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The healthy gut microbiome is important in maintaining health and preventing 
various chronic and metabolic diseases through interactions with the host via 
different gut–organ axes, such as the gut-brain, gut-liver, gut-immune, and gut-
lung axes. The human gut microbiome is relatively stable, yet can be influenced 
by numerous factors, such as diet, infections, chronic diseases, and medications 
which may disrupt its composition and function. Therefore, microbial resilience 
is suggested as one of the key characteristics of a healthy gut microbiome in 
humans. However, our understanding of its definition and indicators remains 
unclear due to insufficient experimental data. Here, we review the impact of key 
drivers including intrinsic and extrinsic factors such as diet and antibiotics on the 
human gut microbiome. Additionally, we discuss the concept of a resilient gut 
microbiome and highlight potential biomarkers including diversity indices and 
some bacterial taxa as recovery-associated bacteria, resistance genes, antimicrobial 
peptides, and functional flexibility. These biomarkers can facilitate the identification 
and prediction of healthy and resilient microbiomes, particularly in precision 
medicine, through diagnostic tools or machine learning approaches especially 
after antimicrobial medications that may cause stable dysbiosis. Furthermore, 
we review current nutrition intervention strategies to maximize microbial resilience, 
the challenges in investigating microbiome resilience, and future directions in 
this field of research.
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1 Introduction

The human gastrointestinal tract (GIT) is home to trillions of diverse communities of 
microorganisms, including bacteria, viruses, fungi, and archaea, known as the gut microbiota 
and their interaction and metabolites as the gut microbiome, including their structural 
elements, metabolites, and byproducts and their surrounding environmental conditions (Berg 
et al., 2020). The human gut microbiome (HGM) has a range of beneficial impacts on human 
health. Some of the main impacts include maintaining the integrity and function of the 
mucosal barrier, promoting and modulating the host immune system against pathogens, 
metabolizing harmful substances and xenobiotics, and providing micro-and macronutrients 
and metabolites such as vitamins, amino acids, and short-chain fatty acids (SCFAs) (Thursby 
and Juge, 2017). Moreover, the importance of HGM in regulating the function of other organs, 
including the brain (Cryan et al., 2019), liver (Tripathi et al., 2018), lung (Dang and Marsland, 
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2019), heart (Madan and Mehra, 2020) and kidney (Stavropoulou 
et al., 2021), has been investigated in recent years. Healthy HGM also 
provides colonization resistance against exogenous bacteria through 
various direct and indirect mechanisms, such as producing 
antimicrobials and inhibitory metabolites, competing for resources 
and niches, strengthening intestinal barrier function, and deploying 
bacteriophages to target specific bacteria (Ducarmon et al., 2019). 
Owing to the intrinsic plasticity of the gut microbiome, defining what 
is considered a “healthy” microbiome is difficult. Based on the current 
definition, a healthy gut microbiome is characterized by greater 
microbial diversity and richness, a greater abundance of SCFA-
producing bacteria, and a metabolically functioning and stable 
balanced microbiota composition (Ruan et al., 2020; Shanahan et al., 
2021; Van Hul et al., 2024). Although different factors, such as diet, 
age, lifestyle, and environment, impact microbial diversity and 
abundance (Conlon and Bird, 2015), healthy HGM can resist and 
restore microbial composition and function due to the presence of a 
core gut microbiota over time (Aguirre de Carcer, 2018; Fassarella 
et al., 2021; Aguirre de Carcer, 2018; Fassarella et al., 2021). Several 
bacterial phyla are known to make up the core gut in healthy 
individuals across different populations and increase the stability and 
functionality of the HGM over time (Almeida et al., 2019; Derrien and 
Vlieg, 2015; Huttenhower et al., 2012). Generally, HGM consists of 6 
major bacterial phyla, i.e., Bacillota (previously known as Firmicutes), 
Bacteriodota (previously known as Bacteroidetes), Pseudomonadota 
(previously known as Proteobacteria), Actinomycetota, 
Verrucomicrobiota, and Fusobacteria, with Bacteroidota and Bacillota 
accounting for the majority of the microbes (Aguirre de Carcer, 2018; 
Rinninella et al., 2023).

Stability, recovery (from insults), and resilience are crucial features 
of HGM that can enhance human health by preventing stable 
microbiome dysbiosis. Recovery and resilience are two common terms 
often used in ecological systems and are quantified via mathematical 
approaches (Van Meerbeek et al., 2021; Ingrisch and Bahn, 2018). 
However, within the microbiome field, the property of resilience is still 
rarely used. It is desirable to quantify the resilience of HGM and 
prevent dysbiosis, especially for patients undergoing treatment with 
medications known to induce dysbiosis, particularly antibiotics. 
However, there is still an enormous knowledge gap regarding the 
mechanisms that confer resilience, biomarkers that help to distinguish 
and predict it, factors that influence it, and strategies to develop and 
boost it. Additionally, although some indices have been introduced 
and discussed for other ecosystems (Ingrisch and Bahn, 2018) and 
microbiomes (Orwin and Wardle, 2004), there are no acceptable 
methods for evaluating and quantifying the stability and resilience of 
HGM. Therefore, understanding the factors that influence the 
resilience of HGM and developing methods to measure indices of 
resilience are essential for improving human health and preventing or 
treating diseases associated with dysbiosis.

Here, we review various factors, especially antibiotics, as major 
disturbance factors that can perturb the microbial balance in the gut 
and may cause persistent dysbiosis. Additionally, we  delve into 
concepts related to the stability and resilience of the gut microbiota 
and review potential biomarkers that can be utilized to identify and 
predict a resilient gut microbiome and nutritional strategies for 
improvement. Finally, we address some challenges in investigating 
resilience in the human gut microbiome, including technological 
constraints, limited human studies, and data resources.

2 Gut dysbiosis causes and 
consequences

Gut microbiome dysbiosis is defined as an imbalance of the gut 
microbial community characterized by an increase in the abundance 
of pathogens and a reduction in overall microbial diversity and the 
abundance of beneficial and keystone microbes of the core microbiota 
that play crucial roles in the ecological structure and function of the 
gut microbiota (Aguirre de Carcer, 2018; Hrncir, 2022). Multiple 
intrinsic and extrinsic factors could act as “stressors” contributing to 
microbiota dysbiosis (Figure 1). Dysbiosis could involve alterations in 
both the composition and functionality of the HGM. Some of these 
changes may be  temporary and reversible, whereas others may 
be persistent and irreversible, and the consequences of these changes 
depend on the type, intensity, and duration of the stressor (Philippot 
et al., 2021), as well as on the initial composition and function of the 
gut microbiota and the host-relevant factors (Das and Nair, 2019; 
Sommer et al., 2017). Irreversible alterations in HGM may result in 
detrimental effects on host health and well-being, and are associate 
with gut barrier dysfunction and gastrointestinal, renal, liver, 
metabolic, and behavioral disorders such as inflammatory bowel 
disease, malnutrition, diabetes, and liver cirrhosis (Das and Nair, 
2019; Wang et  al., 2020; Fukui, 2019). As discussed below, while 
intrinsic factors have modest effects (Falony et al., 2016; Rothschild 
et al., 2018; Vilchez-Vargas et al., 2022), extrinsic factors, the majority 
of which are modifiable, have the most profound impact on the health 
of the gut microbiota.

2.1 Intrinsic factors

Intrinsic factors such as host genetics, age, and intestinal diseases 
have been associated with susceptibility to HGM dysbiosis. Current 
evidence from genome-wide association studies suggests that host 
genetics even in twins (Goodrich et al., 2016), particularly immune 
system-related genetic variants (e.g., Leucine-rich repeat and Ig 
domain-containing Nogo receptor-interacting protein 2 known as 
LINGO2 and Van Gogh-like protein 1, known as VANGL1), could 
play a role in shaping the gut microbiota composition (Kurilshikov 
et  al., 2017). Old age has also been associated with significant 
alterations in the microbial community (An et al., 2018; Salazar et al., 
2017). One of the key changes in the gut microbiota at an older age is 
a change in the diversity and richness of microbiome composition 
especially a reduction in the population of health-associated bacteria 
such as SCFA-producing bacteria resulting in an alteration of the 
Bacillota (Firmicutes) to Bacteriodota ratio and enrichment of 
Bacteroidetes and opportunistic bacteria (Mariat et al., 2009; Favaron 
et al., 2023). These changes can increase the susceptibilityto infection 
and the reduction in SCFA production that may be associated with 
low-grade chronic inflammation, known as inflammaging, and 
modulate neuro-immune activation (Favaron et al., 2023; Bosco and 
Noti, 2021). In a recent study by Zhang et  al. (2023) using the 
gutMDisorder database, 117 gastrointestinal and extra-
gastrointestinal diseases were linked with dysbiosis of 479 gut 
microbes, of which colorectal cancer, Parkinson’s disease, and 
inflammatory bowel disease (IBD) were among the top five. 
Interestingly, dysbiosis involving the Bacillota (Firmicutes) phylum 
was associated with 34 diseases. Additionally, certain gastrointestinal 
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pathological conditions affecting intestinal immune functions and 
intestinal barrier integrity, such as IBD (Abdelbary et  al., 2022), 
irritable bowel syndrome (IBS) (Wang et al., 2020), and celiac disease 
(CD) (Leonard et al., 2021), can increase an individual’s susceptibility 
to dysbiosis. Patients with IBD exhibit a disrupted HGM characterized 
by a decreased level of health-associated species, such as 
Faecalibacterium prausnitzii, Roseburia intestinalis, Eubacterium 
rectale, and Clostridium leptum, alongside increased levels of potential 
pathogens, such as Bacteroides fragilis, E. coli, Ruminococcus torques, 
Ruminococcus gnavus, Clostridium bolteae, and Clostridium 
hathewayi, in both ulcerative colitis and Crohn’s disease (Qiu et al., 
2022). Similarly, an increase in pathogenic bacteria such as E. coli and 
Enterobacter species and a reduction in potential beneficial microbes 
including Bifidobacterium and Lactobacillus species have been 
reported in patients with IBS (Wang et al., 2020). CD is also associated 
with the depletion of F. prausnitzii, Bifidobacterium species, 
Clostridium histolyticum, and Clostridium lituseburense and the 
enrichment of the Bacteroides/Prevotella group (De Palma et  al., 
2010). It is still unclear whether the alteration in the microbial 
composition is a cause or a consequence of these disorders. 
Nevertheless, genetic predisposition, advanced age, or intestinal 
disorders, could result in vulnerable initial microbiome composition 

and, as such, be more susceptible to changes, with a lower capacity to 
recover upon exposure to perturbation.

