibited a 
significant resistance phenotype to erythromycin (ERY), which is 
associated with the presence of the drug-resistance genes efrA (100%) 
and efmA (100%). Tetracycline (TET) resistance was identified in the 
majority of E. faecium isolates (64.29%), with the major resistance 
gene being tetM (64.29%). However, all isolates remained susceptible 
to tigecycline (TIG), linezolid (LZD), and vancomycin (VAN), with a 
notable susceptibility (92.85%) to quinupristin/dalfopristin (Q/D) 
(Table 4).

Among the 30 antibiotic-resistant genes identified in E. faecium 
isolates and their highest detection rates were, in order, AAC (6′)-Ii 
(100%), efmA (100%), efrA (100%), AAC (6′)-Ie-APH (2″)-Ia 
(92.86%) and tetM (64.29%). The STs of E. faecium isolates were 
determined using the E. faecium scheme in PubMLST (El Zowalaty 
et  al., 2023). A total of 8 distinct STs were identified, with ST555 
(n = 3, 21.43%) and ST78 (n = 3, 21.43%) being the highest frequency, 
followed by ST80 (n  = 2; 14.28%) and ST817 (n  = 2; 14.28%) 
(Figure 6).

VFs and virulence-associated genes of 
E. faecium

The investigation into the VFs of E. faecium isolates revealed the 
presence of several virulence genes associated with adherence, 
antiphagocytosis, and biofilm formation (Table 4).

The VFs related to adhesion include Acm (a collagen adhesin), 
Ebp pili (endocarditis and biofilm-associated pili) (Cebeci, 2024), 

FIGURE 5

(A) Composition ratio of intestinal colonizing Enterococcus. (B) The boxplot of E. faecium in fecal samples of AML patients (n = 32) and controls 
(n = 30).
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EfaA (E. faecalis antigen A), Esp (enterococcal surface protein), Fbp 
(fibronectin-binding proteins), Scm [collagen-binding microbial 
surface components recognizing adhesive matrix molecule 
(MSCRAMM), SgrA (a cell wall anchored protein)]. We identified two 
genes encoding Acm: acm, which had a carrying rate of 100%, and 
M7W-2305, which had a carrying rate of 7.14%. Only one isolate 
contained the ebpC gene encoding Ebp pili. All isolates carried the 
EFAU085_00431 gene encoding EfaA, and 50% (7/14) of the isolates 
contained the esp. gene encoding Esp. Additionally, we detected two 
genes, sagA, and fss3, that encode Fbp, with carrying rates of 100 and 
50%, respectively. 14.29% (2/14) isolates carried the scm gene 
encoding Scm and 78.57% (11/14) isolates carried the sgrA gene 
encoding SgrA. Among the VFs associated with antiphagocytosis, the 
most significant is the capsule encoded by the EFAU085_01747 genes, 
which had a 100% carriage rate. Another important VF involved in 
biofilm formation is BopD (biofilm on plastic surfaces, a putative 
sugar-binding transcriptional regulator) for biofilm formation. The 
ability of E. faecium to form biofilms is a notable characteristic of its 
pathogenicity (Wei et al., 2023). In this study, 64.29% of the isolates 
carried the EFAU004_00405 gene and 35.71% carried the 
EFAU085_00344 gene encoding BopD. The pathogenesis of E. faecium, 

attributed to these VFs, contributes to its adherence, colonization, and 
invasion of the host while causing damage.

Discussion

Dysregulation of the gut microbiota has been implicated in the 
pathogenesis of various diseases, such as metabolic disorders, 
inflammatory disease, and cancer (Yu et  al., 2021). As the most 
significant hematologic tumor, the relationship between AML and gut 
microbiota is gaining increasing attention. IC, combined with broad-
spectrum antibiotics in AML treatment, leads to gut microbiota 
dysbiosis and temporarily impairs gut barrier function, which can 
promote pathological conditions and increase the likelihood of 
complications (Malard et al., 2021). For instance, a severe reduction 
in the levels of Odoribacter splanchnicus and Gemminger formicilis in 
AML patients has been associated with impaired gut barrier function 
and loss of body weight (Pötgens et al., 2023). Additionally, the levels 
of E. eligens, which was reduced threefold in AML patients, showed a 
strong correlation with muscle strength (Pötgens et  al., 2024). 
However, most studies conducted so far have primarily focused on the 

TABLE 3  Phenotypic profile of antimicrobial resistance in E. faecium isolates (n = 14).

Antimicrobial agent Sensitivity (n, %) Intermediary (n, %) Resistance (n, %)

Gentamicin High Level (GEN-HL) 7 (50) 0 (0) 7 (50)

Streptomycin High Level (STR-HL) 10 (71.43) 0 (0) 4 (28.57)

Ciprofloxacin (CIP) 1 (7.15) 0 (0) 13 (92.85)

Levofloxacin (LVX) 1 (7.15) 0 (0) 13 (92.85)

Erythromycin (ERY) 1 (7.15) 1 (7.15) 12 (85.7)

Quinupristin/dalfopristin (QD) 13 (92.85) 1 (7.15) 0 (0)

Linezolid (LZD) 14 (100) 0 (0) 0 (0)

Vancomycin (VAN) 14 (100) 0 (0) 0 (0)

Tetracycline (TET) 5 (35.71) 0 (0) 9 (64.29)

Tigecycline (TIG) 14 (100) 0 (0) 0 (0)

TABLE 4  The presence of virulence-associated genes in the study 14 E. faecium isolates.

Class VFs Related 
genes

AML Patients colonized with E. faecium

1 2 4 5 7 13 14 15 19 26 29 30 31 32

Adherence

Acm
acm + + + + + + + + + + + + + +

M7W_2,305 +

Ebp pili ebpC +

EfaA EFAU085_00431 + + + + + + + + + + + + + +

Esp esp + + + + + + +

Fbp
sagA + + + + + + + + + + + + + +

fss3 + + + + + + +

Scm scm + +

SgrA sgrA + + + + + + + + + + +

Antiphagocytosis Capsule EFAU085_01747 + + + + + + + + + + + + + +

Biofilm BopD
EFAU004_00405 + + + + + + + + +

EFAU085_00344 + + + + +

Different colours represent different STs. Since the information on STs of different isolates is represented in Figure 6.
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treatment phase of AML. In this study, the objective was to explore the 
alterations of gut microbiota of patients with a primary 
diagnosis of AML.

We conducted a preliminary exploration of significant changes in 
gut microbiota among newly diagnosed AML patients compared to 
individuals without the condition. While the overall gut microbiota 