2.2 Extrinsic factors

In addition to intrinsic factors, a wide range of extrinsic factors, 
such as geographical location (He et al., 2018; Yatsunenko et al., 2012), 
lifestyle habits [e.g., unhealthy diet (Brown et al., 2012; Garcia et al., 
2022), cigarette smoking (Stewart et al., 2018; Nolan-Kenney et al., 
2020), alcohol intake (Day and Kumamoto, 2022), and sleep 
deprivation (Sun et al., 2023; Benedict et al., 2016; Wang Z. et al., 
2021)], and exposure to xenobiotics or environmental chemicals can 
cause alterations in HGM.

Diet is one of the most significant factors shaping HGM. Certain 
unhealthy dietary patterns, such as high-fat or high-sugar diets, 
processed food, refined sugar, and artificial sweeteners, have been 
linked to microbial dysbiosis (Brown et al., 2012; Garcia et al., 2022). 
For example, Bisanz et al. (2019) performed a meta-analysis of 27 
diet-and microbiota-related studies, demonstrating that a high-fat diet 
is associated with a distinctive shift in the HGM community. The most 
prominent features reported in these studies are the increased 

FIGURE 1

Known factors that impact the composition and function of human gut microbiome. Various intrinsic and extrinsic stressors contribute to short-term, 
long-term, or permanent alteration of microbial communities. Medications, especially antibiotics, and infections by gastrointestinal pathogens may 
cause long-term dysbiosis by permanent changes in the relative abundance of major phyla, especially the ratio of Bacillota (Firmicutes) to Bacteroidota 
and reducing the abundance of beneficial bacteria, especially SCFA bacteria that may influence the function of HGM. Chronic and metabolic diseases 
may be caused by changes in the gut microbiome or may influencing the gut microbiome composition and function (Created in BioRender. Safarchi, 
A. (2025) https://BioRender.com).
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Bacillota to Bacteriodota (Firmicutes to Bacteroidetes) ratio as well as 
a shift in the microbial composition in the high-fat diet group 
compared with the low-fat diet group. Cheng et al. (2022) reported 
that the gut microbial communities of Chinese half-year travelers 
adopted the patterns of the destination country’s gut microbiome 
while abroad. Interestingly, upon returning home, their gut 
microbiome reverted to their original patterns after one month, which 
was mediated by dietary changes. Furthermore, evidence from animal 
studies has indicated that a long-term unhealthy diet (e.g., a Western 
diet and high-fat diet) could lead to the permanent loss of microbial 
diversity and some beneficial taxa bacterial taxa (Malesza et al., 2021; 
Velasquez, 2018). For instance, Sonnenburg et al. (2016) reported that 
exposing multiple generations of mice to a diet that is low in 
microbiota-accessible carbohydrates (MACs), a type of carbohydrate 
found in dietary fiber, led to the progressive loss of microbial diversity 
and taxa, which did not recover upon the reintroduction of MACs. 
Overall, an unhealthy diet causes a rapid shift in the gut microbiota 
composition, which cannot be  completely reversed through the 
introduction of a healthy diet.

2.2.1 Xenobiotic-induced dysbiosis
Exposure to xenobiotics such as antimicrobial agents, 

non-antibiotic prescription medications, and environmental toxins 
has been strongly linked to HGM dysbiosis (Table 1). Among these 
xenobiotic materials, the use of antibiotics is one of the major factors 
contributing to gut microbiota dysbiosis, which is characterized by 
reduced diversity, altered taxonomy, and reduced resistance to 
colonization by pathogenic microbes (Lange et al., 2016). Antibiotics 
can lead to drastic short-term or long-term alterations in the gut 
microbial composition with an increase in abundance of antimicrobial 
resistance genes of which their impacts depend on the class of 
antibiotics, the target spectrum, dose and duration, pharmacokinetics 
and pharmacodynamics, and route of administration (Fassarella et al., 
2021; Jernberg et al., 2007; Perez-Cobas et al., 2013). Interindividual 
differences, including age, the immune system, and genetics, can also 
influence the impacts of antibiotics on HGM (Wang Z. et al., 2021; 
Jernberg et al., 2007).

In early life, prenatal and intrapartum use of antibiotics has been 
found to influence gut microbiota colonization, composition, and 
diversity in infants (Azad et al., 2016; Coker et al., 2020; Zhou et al., 
2020). Furthermore, it has been shown that children under three years 
of age receiving antibiotics are associated with lower richness and 
diversity as well as compositional changes and an increase in antibiotic 
resistance genes (beta-lactamase resistance, tetracycline (tet32) 
resistance, and tolC antibiotic efflux genes). The study also reported 
that antibiotic-treated children had a less stable microbial community 
with greater interindividual variability (Yassour et al., 2016). Generally, 
early-life antibiotic-induced alterations in the gut microbiota may 
normalize over 12 months postexposure (Reyman et  al., 2022); 
however, these alterations have been linked to an increased risk of 
developing several metabolic and immune-related disorders, including 
asthma, allergies, obesity, and IBD, later in life (Zeissig and 
Blumberg, 2014).

In adults, several studies have shown that antibiotic use is 
associated with perturbation of HGM in different populations. The 
classes of antibiotics most commonly used include cefprozil (Raymond 
et al., 2016a; Raymond et al., 2016b), ciprofloxacin (Dethlefsen et al., 
2008; Dethlefsen and Relman, 2011; Rashid et al., 2015), amoxicillin 

(De La Cochetiere et al., 2005), and clindamycin (Jernberg et al., 2007; 
Rashid et al., 2015), which have been shown to alter the gut microbiota 
in healthy subjects (Table 1). Individuals often receive multiple broad-
spectrum antibiotics simultaneously to treat certain conditions, which 
may result in more profound perturbations. Palleja et  al. (2018) 
analyzed the fecal microbiota of 12 healthy men treated with a 4-day 
cocktail of vancomycin, gentamicin, and meropenem. They reported 
a significant depletion of butyrate-producing bacteria and beneficial 
Bifidobacterium species and enrichment of pathobionts such as 
Fusobacterium nucleatum and Enterococcus faecalis. Although the gut 
microbiota was able to recover to a near-baseline state at 1.5 months, 
some species remained undetected for up to 6 months posttreatment.

Long-term amoxicillin administration for three months in 
adults increased the abundance and diversity of total antimicrobial 
resistance gene loads, with persistent changes at 9 months post-
treatment, even after microbiome reconstitution (Dhariwal et al., 
2023). A shift in antimicrobial resistance genes was also observed 
in other antibiotic treatment clinical studies (Raymond et  al., 
2016b; Palleja et al., 2018; Willmann et al., 2019; Zaura et al., 2015; 
Gasparrini et  al., 2019). In an in  vitro fermentation model by 
Maurice et al. (2013), short-term exposure to a panel of xenobiotics, 
including antibiotics, significantly altered the physiology, structure, 
and gene expression of active gut microbes such as Bacillota 
(Firmicutes). Furthermore, changes in gene expression, encoding 
antibiotic resistance, drug metabolism, and stress response 
pathways, have been detected across multiple bacterial phyla. 
Using the Simulator of the Human Intestinal Microbial Ecosystem 
(SHIME), significant increases in resistance gene expression 
against beta-lactamase, sulfonamide, and aminoglycoside were also 
observed in a multistage continuous fermentation model in which 
a fecal slurry was treated with amoxicillin and colistin (Li et al., 
2021). In addition to antimicrobial agents, other nonantibiotic 
medications, such as proton pump inhibitors (PPIs) for gastric acid 
inhibition, metformin for type 2 diabetes, statins for high 
cholesterol, opioids and nonsteroidal anti-inflammatory drugs 
(NSAIDs) for pain relief and inflammation, and antipsychotic and 
antineoplastic agents (e.g., chemotherapy, radiotherapy) (Table 1), 
have all been found to cause microbial dysbiosis (Le Bastard et al., 
2018; Zádori et  al., 2023; Roggiani et  al., 2023; Wang 
L. N. et al., 2021).

Le Bastard et  al. (2018) systematically reviewed studies that 
assessed the impact of different non-antibiotic prescription drugs on 
the gut microbiota and reported that a wide range of medications are 
associated with alterations in HGM. They reported a common 
observation among the majority of these medications as an increase 
in the abundance of gut pathogens belonging to the 
Gammaproteobacteria class or Enterococcaceae family. They reported 
that among these medications, opioids were associated with high 
alpha diversity, whereas PPIs and antipsychotics decreased alpha 
diversity. In terms of beta diversity, all medications (PPIs, metformin, 
statins, opioids, and antipsychotics) except for NSAIDs were 
associated with significant differences in beta diversity values between 
the control and treatment groups. Anticancer agents can also cause a 
shift in microbial composition, deplete microbial diversity, and enrich 
potential pathogenic microbes depending on the treatment type and 
study population (Liu et al., 2021; Wei et al., 2021). Furthermore, 
exposure to environmental pollutants and toxicants such as pesticides 
and heavy metals has also been implicated in gut microbiota 
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TABLE 1 Effects of xenobiotics on the human gut microbiome composition, showing the increase and decrease of bacterial taxa for each class of xenobiotics.

Class Medicine Increased Decreased References

Antibiotics

Cefprozil
Lachnoclostridium, Lachnoclostridium bolteae, 

Parabacteroides, Flavonifractor

Bifidobacteriaceae, Veillonellaceae, 

Eubacteriaceae, Coriobacteriaceae, 

Oxalobacteraceae, Pasteurellaceae

Raymond et al. (2016b)

Ciprofloxacin Bacteroides, Blautia, Eubacterium, Roseburia

Faecalibacterium, Bifidobacterium, 

Alistipes, Oscillospira, Ruminococcus, 

Dialister, uncultured 

Ruminococcaceae

Dethlefsen et al. (2008), 

Dethlefsen and Relman (2011), 

Rashid et al. (2015), and 

Stewardson et al. (2015)

Amoxicillin
Enterobacteriaceae, Escherichia, Parabacteroides, 

Enterobacter

Bifidobacterium adolescentis, 

Bifidobacterium bifidum, Clostridial 

cluster XIVa, Bifidobacterium, 

Roseburia

Kabbani et al. (2017), Mangin 

et al. (2010), and Young and 

Schmidt (2004)

Clindamycin
Bacteroides thetaiotaomicron (clindamycin-

resistant)

Bacteroides, Enterococcus, 

Coprococcus, Roseburia, Lachospira, 

Dorea, Ruminococcus, uncultured 

Lachnospiracea

Jernberg et al. (2007), Rashid 

et al. (2015), Lindgren et al. 