FIGURE 6

Distribution of AMR genes in the study 14 E. faecium clinical isolates according to STs. AMG: aminoglycoside antibiotic; CEP: cephalosporin; PN: 
penam; DP: diaminopyrimidine antibiotic; GLY: glycopeptide antibiotic; LC: lincosamide antibiotic; NUC: nucleoside antibiotic; PEP: peptide antibiotic; 
TET: tetracycline antibiotic; MC; macrolide antibiotic; FQ; fluoroquinolone antibiotic; RF: rifamycin antibiotic; SP: streptogramin antibiotic; OX: 
oxazolidinone antibiotic; PHE: phenicol antibiotic; PM: pleuromutilin antibiotic.
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(α-diversity) was not significantly altered, the structure and 
predominant types of microbiota (β-diversity) exhibited significant 
changes. Therefore, the reduction in α-diversity is not universal 
among newly diagnosed AML patients, and we hypothesize that it 
may occur more frequently during treatment, such as chemotherapy, 
immunotherapy, and antibiotic tuse, which aligns with findings from 
other studies (Xu et al., 2023; Reyman et al., 2022). In our phylum-
level abundance analysis, we  observed that the abundance of the 
Proteobacteria was nearly two times higher in the AML group 
compared to the HC group. Our study identified the top  30 
differentially abundant genera, which included seven genera of 
Proteobacteria. Among these, five genera were down-regulated: 
Klebsiella (p  = 0.0266), Desulfovibrio (p  = 0.0193), Citrobacter 
(p = 0.0362), Ralstonia (p = 0.044), and Enterobacter (p = 0.0024). The 
relative abundance of Desulfovibrio was positively correlated with 
beneficial bacterial genera, including Ruminococcus, Akkermansia, 
Roseburia, Faecalibacterium and Bacteroides, which suggests that 
Desulfovibrio is associated with healthy hosts in some populations 
(Chen et al., 2021). In contrast, two genera, Brevundimonas (p = 0.019) 
and Steroidobacter (p  < 0.0001), were up-regulated 
(Supplementary Figure S3). However, when analyzing the overall 
phylum level, no statistical differences were observed. Analyzing at the 
genus level, we confirmed that Enterococcus and Lactobacillus were 
enriched in newly diagnosed AML patients, particularly Enterococcus. 
In contrast, beneficial bacteria such as Faecalibacterium, Collinsella, 
Liilactobacillus, and Roseburia were found to be  significantly 
decreased. Based on a macrogenomic analysis of more than 7,900 
human samples, a recent study suggests that the ideal mean and 
median relative abundance of Faecalibacterium in healthy adults may 
be 6.5 and 4.8%, respectively (Martín et al., 2023). In the present study, 
the mean and median values of Faecalibacterium in the healthy 
population were 8.49 and 7.54%, which were slightly higher than the 
ideal abundance as it was correlated with age, lifestyle, geographic 
location, and disease, among other things (De Filippis et al., 2020), 
whereas the mean and median values in patients with AML were 
much lower than the ideal abundance, at 4.39 and 0.74%, respectively. 
A randomized trial conducted by Rashidi et  al. also reported an 
increase in Enterococcus and a decrease in Roseburia, Faecalibacterium, 
and Collinsella in AML patients at baseline. However, after undergoing 
a fecal microbiota transplantation (FMT), patients saw a reduction in 
Enterococcus and a return of Collinsella, along with an increase in 
overall microbiota diversity (Rashidi et  al., 2023). These findings 
support the idea that targeting the dominant microbiota may be a 
viable strategy for managing AML progression. Butyric acid producing 
bacteria (Rumminococcus, Roseburia, Clostridium and Eubecterium 
Limosum), Bifidobacterium that cross-fed butyric acid, Akkermensia 
and Enterococcus have been reported to play a significant role in 
patients with hematological malignancies, with Enterococcus, defined 
as a “pro-inflammatory bacterium,” was negatively associated with 
butyric acid-producing Roseburia, which is also consistent with our 
findings (Yu et al., 2021; Malard et al., 2021). Furthermore, we have 
demonstrated that Enterococcus and Faecalibacterium are important 
intestinal biomarkers for screening patients with AML. Even more 
valuable is the fact that changes in the characteristic microbiota also 
show significant value in risk stratification.

A large number of reports indicate that SCFAs, originated from 
the metabolism of gut microbiota (Wu et al., 2023; Guo et al., 2020), 
more than 95% of the SCFAs in the human colon lumen are 

composed of acetatic acid, propionate, and butyric acid. It is well 
known that butyric acid is mainly derived from Faecalibacterium 
and Roseburia (Machiels et al., 2014) and acetatic acid is mainly 
derived from Akkermansia, Bacteroides, Bifidobacterium, Prevotella, 
Ruminococcus, and Streptococcus (Wang et al., 2023). Our results 
revealed that the abundance of these bacteria was significantly 
reduced in AML patients. SCFAs, mainly butyric acid, promote 
epithelial barrier integrity and permeability by upregulating proteins 
encoding tight junction proteins (e.g., claudin-1, zonula occludens-1, 
and occludin), strengthening the mucus layer of the intestinal 
epithelium by increasing mucin 2 expression, and modulating 
intestinal oxidative stress (Wang et  al., 2022; Fusco et  al., 2023). 
SCFAs exert anti-inflammatory functions by modulating immune 
cell chemotaxis, reactive oxygen species (ROS), and cytokine release 
(decrease IL-6, IL-8 and increase IL-10, TNF-α) (Inamoto et al., 
2023), reduce DNA damage during radiation (a recognized cause of 
leukemia) injury and butyric acid serves as a colonic fuel sources, 
fosters immunoregulation (Guo et al., 2020; Liu et al., 2024). SCFAs 
can promote the elongation of dendritic cell line (DC2.4 cells) and 
mouse bone marrow-derived dendritic cells by inhibiting HDAC, 
stimulating the SFK/PI3K/Rho family pathways, and activating actin 
polymerization, thereby enhancing the uptake and expression of 
antigens by dendritic cells (DCs) (Inamoto et al., 2023). Research 
indicates that immunogenic dendritic cells from donors with higher 
α-diversity of gut microbiota and higher abundance of SCFAs and 
SCFA-producing bacteria exhibited lower expression of CD1a, 
CD86, CD40, pro-inflammatory cytokines, and immunogenicity. 
These results highlight the importance of the gut microbiota in 
promoting the differentiation of donor precursor cells to 
immunogenic DCs capable of effectively engaging in cancer therapy. 
This discovery may provide new ideas for future DC-based cancer 
therapy suggesting that increased microbial diversity and SCFA 
abundance could be  critical factors in the development of novel 
immunotherapies (Radojević et  al., 2021). Through correlation 
analysis, we discovered a significant negative correlation between 
Enterococcus and the percentage of myeloid blasts, as well as butyric 
acid and acetatic acid levels in patients. In contrast, Faecalibacterium 
exhibited the exact opposite. Therefore, we hypothesized that the 
increased colonization of Enterococcus in the intestines of AML 
patients leads to microbiota dysbiosis, resulting in a decrease in the 
number of beneficial bacteria such as Faecalibacterium and 
Roseburia, and indirectly causing a decrease of SCFAs (mainly 
butyric acid and acetatic acid). Further, we  analyzed the KEGG 
database and found significant differences in the processes involved 
in protein digestion and absorption, carbohydrate digestion and 
absorption, and fatty acid synthesis. Therefore, we hypothesize that 
Enterococcus influences AML progression by indirectly causing a 
decrease in acetatic acid and butyric acid synthesis.