(2009), and Lofmark et al. (2006)

Vancomycin
Lactobacillus plantarum, Escherichia coli, 

Haemophilus, Serratia

Clostridium cluster IV and XIVa, 

Faecalibacterium prausnitzii, 

Eubacterium hallii

Vrieze et al. (2014)

Proton pump 

inhibitors

Omeprazole
Micrococcaceae, Streptococcaceae, 

Enterococcaceae, Staphylococcaceae

Erysipelotrichaceae, 

Lachnospiraceae, Ruminococcaceae, 

Clostridiaceae

Bajaj et al. (2014), Freedberg 

et al. (2015), and Jackson et al. 

(2016)

Mixed PPIs
Actinomycetales, Streptococcaceae, 

Micrococcaceae, Rothia, Lactobacillus salivarius
Imhann et al. (2016)

Anti hyperglycemic 

agents
Metformin

Escherichia spp., E. coli, A. muciniphila, 

Butyrivibrio, Prevotella, Megasphaera, Shigella, 

Klebsiella, Salmonella, Bifidobacterium

Coprococcus_comes, Clostridium, 

Clostridium_bartlettii, 

Peptostreptococcaceae noname, 

Intestinibacter, Oscillospira, 

Barnesiellaceae, Clostridiaceae 

02d06, Eubacterium

de la Cuesta-Zuluaga et al. 

(2017), Forslund et al. (2015), 

Karlsson et al. (2013), Wu et al. 

(2017), and Zhernakova et al. 

(2016)

Lipid-lowering 

agents
Statins

Streptococcus parasanguinis, Streptococcus 

vestibularis, Ruminococcaceae bacterium D16, 

Clostridium bolteae, Ruminococcus torques, 

Coprobacillus unclassified, Enterobacteriaceae, 

Burkholderiaceae, Propionibacteriaceae, 

Enterococcaceae, Actinomycetaceae, 

Streptococcaceae, Erysipelotrichaceae

Dorea longicatena, Coprococcus 

comes, Dorea formicigenerans, 

Eubacterium ramulus

Zhernakova et al. (2016) and 

Bedarf et al. (2017)

Pain-relieving agents

Mixed opioids

Ruminococcaceae, Bacteroidaceae, Clostridiales 

XIV, Parasutterella, Roseburia inulinivorans, 

Bacteroides, Roseburia, Bilophila

Peptostreptococcaceae, Alistipes 

AP11, Enterobacteriaceae, 

Lactobacillus, Clostridium cluster 

XIVa, Faecalicoccus, Anaerostipes, 

Streptococcus

Zhernakova et al. (2016), 

Acharya et al. (2017), and 

Gicquelais et al. (2020)

Methadone
Actinobacteria, Bifidobacteriaceae, B. bifidum, 

Bifidobacterium longum

Verrucomicrobia, Akkermansiaceae, 

Akkermansia muciniphila
Cruz-Lebron et al. (2021)

NSAIDs

Mixed NSAIDs

Roseburia, Acidaminococcaceae, 

Enterococcaceae, Erysipelotrichaceae, 

Desulfovibrionaceae

Collinsella, Lactobacillus
Makivuokko et al. (2010) and 

Rogers and Aronoff (2016)

Celecoxib Acidaminococcaceae, Enterobacteriaceae Rogers and Aronoff (2016)

Ibuprofen
Rikenellaceae, Propionibacteriaceae, 

Pseudomonadaceae, Puniceicoccaceae
Rogers and Aronoff (2016)

Ketorolac Alistipes spp Noguera-Julian et al. (2016)

Indomethacin Prevotella, Bacteroidetes, Ruminococcus Ruminococcus Hullegie et al. (2016)

Aspirin Clostridium XIVa, Prevotella Clostridium XVIII, Veillonella Edogawa et al. (2018)

(Continued)

https://doi.org/10.3389/fmicb.2025.1559521
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Safarchi et al. 10.3389/fmicb.2025.1559521

Frontiers in Microbiology 06 frontiersin.org

perturbation (Chi et al., 2021; Claus et al., 2016; Hoen et al., 2018) 
(Table 1). The restoration of the microbiota to baseline after exposure 
to medications depends on the type of medication, doses received, and 
duration of treatment. For example, chemotherapy-induced dysbiosis 
can persist for 6–12 months after the initiation of perturbation 
(Rashidi et al., 2022; Rajagopala et al., 2020).

Overall, the extent of alterations in the microbial community 
varies according to the intensity and duration of external stressors and 
the intrinsic resilience of an individual’s gut microbiome. While minor 
temporary shifts in the microbial community can be harmless, major 
and persistent microbial dysbiosis may be associated with several 
health problems due to changes in host-microbiome interactions, 
intestinal permeability, inflammatory responses, and metabolite 
impacts (Dahiya and Nigam, 2023).

3 Stability and resilience of the human 
gut microbiome

3.1 Resilience concept and definition

While recovery of the ecosystem is defined as a full return to the 
reference condition after perturbation, the term resilience was first 
defined by Holling in 1973 as a measure of the persistence of systems 
and their ability to absorb changes and disturbances while still 
maintaining the same relationships between populations or states of 
variables (Van Meerbeek et  al., 2021; Holling, 1973). Therefore, a 
resilient ecosystem has the ability to reduce the impact of disturbances 
and restore its composition and functions after disruption (Ingrisch 
and Bahn, 2018; Song et al., 2015). Since then, resilience has been used 

TABLE 1 (Continued)

Class Medicine Increased Decreased References

Antipsychotic

Risperidone

Clostridium sp., Collinsella aerofaciens, 

Lactobacillus sp., Ralstonia sp., 

Erysipelotrichaceae

Prizment et al. (2020)

Tricyclic 

antidepressant
Coprococcus eutactus Zhernakova et al. (2016)

Atypical 

antipsychotic
Lachnospiraceae Akkermansia, Sutterella Flowers et al. (2017)

Antineoplastic agents

Chemotherapy for 

NHLα

Bacteroides, Escherichia, Klebsiella, Enterococcus, 

Citrobacter, Parabacteroides, Megasphaera

Blautia, Roseburia, Ruminococcus, 

Blautia, Roseburia, Dorea, 

Lachnospira, Clostridium, 

Bifidobacterium, Coprococcus, 

Anaerostipes, Oscillospira, 

Collinsella, Adlercreutzia 

Faecalibacterium, Bifidobacterium

Montassier et al. (2014) and 

Montassier et al. (2015)

Chemotherapy for 

AMLβ
Lactobacillus Blautia Galloway-Pena et al. (2016)

Chemotherapy for 

CRCγ

Prevotella copri, Bacteroides plebeius, Veillonella 

dispar
Deng et al. (2018)

Chemotherapy for 

GITδ cancers
Lactobacillaceae, Lactobacillus Youssef et al. (2018)

Chemotherapy 

ALLε

Parabacteroides, Lachnoclostridium, 

Ruminococcus gnavus

Bacteroides, Alistipes, 

Faecalibacterium
Rajagopala et al. (2020)

Chemotherapy for 

OCζ

Bacteroides, Blautia, Collinsella, 

Coriobacteriaceae

Ruminococcaceae, Faecalibacterium, 

Ruminococcus, Lachnospiraceae

D'Amico et al. (2021) and Tong 

et al. (2020)

Chemotherapy for 

AML
Bacteroides, Faecalibacterium, Alistipes Rashidi et al. (2022)

Radiotherapy

Firmicutes, Eubacteriaceae, Faecalibacterium, 

Lachnospiracea, Oscillibacter, Roseburia, 

Streptococcus, Clostridiales

Bacteroides, Fusobacterium, 

Fusobacteriaceae, Streptococcaceae, 

Clostridium_XIVa

Mitra et al. (2020), Nam et al. 

(2013), and Wang et al. (2015)

Pesticides Mixed pesticides

Allisonella histaminiformans, Bacteroides 

coprophilus, Mitsuokella multacida, 

Parabacteroides sp. CAG 409, Acidaminococcus 

fermentans, Megasphaera elsdenii

Barnesiella intestinihominis, 

Bacteroides dorei, Alistipes finegoldii
Gois et al. (2023)

Heavy metals Mixed metals

Bacteroides, Lachnospiraceae, Roseburia, 

Ruminococcaceae UGG-014, Eubacterium eligens, 

Erysipelotrichaceae UCG-003, Tyzzerella, Slackia

Prevotella Shao and Zhu (2020)

αNon-Hodgkin’s lymphoma, βAcute Myeloid Leukemia, γColorectal Cancer, δGastrointestinal cancers, εAcute Lymphoblastic Leukemia, ζOvarian Cancer.
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as a descriptive concept in different scientific disciplines with two 
major definitions: engineering and ecological resilience. Engineering 
resilience refers to the rate and ability of an ecosystem to return to its 
original stable state following a perturbation and can be assessed by 
the time of recovery (Van Meerbeek et al., 2021; Ingrisch and Bahn, 
2018). In this context, the capacity of a system to resist disturbances 
and remain stable is important. In contrast, ecological resilience is the 
ability of an ecosystem to withstand pressure and remain within 
critical thresholds and can be measured by the amount of disturbance 
that a system can absorb (Philippot et al., 2021).

In the microbiome field, resilience is still a complex and 
controversial term with numerous interpretations. Most microbial 
ecology studies have primarily used the engineering resilience 
concept, which evaluates the ability of microbial communities to 
return to their original states (Philippot et al., 2021). Some researchers 
have proposed unifying engineering and ecological concepts by 
recognizing that microbiome communities display both elastic (i.e., 
engineering) and plastic (i.e., ecological) resilience as these features of 
microbial communities complement each other (Song et al., 2015). On 
the other hand, others suggest the microbial community response can 
be quantified with metrics such as the degree of return to baseline 
composition, return time, rate of return, and efficiency (Todman et al., 
2016). Therefore, microbial resilience is defined by the ability of a 
microbial ecosystem to remain stable over time and return to its 
original functions or taxonomical compositions following 
perturbation, thus preventing a shift in the microbial community to a 
stable dysbiosis state, which is associated with a wide range of health 
complications for the host (Philippot et al., 2021; Sommer et al., 2017; 
Dogra et al., 2020). In other words, while recovery post-dysbiosis can 
be considered an aspect of resilience, it is crucial to differentiate it 
from resilience. Resilience encompasses not only the ability to recover 
but also the capacity for functional and compositional adaptation 
under various stressors (Table 2). Moreover, resistance, defined as the 
capacity of the microbiome to prevent disturbance under the pressure 
of perturbation (Figure 2A), is another characteristic of a healthy 
microbiome (Sommer et al., 2017; Song et al., 2015). Resilience and 
resistance are essential characteristics of a healthy microbiota that 
determine its stability, adaptability, and recovery from different 
stressors while maintaining its functionality and adaptability (Van Hul 
et al., 2024; Fassarella et al., 2021).

Several factors affect the stability and resilience of HGM, including 
microbial diversity, metabolic flexibility, functional redundancy, 
microbe-microbe, and host–microbe interactions, and microbial 
products such as SCFAs and antimicrobial peptides known as 
bacteriocins (Fassarella et al., 2021; Dogra et al., 2020; Greenhalgh 
et  al., 2016; Ramakodi, 2022). Host and nonmicrobial factors, 
including the mucus layer, bile salts, immune system, diet, and physical 
activity, may also drive interindividual differences in microbial 
resilience (Sommer et al., 2017; Klement and Pazienza, 2019; He et al., 
2019). Multiple reviews have discussed these factors and mechanisms 
of action that shape the resilient and stable healthy microbiome in 
detail (Fassarella et al., 2021; Sommer et al., 2017; Tang et al., 2020).

3.2 Microbiome response scenarios

When stressors cause gut microbiome dysbiosis, different scenarios 
can explain the compositional and functional recovery of the 
microbiome from weak and strong perturbation (Figure 2B). These 

include full recovery of both composition and function to the 
pre-disturbed state, full physiological adaptation (composition recovers 
but function does not), full functional redundancy (function recovers 
but composition does not), and no recovery, where neither composition 
nor function returns to the original state (Philippot et  al., 2021). 
Therefore, defining quantitative metrics, including the degree of return 
to baseline composition, return time, rate of return, and efficiency, to 
describe the microbial community response is important (Todman et al., 
2016). While a healthy resilient microbiome (RM) is beneficial for the 
host, unhealthy RM may prevent the reshaping of the microbiota toward 
healthy states. This could explain the failure of nutritional and 
therapeutic interventions and may be  associated with increased 
susceptibility to a variety of diseases and disorders (Fassarella et al., 
2021). For instance, in an umbrella review by Zhang et al. (2023), fecal 
microbiota transplantation (FMT) resulted in the lowest remission rate 
for chronic pouchitis, and the recurrence rate was higher in older 
patients (> 65 years) with Clostridioides difficile infection (CDI) than in 
younger patients. This may suggest that compared with single short-term 
FMT, repeated FMT is more efficacious in restoring HGM to its baseline 
status, and the specific indication, route of administration, frequency of 
instillation, fecal preparation, and donor type will influence the outcome 
(Zhang et  al., 2023). Another important factor in determining the 
susceptible HGM from resistance and resilience of HGM is the time of 
recovery to the baseline composition which depends on several factors. 
This aspect is discussed in greater detail in Section 4.1.3.

An irreversible dysbiosis under prolonged or severe stressors in 
HGM can lead to permanent loss of beneficial bacteria and increase 
the risk of chronic disease, behavioral disorders or infections (e.g., 
colorectal cancer, C. difficile-associated diarrhea in elderly people, 
IBD, necrotizing enterocolitis in newborns) by disruption of the gut 
barriers and imbalances of the host immune and metabolic system, 
the influence of oxidative stress, and the changes in the bacteriophages 
and bacteriocins (Hrncir, 2022; Wang et al., 2020; Day and Kumamoto, 
2022; Weiss and Hennet, 2017). For instance, early life disruptions of 
the gut microbiome (e.g., due to cesarean section, formula feeding, or 
antibiotic use) can have several long-lasting effects on health, 
potentially increasing the risk of chronic diseases, food allergies, 
asthma, diabetes, and obesity in adulthood (Law et al., 2024).

4 Biomarker for the resilient 
microbiome

Individual variations and delayed recovery in HGM composition 
due to stressors such as antibiotics have been reported in different 
studies (Dethlefsen and Relman, 2011; Palleja et al., 2018; Dhariwal 
et al., 2023). However, the indices and features that distinguish and 
predict RM, as well as potential recovery after disturbance, from 
non-resilient and non-recovering microbiomes remain largely 
unknown. The detection and prediction of RM in individuals present 
a formidable challenge, primarily due to the absence of well-defined 
biomarkers and indices that could offer comprehensive insights into 
the microbial landscape before disturbance factors such as xenobiotics 
are encountered (Sommer et al., 2017; Lange et al., 2016). The search 
for biomarkers capable of providing clinicians and researchers with 
actionable information about the status of the microbiome has been 
difficult because of the intricate and dynamic nature of HGM and the 
need for longitudinal monitoring. While certain variables, such as 
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microbial diversity and composition, recovery time, functional 
redundancy, and microbial stability, as well as host-related factors, 
such as diet, the immune system, and the characteristics of the mucus 
layer, have been explored as potential factors (Fassarella et al., 2021; 
Sommer et  al., 2017), their applicability as biomarkers remains 
limited. To address this need, measurable and quantitative biomarkers 
are essential for distinguishing RM. In this section, we  begin by 
highlighting common factors and biomarkers that can be used to 
identify both healthy and resilient HGM. We  then explored 
biomarkers that may be more specifically associated with RM and 
focused on their potential applications in clinical settings.

4.1 Nonspecific resilience biomarkers

4.1.1 Microbial diversity and composition
Several characteristics have been generally associated with healthy 

HGM, which could also be indicative of an RM (Figure 3). Microbial 
diversity, particularly alpha diversity, reflects the number and variety 
of different species and strains in the gut (Fassarella et  al., 2021; 
Allison and Martiny, 2008). Higher diversity is generally associated 
with a more stable and resilient microbiota, contributing to better host 
health by providing more options for adaptation and compensation 
(Van Hul et al., 2024). For example, a decrease in microbial diversity 
or an increase in pathogenic bacteria may be associated with obesity, 
malnutrition, inflammatory bowel disease, neurological disorders, or 
cancer (Das and Nair, 2019; Wang et al., 2020; Fukui, 2019; Brown 
et al., 2012; Le Bastard et al., 2018; Chi et al., 2021). Moreover, alpha 
diversity metrics, such as the Simpson index, have been used as 
recovery indicators during antibiotic therapy (Chen et al., 2023; Chng 
et  al., 2020). However, while increased diversity can serve as a 
predictor or marker of microbiome health, no defined threshold for 
diversity metrics categorizes an individual’s microbiome as healthy 
HGM. Additionally, diversity metrics are not exclusive to resilience 
and can be applicable under other conditions.

Specific bacterial taxa, such as Bacillota (Firmicutes) and 
Bacteroidota (Bacteroides), belong to the core gut microbiome, as the 
Firmicutes/Bacteroides ratio can be  used as a healthy HGM and 

nonspecific resilience biomarker (Ruan et al., 2020; Shanahan et al., 
2021). For example, in a humanized germ-free mouse, the microbiome 
of a stool donor dominated by Bacteroides and Parabacteroides showed 
less alteration in microbial composition and host gene expression after 
antibiotic therapy with amoxicillin-clavulanate than did the 
microbiome of a donor with dominant Prevotella and Faecalibacterium 
(Lavelle et  al., 2019). Additionally, in a human study, the initial 
composition of HGM determined recovery after treatment with 
cefprozil. In this study, individuals who initially had lower microbial 
diversity and a Bacteroides enterotype were enriched with the 
opportunistic pathogen Enterobacter cloacae, which is a known carrier 
of cefprozil resistance-linked chromosomal beta-lactamases, after 
treatment (Raymond et al., 2016b). Hence, a more diverse and well-
balanced microbiome enhances resilience against disturbances and 
promotes recovery toward a balanced state, contributing to immune 
system regulation via host-microbiome interactions. However, 
individual-related factors that impact microbiome composition and 
richness make it difficult to establish universal biomarkers (Figure 3).

4.1.2 Metabolic flexibility
Metabolic flexibility and functional redundancy are other factors 

that can be  used as biomarkers or characteristics of healthy and 
resilient gut microbiomes (Ruan et al., 2020). Metabolic flexibility is 
defined as the ability of microbes to adapt and switch between 
different substrates and pathways to respond to environmental 
conditions, especially the availability of nutrients, and allows them to 
cope with changes in the diet or environment (Smith et al., 2018). For 
example, metabolic adaptation has been reported in women during 
pregnancy and breastfeeding or by changing the diet of healthy 
individuals (Gosalbes et al., 2019; Murga-Garrido et al., 2021; Sholl 
et al., 2021). Functional redundancy refers to the presence of different 
microbes that can perform similar functions in the gut, such as 
producing SCFAs or degrading dietary fibers or tryptophan 
metabolites such as indole and kynurenine (Van Hul et al., 2024; Moya 
and Ferrer, 2016). This ensures that essential functions are maintained 
even if some microbes are lost or reduced or if the composition differs 
among individuals (Huttenhower et al., 2012; Allison and Martiny, 
2008). Tian et al. (2020) used genomic computational approaches to 

TABLE 2 Defining resilient and resistant gut microbiome: characteristics and distinctions.

Concept Recovery of microbiomeα Resilience of microbiome Resistance of microbiome

Definition Full return to the reference condition 

after perturbation.

The ability of the microbiome to persist or recover 

from disturbances while maintaining its structure 

and functions. It includes two types: - Engineering 

Resilience: Rate and ability to return to the original 

state.

- Ecological Resilience: Ability to withstand 

pressure and remain within critical thresholds.

The capacity of the microbiome to resist 

disturbance and maintain stability under 

perturbation.

Key concept Restoration of composition and function 

to baseline.