To further observe the pathogenic characteristics of E. faecium 
at the species level, we isolated 21 isolates of E. faecium from the 
feces of 32 AML patients, whereas no isolate was isolated from 30 
individuals, where the dominant isolate was E. faecium (66.67%). 
In recent years, with the use of broad-spectrum antibiotics, 
immunosuppressants, and the increase of invasive manipulation, 
E. faecium infections have gradually become the predominant 
pathogen of Enterococcus (De Oliveira et al., 2020). The results of 
the present study further indicate that E. faecium became the 
primary species colonizing the intestines of AML patients. As 
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we  all know, E. faecalis and E. faecium are the two most 
predominant Enterococcus in the gastrointestinal tract and an 
important group of opportunistic pathogens in humans (Aung 
et al., 2023; Moon et al., 2023), which frequently cause periodontal, 
wound, urinary tract infections (Codelia-Anjum et  al., 2023), 
intravascular catheter infections (Muff et al., 2021), bacteremia 
(Rosselli Del Turco et  al., 2021), and nosocomial infections, 
accounting for 14.7% of all healthcare-associated infections in 
adults (Șchiopu et  al., 2023). They are most relevant to human 
disease and carry many inherent and acquired AMR and virulence 
genes (Rogers et  al., 2021). In Mancuso et al., 2021, the WHO 
released a list of pathogens for which the development of new 
antibiotics is urgently required, in order to focus and guide 
research and development efforts. Among this extensive list, the 
ESKAPE pathogens—comprising E. faecium, Staphylococcus 
aureus, Klebsiella pneumoniae, Acinetobacter baumannii, 
Pseudomonas aeruginosa and Enterobacter species—were assigned 
“priority status” (De Oliveira et al., 2020). In addition, especially 
E. faecium, which can acquire antibiotic resistance through 
chromosomal mutations or gene exchange, there has been a clear 
shift toward pathogens with multi-drug resistance (Hammerum 
et al., 2024; Krause et al., 2022; Freitas et al., 2021). This study 
revealed the high resistance rates of E. faecium isolates to AMG, 
MC, and quinolone antibiotics. TIG, LZD, and VAN are critically 
important for the treatment of Enterococcus. Fortunately, no 
resistant phenotype was detected. QD is a streptogramin 
combination and an important treatment option for VAN-resistant 
E. faecium infections in humans. In the present study, E. faecium 
was found to be highly susceptible (92.85%) to QD.