Absorption of stress and dynamic adaptation and 

functional redundancy.

Prevention of change under stress and stability 

through microbial diversity and host–microbe 

interactions.

Timescale Short-or long-term response. The time 

varies with disturbance severity and 

time of impact

Short-or long-term response depending on system’s 

plasticity and severity of stressors. The functional 

adaption is faster than compositional adaptation or 

recovery and may be started days of impact

Immediate response: resistance is maintained over 

time

αWhile recovery is an aspect of RM, we present it separately here to clarify its role within the concept.
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assess functional redundancy in the HGM and reported that while 
many microbial species can perform similar functions, the specific 
composition of these species varies across individuals. These authors 
reported that two different microbiomes can share more than 80% 
common metabolic pathways even when less than half of the bacterial 
species are in common. This study also emphasized the importance of 
microbial diversity in maintaining the resilience and stability of the 
microbiome, particularly in response to environmental changes or 
perturbations. However, there is no standardized or comparable 
protocol to measure and quantify metabolic flexibility and redundancy 
in individuals. More investigations and the development of 
mathematical methods are needed to address this gap. Moreover, the 
introduction of precise technical methods to detect and quantify 
SCFA and tryptophan metabolites can help define and establish new 
universal biomarkers that will help detect and promote RM clinically.

4.1.3 Time of restoration
The restoration time can serve as an indicator of the resilience and 

recovery of HGM. However, some argue that it may not be a reliable 

metric for assessing healthy HGM or RM in ecosystems, as it can 
reflect varying degrees of disturbances (Ingrisch and Bahn, 2018). This 
variation in recovery time could be explained by the composition of 
the gut microbiome before treatment, such as a greater abundance of 
Bacteroides (Roggiani et al., 2023). The recovery time of HGM in 
cancer patients undergoing chemotherapy varies across studies. Most 
studies report that microbial richness and composition recovery could 
take from one month to several months to return to baseline (Roggiani 
et al., 2023). For instance, Rashidi et al. (2022) showed that the gut 
microbiota of patients with acute myeloid leukemia shows significant 
changes during the chemotherapy and long-lasting effects post-
treatment from three months to six months.

There are potential differences in HGM responses to treatment 
with antibiotics in terms of the duration and extent of recovery 
(Sommer et  al., 2017). Generally, findings from several studies 
revealed that HGM recovers to a near pre-antibiotic state between one 
month and 12 months post-antibiotic therapy (Rashid et al., 2015; 
Dhariwal et al., 2023; Dethlefsen et al., 2008); additionally, while some 
taxa recover faster (Mac Pherson et al., 2018), some fail to recover 

FIGURE 2

Response of the human gut microbiome to weak and strong stressors. (A) Temporal changes and recovery of microbiome composition, diversity and 
function under weak and strong stressors illustrated from a resistant to a resilient or susceptible gut microbiome. The impact of this changes may also 
vary from small to high changes (vertical axis). Recovery to baseline may take a few days for weak stressors (e.g., short-term travel, short-term dietary 
changes, etc) to several months for strong ones (horizontal axis), with faster recovery observed in resistant and resilient microbiomes. In susceptible 
microbiomes or individuals with specific conditions (e.g., genetics, environment and lifestyle, infections, medication, cancers, metabolic disorders), the 
gut microbiome may not return to baseline, leading to stable dysbiosis or prolonged recovery times. The time and intensity of the response to 
disturbance factors vary among resistant, resilient, and susceptible gut microbiomes. (B) Four human gut microbiome recovery scenarios following 
exposure to strong disturbance factors. Microbiome composition and function can fully or partially recover or remain unrecovered, resulting in stable 
dysbiosis. The abundance of SCFA-producing bacteria and Bacteroides taxa in the baseline microbiome plays a crucial role in the recovery of both the 
composition and function of the human gut microbiome (Created in BioRender. Safarchi, A. (2025) https://BioRender.com).
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(Raymond et al., 2016a; Palleja et al., 2018). For instance, Jernberg 
et al. (2007) analyzed the fecal microbiota of four clindamycin-treated 
and four control subjects over two years. Clindamycin-induced 
disruption of the gut bacterial community was characterized by a 
drastic decrease in Bacteroides diversity, which never recovered to its 
initial state by the end of the study period. In another long-term study, 
microbiome perturbation was reported even four years post-treatment 
with clarithromycin and metronidazole (Jakobsson et  al., 2010). 
Intriguingly, different parts of the body respond differently to 
antibiotic perturbation and do not have similar resilience and recovery 
rates within the same host. For example, while the salivary and throat 
microbiomes quickly recovered after oral broad-spectrum antibiotics, 
long-term microbial shifts were observed in the gut microbiome 
(Zaura et  al., 2015; Jakobsson et  al., 2010). Furthermore, the 
administration of 3-and 7-day courses of amoxicillin resulted in 
different microbial composition changes in the gut and mouth (Abeles 
et al., 2016). Studies have also highlighted individual variations in the 
recovery of the gut microbiota following antibiotic therapy, 
particularly after bacterial infections that result in diarrhea episodes, 
potentially influenced by host factors (Brown et al., 2012; Zaura et al., 
2015; Lavelle et al., 2019; Dethlefsen et al., 2008; David et al., 2015). It 
is important to emphasize that, based on the currently available 
longitudinal studies, establishing a definitive time frame or accurately 
predicting recovery duration remains challenging. Furthermore, the 
recovery of the human gut microbiome (HGM) is influenced by a 
complex interplay of intrinsic and extrinsic factors, including 
individual variability, environmental conditions, lifestyle factors, the 

timing of stressor exposure to the microbiome, and the 
implementation of interventions aimed at enhancing microbiome 
stability and recovery. Host factors, such as mucus layers, serum 
antibody levels, elements of innate immunity, stress management, 
underlying conditions and chronic disease, age, and physical activity, 
are thought to contribute to these interindividual differences in HGM 
restoration (Greenhalgh et al., 2016; Wade, 2021). Hence, restoration 
time may not be a good independent indicator of RM.

4.1.4 Antimicrobial peptides
Antimicrobial peptides (AMPs) secreted by the host and gut 

microbiota play critical roles in maintaining and re-establishing 
HGM. They help reduce the risk of infections and microbiome 
imbalances, making them potential biomarkers for healthy HGM and 
RM (Cardoso et al., 2022). The mechanisms of action of AMPs include 
membrane rupture, inhibition of respiratory processes, and cell lysis 
(Yadav and Chauhan, 2022). AMPs produced by host cells are secreted 
mainly by Paneth and epithelial cells, including peptides such as 
defensins, cryptdin-related peptides in mice, and cathelicidins (Muniz 
et al., 2012). For instance, β-defensins, which are secreted by human 
cells, can directly kill or inhibit the growth of microorganisms, reduce 
inflammatory responses during infections such as Salmonella 
typhimurium, and enhance the probiotic antibacterial activity of 
Enterococcus faecium (Fusco et al., 2017). Its secretion can be induced 
by host or microbial signals including TNF-α and IL-1, microbial 
flagella fragments, and peptidoglycans (Rüb et al., 2021). In addition 
to host-derived AMPs, bacterial AMPs secreted by the gut microbiota 

FIGURE 3

Nonspecific and specific biomarkers associated with a resilient gut microbiome. Certain biomarkers, including diversity metrics and a greater 
abundance of beneficial taxa and antimicrobial compounds, are commonly found in resilient and healthy microbiota. These biomarkers are essential 
for maintaining gut health, promoting resilience, and facilitating faster recovery. Specific biomarkers highly correlated with resilience include recovery-
associated bacterial taxa (e.g., Bacteroides, Alistipes, Parabacteroides, and Akkermansia, etc.) and a higher proportion of beneficial bacteria, such as 
SCFA-producing and bacteriocin-producing bacteria. Additionally, specific antimicrobial peptides (e.g., REG3G) and bacteriocins (e.g., BSAP-3, 
Acodocin, pINC8, and PIS) play a crucial role in maintaining microbiome stability and recovery by inhibiting the growth and colonization of 
opportunistic and pathogenic bacteria. These specific biomarkers are likely to play a significant role in maintaining gut resilience and may serve as 
indicators of a resilient microbiome (Created in BioRender. Safarchi, A. (2025) https://BioRender.com).
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actively inhibit the growth of pathogens and support the RM. For 
example, small AMPs produced by commensal bacteria in the gut act 
as toxins against both antibiotic-sensitive and antibiotic-resistant 
bacteria (Cardoso et al., 2022; Umu et al., 2017). Bacteriocins have also 
been explored in the fields of food technology, preservatives, pathogen 
treatment, and even cancer therapeutics (Yang et al., 2014). A study 
by Drissi et al. (2015) identified three classes of bacteriocins (I, II, and 
III), which range from narrow-to broad-spectrum activities. 
Researchers have reported that 175 bacteriocins are encoded by 
Firmicutes, 79 by Proteobacteria, 34 by Bacteroidetes, and 25 by 
Actinobacteria in the HGM. The presence of bacteriocin-producing 
bacteria in the gut may improve microbiome resilience by reshaping 
the microbial composition (Heilbronner et al., 2021; O'Reilly et al., 
2023), preventing pathogen colonization, interacting with host cells to 
induce AMP production, promoting tight junction protein expression 
(Teng et  al., 2023), and influencing the host immune system 
(Guryanova, 2023). For example, 28 days of consumption of 
bacteriocin-producing Lactobacillus plantarum P-8 in healthy 
individuals led to a significant increase in the abundance of five 
Bacillota (Firmicutes) genera, including Leuconostoc, Lactobacillus, 
Sporacetigenium, Blautia and Staphylococcus. Moreover, three 
Proteobacteria genera, Shigella, Escherichia, and Enterobacter, were 
significantly reduced, likely due to the secretion of plantaricin by this 
strain (Kwok et al., 2015). Another study by van Staden et al. (2011) 
demonstrated that nisin F had a stabilizing effect on the bacterial 
population of the mouse gut microbiome. Additionally, Wosinska 
et al. (2022) used a combination of in vitro and in silico approaches to 
investigate the bacteriocinogenic potential of an athlete’s gut. They 
identified 339 gene clusters capable of encoding bacteriocins, 
primarily from class I, which are peptides containing β-lanthionine 
and have molecular weights under 5 kDa. This highlights the 
importance of bacteriocin-producing bacteria as potential biomarkers 
of a healthy, resilient microbiome in individuals.

4.2 Resilience-specific biomarkers

4.2.1 Recovery-associated bacterial species 
(RABs)

Although longitudinal studies on HGM recovery are limited, 
particularly with respect to antibiotic disturbance, they may still help 
identify bacterial keystones that contribute to microbiome recovery 
and define resilience biomarkers (Figure 3). Species from the genus 
Bacteroides, known for their role in reestablishing the gut microbial 
community, have been identified as key players and predictive factors 
for HGM restoration after antibiotic therapy. Chng et  al. (2020) 
analyzed more than 500 microbiome profiles from 117 individuals 
across four international cohorts who had taken different antibiotics 
and categorized participants into “recovery” and “nonrecovery” 
groups using the Simpson diversity index. They identified 21 species 
as recovery-associated bacteria (RABs) in at least two cohorts, most 
of which support carbohydrate degradation and energy production 
pathways. Among these, species from the Bacteroides genus, such as 
B. uniformis and B. thetaiotaomicron, B. stercoris, B. egghertii, 
B. coprocola, B. caccae, and B. intestinalis, are highlighted. This study 
suggests that the abundance of RABs, rather than just their presence, 
may drive microbiome recovery by initiating cross-feeding 
interactions. B. uniformis, in particular, was consistently associated 

with the recovery and could serve not only as a biomarker for 
resilience but also as a potential target for interventions aimed at 
enhancing resilience and accelerating the recovery time in clinical 
investigations as next-generation probiotics. Additional RABs, such 
as B. thetaiotaomicron and Bifidobacterium adolescentis, were also 
identified as potential recovery biomarkers and target interventions. 
These findings were validated in a mouse model, which revealed that 
RABs can significantly increase microbial abundance and diversity 
after antibiotic treatment (Chng et al., 2020). The main mechanism for 
these strains is they have the ability to metabolize a highly diverse 
range of polysaccharides and during their metabolic processes, 
synthesize substances such as SCFA, and succinic acid that can serve 
as energy sources for host cells and other bacteria such as the 
bacterium F. prausnitzii, thereby participating in the production of 
intestinal mucus and promoting gut barrier and immunity (Lalowski 
and Zielińska, 2024).

In another study, Chen et al. (2023) used microbiome profiles 
from 91 individuals across seven cohorts to develop a machine-
learning model that predicts microbial recovery and classifies 
participants into “recovery” and “nonrecovery” groups on the basis of 
their initial microbial composition. The authors identified 52 
predictive RABs via various machine learning algorithms, with 
B. uniformis, Parabacteroides distasonis, Parabacteroides merdae, and 
B. caccae selected by at least three algorithms as key features in 
classifying HGM recovery. Moreover, the authors suggested that 
within-sample taxonomic diversity, the Gini–Simpson index, and 
functional diversity can be used as features to predict gut microbiome 
recovery under antibiotic disturbance. The authors also conducted 
metabolic support analysis and genome-scale modeling, revealing that 
A. muciniphila and B. uniformis are potential key species supporting 
gut microbial reconstruction (Chen et al., 2023).

Although no direct study has specifically investigated the main 
bacterial taxa in non-resilient microbiomes, current research suggests 
that certain taxa may act as key drivers of microbiome instability, as 
identified in two recent publications. Zhang et al. identified bacterial 
taxa involved in both resilience and dysbiosis. Beneficial bacteria such 
as Faecalibacterium prausnitzii, Roseburia, Eubacterium, and 
Bifidobacterium enhance gut resilience by producing short-chain fatty 
acids, reducing inflammation, and maintaining intestinal homeostasis. 
They also showed dysbiosis is associated with an overabundance of 
pathogenic and pro-inflammatory taxa, including Clostridium 
hathewayi, Enterococcus, Bacteroides nordii, Actinomyces viscosus, and 
members of Enterobacteriaceae, which contribute to various 
gastrointestinal and extra-intestinal diseases. Additionally, 
Ruminococcus gnavus and Ruminococcus torques have been implicated 
in inflammatory bowel disease (IBD), while Escherichia coli and 
Citrobacter are frequently observed in gut dysbiosis related to 
metabolic disorders (Zhang et al., 2023).

In a second study, Frioux et  al. used non-negative matrix 
factorization (NMF) to identify five enterosignatures (ESs) 
representing co-occurring bacterial guilds in the human gut 
microbiome. Among these, the Bacteroides-associated enterosignature 
(ES-Bact), dominated by Bacteroides and Phocaeicola, plays a crucial 
role in maintaining microbiome resilience and core gut functionality, 
particularly in westernized populations. ES-Bact frequently co-occurs 
with other enterosignatures and acts as a temporal attractor following 
disturbances such as antibiotic treatments. In contrast, the 
Escherichia-associated enterosignature (ES-Esch), characterized by 
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Escherichia and Citrobacter, is associated with reduced resilience and 
potential dysbiosis, especially in preterm infants and individuals with 
perturbed microbiomes. ES-Esch often dominates disrupted gut 
ecosystems, highlighting its role in microbiome instability. Rub et al., 
also listed several HGM or host metabolites and AMPs that can 
be used as dysbiosis biomarkers. These include increased or decreased 
levels of trimethylamine-N-oxide, SCFA, and 3-Indoxyle sulfate, 
secondary bile acids, hippurate, β-defensin-2, chromogranin A, 
zonulin, and secreted immunoglobulins (Rüb et al., 2021).

Altogether, although most predictive and statistical studies have 
been conducted on healthy individuals with limited antibiotic 
exposure, recovery-associated bacterial (RAB) strains show promise 
for identifying microbiome resilience and resistance. These findings 
open new avenues for researchers to investigate the mechanisms by 
which these strains facilitate recovery. Furthermore, they may pave the 
way for developing novel diagnostic tests, enabling clinicians to better 
predict the outcomes of xenobiotic administration or introduce next-
generation probiotics as part of intervention strategies.

4.2.2 Resistance genes and antimicrobial 
peptides

Resistance genes can serve as important biomarkers for RM. One 
study investigated the role of antimicrobial resistance genes in the 
recovery and resilience of the gut microbiome in patients with 
multidrug-resistant tuberculosis and drug-sensitive tuberculosis who 
received long-term antibiotics for 20 months or 6 months, respectively 
(Bhattarai et al., 2024). Interestingly, antibiotic-resistant commensal 
bacterial species were found to play a key role in the recovery of the 
gut microbiota. These resistant commensals contribute to the 
restoration of a more balanced and diverse microbiome (Bhattarai 
et al., 2024). Furthermore, certain antibiotic resistance genes, such as 
β-lactam resistance genes, have been suggested to facilitate recovery 
after antibiotic-induced dysbiosis (Raymond et al., 2016a; Palleja et al., 
2018). Notably, an increase in antibiotic resistance genes in 
bacteriophages has been observed during prolonged antibiotic 
therapy, suggesting their potential role in HGM resilience (Abeles 
et al., 2015; Górska et al., 2018).

In a study by Suez et al. (2018), antibiotics significantly altered 
transcriptional patterns throughout the gastrointestinal tract, with the 
most notable changes occurring in the descending colon. Apart from 
AMPs that were common between healthy and resilient microbiome, 
some may be specifically correlated with RM. For instance, In the Suez 
et al. (2018) study, certain AMPs, such as REG3G (Regenerating Islet-
Derived Protein 3 Gamma), were elevated, potentially suppressing 
native commensals, such as Clostridiales. Additionally, bacteriocin 
genes, including gaaA, acidocin, and lacF in Lactobacillus species, were 
significantly more abundant in stool samples from healthy and 
IBD-recovered volunteers than in those from IBD patients. The genes 
encoding acidocin, plNC8, and plS are expressed at higher levels in 
healthy individuals than in both IBD patients and IBD-recovered 
participants (Miri et  al., 2022). Another recent study identified 
Bacteroidales-specific antimicrobial proteins (BSAPs) in three 
longitudinal antimicrobial recovery datasets. These BSAPs, including 
BSAP-2 from B. uniformis and BSAP-3 from B. vulgaris (BSAP-3), 
were shown to influence microbiome recovery after antibiotic 
disturbances by restricting the growth of closely related bacteria (Koo 
and Morrow, 2024). To summarize, while several markers have been 
suggested to determine healthy and resilient gut microbiomes, owing 

to the lack of universal definitions, it is difficult to introduce applicable 
procedures in the clinic to detect them. Moreover, each biomarker has 
its own limitations and complexity in terms of quantification, 
detection, and dependent factors, making it difficult to establish it as 
a precise biomarker.

5 Intervention strategies to improve 
resilient gut microbiome

Knowing the characteristics and mechanisms of gut microbiome 
resilience will help develop intervention strategies to increase the 
resilience of the gut microbiota. Some approaches that may help 
restore HGM after dysbiosis or promote a healthy microbiome include 
the use of prebiotics, probiotics, and synbiotics; dietary interventions, 
such as a high-fiber diet with lower fat and carbohydrate contents; 
FMT; phage therapy; and the use of extracellular vesicles and 
metabolite and immune modulation (Dixit et al., 2021). However, due 
to the knowledge gap surrounding the resilient microbiome, most 
studies have focused on strategies to enhance the recovery aspect of 
RM, aiming to reduce dysbiosis or shorten recovery time (Fassarella 
et al., 2021; Dogra et al., 2020), while less attention has been given to 
increasing the adaptability of the HGM.(Fassarella et al., 2021; Dogra 
et al., 2020). Since increased compositional diversity and beneficial 
bacteria enhance the adaptability of RM and fasten the recovery, 
we discuss a few of these interventions here that directly or indirectly 
promote the RM in the host.