The pathogenesis of Enterococcus is attributed to a diverse range 
of VFs. The identification of VFs is crucial in evaluating bacterial 
pathogenicity, as it contributes to the attachment, colonization, and 
invasion of host tissues, and also affects the host’s immune response 
and production of enzymes and toxins, which enables 
microorganisms to invade and harm the host (Cebeci, 2024; 
Kiruthiga et  al., 2020). In E. faecium, Acm is the most well-
characterized MSCRAMM, presumably enhancing the ability to 
survive and/or cause infection in the clinical setting (Nallapareddy 
et  al., 2006; García-Solache and Rice, 2019). The acm gene is 
predominantly present in 100% of the analyzed isolates in this study. 
Ebp pili are well-defined cell wall-attached surfaces and can facilitate 
adhesion to abiotic and biotic surfaces (Choo et al., 2023; Ogrodzki 
et al., 2017). Only one isolate carried the ebpC gene encoding Ebp 
pili. EfaA is the most important adhesion protein in Enterococcus and 
plays a vital role in adhesion to eukaryotic cells and surfaces along 
with the colonization of host tissues (Ghazvinian et al., 2024), and all 
isolates carried the EFAU085_00431 gene encoding EfaA. Esp., Scm, 
and SgrA, as the surface-anchored proteins of E. faecium, are also 
important virulence determinants (García-Solache and Rice, 2019; 
Gao et al., 2018; Taglialegna et al., 2020; Rotta et al., 2022; Kim and 
Kim, 2022). In the present study, we found that 50% (7/14) of the 
isolates carried esp. gene encoding Esp., only 14.29% (2/14) isolates 
carried scm gene encoding Scm and 78.57% (11/14) isolates carried 
sgrA gene encoding SgrA. Furthermore, EFAU085_01747, a capsule-
producing gene associated with anti-phagocytosis, was harbored in 
all isolates of the current study. Many pathogenic bacteria preserve 
capsular polysaccharide encoding genes to evade phagocytosis and 
contribute a significant role in pathogenesis through immune evasion 

(Akter et al., 2023). Meanwhile, we discovered that 64.29% of isolates 
carried the EFAU004_00405 gene and 35.71% of isolates carried the 
EFAU085_00344 gene encoding BopD, which is found to 
be necessary for biofilm formation (Creti et al., 2006; Espíndola et al., 
2021). The ability to attach to host cells and form biofilms makes 
them more resistant to antibiotic killing and phagocytic attack, which 
is related to their pathogenic potential and ability to cause disease 
(García-Solache and Rice, 2019). The high frequency of detection of 
these VFs, which may contribute to its success as a pathogen, 
underwrite the pathogenic potential and pathogenicity of E. faecium, 
indirectly demonstrating that increased intestinal colonization of 
E. faecium is closely linked to AML disease progression.

Conclusion

In conclusion, the structure and abundance of gut microbiota in 
patients with newly diagnosed AML were significantly altered. In 
particular, there was a significant increase in the opportunistic 
pathogen Enterococcus and a marked decrease in the beneficial 
bacteria Roseburia, Ligilactobacillus, Faecalibacterium. Interestingly, 
the metabolites butyric acid and acetatic acid were significantly 
downregulated. We  hypothesize that increased colonization of 
Enterococcus leads to gut microbiota dysbiosis, which indirectly results 
in a decrease in specific butyric acid and acetatic acid-producing 
bacteria, leading to a significant negative correlation between 
Enterococcus and butyric acid and acetatic acid. These indicators are 
valuable intestinal predictive biomarkers for AML patients. 
Pathogenetic studies of isolated intestinal colonized E. faecium 
confirmed that the colonization rate of E. faecium was significantly 
increased and it carried multi-drug resistance and high virulence 
genes. Therefore, we hypothesize that Enterococcus plays an important 
role in the disease progression of AML, which is the direction and 
focus of our subsequent studies.

The study also presents limitations. We used strict inclusion and 
exclusion criteria to ensure cohort consistency, but this inherently 
limits the study population and may restrict the generalizability of the 
results. In addition, due to the complexity of individualized treatment 
regimens for patients, our research is currently limited to horizontal 
clinical studies; longitudinal clinical studies require larger clinical 
samples. Finally, our study can only demonstrate that gut microbiota 
dysbiosis, especially colonization by E. faecium, has increased in 
untreated AML patients, so we can only hypothesize that E. faecium 
plays an important role in AML disease progression. Therefore, a 
mechanism study will be our subsequent research direction and focus.
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