5.1 Diet

Diet is one of the strongest factors shaping the composition and 
activity of HGM, mediates fundamental processes in microbial 
interactions and can be used as a target intervention to promote RM 
(Conlon and Bird, 2015). The impacts of dietary interventions and 
different types of currently known diets on the diversity and richness 
of the gut microbiota, as well as the development and modulation of 
HGM, have been extensively investigated and reviewed (Rinninella 
et al., 2023; Beam et al., 2021; Wilson et al., 2020). For example, a 
systematic review revealed that long-term intake of a plant-based diet 
enriched with fiber, as carbohydrate polymers that are indigestible in 
the upper gastrointestinal tract and are good nutrient sources for 
microbiota, promote SCFA production and improve mucosal barrier 
by production of specific metabolites significantly impacts the 
diversity of the intestinal microbiota by increasing the abundance of 
beneficial Actinobacteria and Bacteroidetes and their subsequent 
metabolism and possibly the stability of the community (Simpson and 
Campbell, 2015). In another study, healthy volunteers received a 
Mediterranean diet for three days before receiving a 13-day Canadian 
diet and then a three-day Mediterranean diet. Both diets caused rapid 
changes in the gut microbiota, with the Mediterranean diet increasing 
the abundance of health-promoting Butyricicoccus and Roseburia and 
the Canadian diet increasing the abundance of Romboutsia and 
Subdoligranulum. Most Canadian diet-induced alterations were 
reversed within 48h of the introduction of the second Mediterranean 
diet; however, the abundances of Lactobacillus, Ruminococcaceae 
NK4A214, Coprococcus 3, and Ruminiclostridium were not able to 
recover. This study also revealed that a greater diversity of the initial 
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composition was associated with the stability of the gut microbiota in 
response to dietary interventions (Bourdeau-Julien et  al., 2023). 
Polyphenol and bioactive-enriched diets also showed an increase in 
the diversity of HGM and beneficial bacteria that can enhance and 
promote healthy and resilient microbiome by activating intracellular 
signaling cascades and modulating gene expression (Jacquier et al., 
2024). For instance, clinical trials showed consumption of green tea 
liquid or orange juice can elevate the abundance of beneficial bacteria, 
especially SCFA-producing bacteria in healthy adults (Lima et al., 
2019; Yuan et al., 2018).

The impact of diet on microbiome restoration has been studied in 
a few studies, mostly in animals. In an animal study, oat was added as 
a rich source of microbiota-accessible carbohydrates to the diet before, 
during, and after amoxicillin treatment. The results showed that oat 
consumption during amoxicillin treatment provides better protection 
against gut microbiome dysbiosis than does the group of mice that 
always have oats in their diet or after antibiotic treatment, which 
highlights the importance of the duration of diet intervention (Costa 
et al., 2023). Moreover, compared with the dextrose diet, the oat diet 
mitigated the loss of diversity and the reduction in Firmicutes. 
Moreover, the lysozyme gene, an enzyme that improves gut health, 
was found only in B. thetaiotaomicron and A. muciniphila in the 
oat-diet group compared with the dextrose-diet group via 
transcriptome analysis. In another in vivo study, mice that were fed a 
fiber-rich diet and exposed to antibiotics and C. difficile presented 
better gut microbiome restoration to their original state than did mice 
that were fed a low-fiber diet (Hryckowian et al., 2018). In the human 
study by Tanes et al. (2021), the lack of dietary fiber in the diet reduced 
microbial diversity and richness and slowed the recovery of the 
microbiome after antibiotic stress. On the other hand, omnivorous 
and vegan diets can increase resilience and support faster recovery of 
the gut microbiome through their effects on Firmicutes, which are 
highly capable of carbohydrate and amino acid metabolism. 
Researchers have also reported that dietary fiber in vegan and 
omnivorous groups serves as a substrate for Bacillota (Firmicutes) and 
increases the butyrate level, which has various health benefits. 
Interestingly, the high-fiber diet not only increased the abundance of 
beneficial bacteria but also affected the expression of antibiotic-
resistance genes. A study in the USA on 290 healthy individuals who 
previously took antibiotics revealed that participants who consumed 
significantly more fiber in their diet had lower levels of antibiotic 
resistance genes (Oliver et al., 2022). Overall, while some studies have 
highlighted the impact of a healthy diet on increasing the abundance 
of beneficial bacteria in HGM, the role of specific dietary components 
and food ingredients in enhancing the stability and resilience of HGM 
has not been well explored. This gap is due primarily to insufficient 
knowledge about the key drivers and mechanisms of resilience, which 
limits the design of effective studies.

5.2 Prebiotics

Enhancing the stability and resilience of the gut microbiome is 
proposed through interventions involving diverse synbiotics, defined 
as “a mixture comprising live microorganisms and substrate (s) 
selectively utilized by host microorganisms that confers a health 
benefit on the host” (Swanson et  al., 2020). There are ongoing 
discussions that question the sustained positive impacts of prebiotics 

and probiotics in fostering a resilient microbiome. Even though both 
prebiotics and probiotics increase the abundance of beneficial bacteria, 
notably Bifidobacterium and Lactobacillus, at the species and genus 
levels, the overall impact on the composition of the gut microbiota is 
often modest. These changes typically endure only for the duration of 
the intervention (Conlon and Bird, 2015).

Different types of prebiotics and fibers can selectively promote the 
growth of specific bacterial groups in the gut, and the amount and 
duration of intake also play a key role in influencing the abundance of 
beneficial species (Cronin et al., 2021). For example, soluble fibers, 
such as pectin and inulin, are fermented by beneficial bacteria such as 
Bifidobacterium and Lactobacillus, producing SCFAs (Fu et al., 2022). 
SCFAs may directly reduce the growth of pathogenic and multidrug-
resistant microorganisms by acidifying the proximal colon and play a 
key role in various metabolic and physiological pathways, including 
the formation of intestinal epithelial cell barriers, regulation of the 
immune system, metabolism of osteoclast, suppression of tumor 
proliferation, insulin sensitivity, and absorption of electrolyte (Rüb 
et al., 2021). Moreover, fibers, such as cellulose and lignin, are broken 
down by bacteria such as Prevotella and Ruminococcus, contributing 
to the production of other beneficial metabolites that interact with 
host cells, empower the immunity system and reduce inflammation 
(Fu et al., 2022). Notably, the second generation of bifidobacterial-
galacto-oligosaccharides (B-GOS) may have the potential to prevent 
the incidence and symptoms of travelers’ diarrhea (Evans, 2018). 
Furthermore, Kanwal et al. (2018) demonstrated in a mouse model 
that the gut microbiota can degrade and utilize polysaccharides from 
the mushroom Dictophora indusiata (DIP) as a novel prebiotic. This 
resulted in an increase in beneficial flora, such as Lactobacillaceae and 
Ruminococcaceae, and a decrease in harmful flora, including 
Proteobacteria and Enterococcus. DIP also reversed antibiotic-induced 
dysbiosis and mitigated inflammation, endotoxemia, and intestinal 
barrier disruption caused by antibiotics. The effect of DIP on the 
human microbiome was investigated via an in  vitro fermentation 
assay. Moreover, functional gene prediction has shown that DIP can 
enhance various metabolic pathways related to carbohydrate 
metabolism, amino acid biosynthesis, and antibiotic production in the 
gut microbiota and can promote the production of SCFAs (Zhao 
et al., 2023).

5.3 Probiotics

Probiotics can compete with pathogenic or opportunistic bacteria 
for receptors and binding sites, promotion of intestinal mucosa 
integrity, immune system modulation and production of metabolites 
and antimicrobial peptides (van Zyl et al., 2020). However, in recent 
years, contradictory results have been reported in clinical trials 
investigating the impact of probiotic co-administration or post-
treatment on the restoration of HGM and the prevention of major 
dysbiosis after antibiotic therapy or promoting resilience. These 
inconsistencies may stem from competition between probiotics and 
native bacterial taxa and can hinder the re-establishment of the 
original microbiota composition as well as the secretion of certain 
AMPs that may delay the recovery (Suez et al., 2018). Additionally, 
probiotics can modulate the host immune response, potentially 
leading to unintended consequences (Javanshir et  al., 2021). For 
instance, certain probiotics have been found to trigger inflammatory 
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responses in intestinal epithelial cells, which could disrupt immune 
homeostasis (Mousa et  al., 2023). These factors underscore the 
complexity of probiotic interactions within the gut ecosystem and may 
explain the variable outcomes observed in clinical studies. A meta-
analysis review of four systematic reviews and seven relevant 
randomized studies evaluating the effectiveness of probiotics in 
preventing travelers’ diarrhea (TD) revealed that although probiotics 
may have the potential to prevent TD, the certainty of the evidence is 
low (Pinos et  al., 2016). Furthermore, a meta-analysis of studies 
conducted from 1977–2018 revealed that among the three main 
probiotics, Saccharomyces boulardii CNCM I-745, L. rhamnosus GG 
and L. acidophilus, only the consumption of S. boulardii CNCM I-745 
resulted in a significant reduction in TD incidence. Nevertheless, 
additional research is needed to strengthen these observations 
(McFarland and Goh, 2019).

Little attention has been given to administering probiotics before 
antibiotic or chemotherapy treatment to increase the resilience of 
HGM. Most clinical trials exploring the effectiveness of probiotics in 
addressing xenobiotic-induced dysbiosis in HGM have focused on 
administering probiotics either during or after xenobiotics treatment 
to facilitate microbiome recovery. A systematic review in 2022 
focusing on 29 published datasets revealed that coadministration of 
probiotics, mostly from the genera Lactobacillus and Bifidobacterium, 
during or after antibiotic therapy seems to have a preventive effect on 
some indices of gut microbial diversity and composition and may 
reduce diarrhea after antibiotic treatment (Fernandez-Alonso et al., 
2022). Evans et al. (2016) also reported that L. helveticus R0052 and 
L. rhamnosus R0011 supplementation significantly reduced the 
duration of diarrhea-like defecations following antibiotic treatment in 
healthy adults. Hibberd et al. (2017) showed that administration of 
Bifidobacterium lactis Bl-04 and Lactobacillus acidophilus NCFM in 
patients suffering from colorectal cancer before the colonoscopy led 
to an increase in beneficial bacteria and a reduction in harmful genera 
in the microbiota of patients compared to patients who did not receive 
probiotics. In contrast, the results from 15 eligible trials for systematic 
review analysis and five for meta-analysis revealed no significant 
differences in the diversity of the gut microbiome, including the 
Shannon, Chao1, observed, and Bray–Curtis indices, between patients 
with and without concomitant probiotic supplementation during 
antibiotic therapy (Elias et al., 2023). Notably, in both the murine 
model and the human study by Suez et  al. (2018), probiotic 
administration, which included 11 Bifidobacterium and Lactobacillus 
strains after treatment with ciprofloxacin and metronidazole, delayed 
the restoration of the gut microbiome composition, function, and 
gene expression for up to five months compared with that in the 
autofecal transplantation and spontaneous groups. These findings 
showed that probiotic administration resulted in increased transcript 
and secretion levels of inflammatory mediators such as IL-1B and 
regulators of antimicrobial peptides.

The contradictory findings of different studies may suggest the use 
of new indices to study the impact of probiotics and prebiotics on gut 
microbiome restoration or the introduction of novel probiotics, 
prebiotics, or synbiotics to improve resilience. For example, Tierney 
et al. (2023) investigated the effects of synbiotics, a combination of 
fructooligosaccharides and a commercial probiotic containing 24 
strains of Bifidobacterium species, on the recovery of HGM after 
exposure to alcohol or antibiotics via an in vitro batch fermentation 
assay. These authors reported that synbiotics increased the production 

of major SCFAs, such as acetate, propionate, and butyrate. Hence, they 
suggested that functional shifts in the microbiome rather than 
compositional changes are a better metric for assessing 
microbiome recovery.

The impact of new potential probiotic strains known as next-
generation probiotics such as B. uniformis, A. muciniphila, 
F. prausnitzii, B. thetaiotaomicron, Christensenella minuta on the 
resilience and recovery of the gut microbiota was also suggested 
for improving the resilience microbiome and promoting healthy 
gut microbiome (Jan et al., 2024). A cocktail of Bifidobacterium and 
Bacteroides strains, including B. uniformis, has been reported to 
help restore the gut microbiome in post-antibiotic diarrhea in mice 
(Guo et al., 2021). Moreover, oral administration of B. uniformis 
F18-22 improved gut dysbiosis in a mouse model of ulcerative 
colitis by increasing the abundance of Eubacterium siraeum, an 
anti-inflammatory acetate-producing bacterium, and decreasing 
the abundance of proinflammatory pathogenic bacteria such as 
Escherichia and Shigella species (Dai et al., 2023). Duysburgh et al. 
(2021) suggested the combination of L. rhamnosus GG (CNCM-I-
4798) and Saccharomyces cerevisiae boulardii (CNCM-I-1079) as a 
probiotic supplement for limiting the impact of amoxicillin: 
clavulanic acid on HGM on the basis of an in  vitro study. The 
synergistic effect of probiotics was also reported in two antibiotic-
induced mouse model studies. In the first study, the effects of the 
coadministration of B. thetaiotaomicron and B. adolescentis on the 
rapid recovery of the mouse gut microbiome composition after 
antibiotic treatment were greater than those in the groups that 
received a single species (Chng et  al., 2020). Another study 
revealed a significant difference between A. muciniphila and 
B. uniformis in terms of rapid recovery of the mouse intestinal 
microbiome after antibiotic therapy, revealing the importance of 
A. muciniphila in promoting the reconstruction of the gut 
microbiome (Chen et al., 2023). In this study, an increase in the 
Shannon diversity index was detected on the first day of 
intervention in mice compared with that in the group treated with 
B. thetaiotaomicron and B. adolescentis, which are available 
commercial probiotics. Interestingly, B. uniformis strains have been 
shown to alleviate colitis in mice or strengthen the epithelial 
barrier and anti-inflammatory potential in cell culture 
investigations (Yan et al., 2023; Cuffaro et al., 2021). This could 
be  attributed to the mucin-degrading abilities of Bacteroides 
species, which are crucial for the recovery process following 
diarrhea (Chung The and Le, 2022). Furthermore, the adhesion 
and colonization abilities of Bacteroides species enable them to 
penetrate the colonic mucus layer and reside within the crypt 
channels, which are relatively more protected and less prone to 
stressors (Wang C. et al., 2021). These studies demonstrated the 
necessity of introducing novel bacteria to improve the 
resilience of HGM.

6 Challenges and limitations in 
studying resilient gut microbiome

In the future of personalized medicine, understanding and 
predicting the resilience of the gut microbiome in response to 
different types of stressors is crucial for developing and boosting a 
healthy and resilient gut microbiome and addressing dysbiosis. 
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However, this poses significant challenges due to the complexity and 
individual variability of microbial communities. While extensive 
studies have investigated the various factors leading to gut microbial 
dysbiosis (Das and Nair, 2019; Le Bastard et al., 2018; Maier et al., 
2018), fewer longitudinal studies on more diverse populations (e.g., 
geography, age, race, dietary habits, lifestyle factors, medical 
conditions) have focused on the impact of acute stressors on the 
resilience and stability of the microbiota, underlying mechanisms, 
host–microbe interactions, and restoration to its initial state. Even 
in publicly available longitudinal studies, the focus is more on the 
compositional recovery of HGM especially after antibiotic-induced 
dysbiosis as one of the aspects of RM rather than functional 
adaptation (Raymond et  al., 2016a; Raymond et  al., 2016b; 
Dethlefsen and Relman, 2011; Rashid et  al., 2015; Palleja et  al., 
2018; Zaura et al., 2015). Hence, the lack of deep knowledge about 
the recovery and resilient healthy state of HGM caused by other 
types of stressors prevents clinicians and researchers from 
developing modulatory strategies to predict or promote HGM 
resilience. Here, we  discuss some challenges that limit our 
knowledge in this area and may also apply to the study dynamics of 
HGM in general.

6.1 Challenges in human trial conduct

Robust distinction and quantification of resilience and stability 
metrics require the collection of highly detailed time series data after 
disturbance with different types of stressors (Philippot et al., 2021). 
Longitudinal studies to simulate HGM dysbiosis and investigate 
resilience in healthy individuals are ethically limited. Moreover, 
conducting large-scale longitudinal studies on the microbiome 
presents several challenges related to both the microbiome itself and 
participant factors. The microbiome is a highly dynamic and complex 
ecosystem influenced by a wide range of endogenous and exogenous 
factors, including medication use, infections, travel, age, diet, and 
lifestyle. These factors can significantly alter microbial composition 
and function over both short-and long-term periods, making it 
difficult to investigate and interpret long-term resilience studies that 
rely on stable microbial profiles. Additionally, logistical and statistical 
challenges such as participant drop-out, missing time points or data, 
and technical issues related to sample analysis, storage, and batch 
effects further complicate the design and execution of such studies 
(Kodikara et al., 2022). The need for imputation of missing data adds 
another layer of complexity, potentially introducing biases or 
inaccuracies and may cause difficulties in interpreting the results, 
interactions, correlations, and clustering the relevant microbial taxa. 
These challenges highlight the need for careful study design, clear 
guidelines and approaches, and robust analytical approaches to ensure 
the reliability and validity of longitudinal microbiome research (Arbas 
et al., 2021). Moreover, most of the studies were limited in their ability 
to disturb the gut microbiota by antibiotics in a small number of 
participants, which does not provide enough comprehensive data. 
Furthermore, few longitudinal studies have focused on microbiome 
resilience and recovery in infants and elderly people (Yassour et al., 
2016; Eloe-Fadrosh et  al., 2015; Kumbhare et  al., 2019). Another 
challenge in HGM dysbiosis studies is the limited access to 
communities beyond traditional stool collection to explore the 
microbiome in the small intestine or upper colon, which are important 

sites in microbe-host interactions that may strongly affect immune, 
metabolic, and endocrine functions in the host (Tang et al., 2020; El 
Aidy et al., 2015).

To overcome these challenges, multiple in  vitro, ex  vivo, and 
in vivo approaches have been suggested for investigating gut microbial 
and host–microbial interactions. These include batch and continuous 
multiple-stage fermentation and the use of cell culture, organoids, or 
animals models (Pearce et al., 2018; Isenring et al., 2023; Li and Zhang, 
2022). Although in vitro and ex vivo laboratory-based studies are well 
used for understanding microbial changes and recovery dynamics 
over short-or long-term experiments (Tierney et al., 2023; Huang 
et al., 2022; Laubitz et al., 2021; Maurice et al., 2013), these models lack 
host-microbe signals and responses in the complex host-microbe 
interplay, including interactions between microbes and epithelial cells 
and components of the immune system. Moreover, they cannot 
simulate peristaltic movements or hormonal and nervous control, 
which are crucial for investigating microbial responses to external 
stimuli and maintaining resilience in the host (Li and Zhang, 2022). 
Another challenge associated with these models is the variability 
introduced by the choice of model and the use of either fresh or frozen 
human stool, both of which can influence the reproducibility and 
generalizability of the findings (Isenring et al., 2023). Challenges also 
arise from the common practice of collecting samples from infants, 
different locations of the gastrointestinal tract, or pooling stool 
samples, which may obscure individual-specific responses (Isenring 
et al., 2023; Sardelli et al., 2021). Furthermore, the neglect of critical 
physiological and environmental factors, such as pH, redox conditions, 
variations in food source components for the microbiota, and the 
source of cell lines and organoids, further undermines the validity of 
data obtained from these models. Therefore, advancements in clinical 
trials or experimental design are imperative for improving the 
relevance and translatability of findings.

6.2 Lack of standardized methods

Various techniques are used in different steps of sample analysis, 
including stool samples or other biospecimen samples. These methods 
include diverse methods of sample collection and storage; DNA and 
RNA extraction; and purification, such as dialysis, enzymatic treatment, 
filtration, freeze-drying, sonication, and column purification (Sadeghi 
et al., 2023). In our previous review, we explored the latest and advanced 
technologies in microbiome research that can be applied to multi-omics 
studies (Law et al., 2024). The lack of standardized protocols and the use 
of different methods constitute one of the main challenges in the 
microbiome field during the three stages of the preanalytical, analytical, 
and post-analytical phases of multi-omics investigations and biomarker 
analysis (Safari et al., 2023; Galloway-Pena and Hanson, 2020). Stool 
collection is a primary method for studying the gut microbiome due to 
its convenience and repeatability, making it a noninvasive approach. 
However, it does not accurately represent the microbiota of different 
parts of the GI tract, and their uneven distribution within feces can 
introduce bias (Levitan et al., 2023). Furthermore, factors such as sample 
collection methods and kits, storage and transportation conditions, and 
preprocessing time can influence not only microbiome composition 
profiling but also other omics studies, including metabolomics and 
proteomics (Safari et al., 2023; Nearing et al., 2021). Wang et al. (2018) 
compared five fecal collection methods, including immediate freezing at 
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−20°C without preservative, OMNIgene GUT, 95% ethanol, RNAlater, 
and Flinders Technology Associates (FTA) cards, to collect 40 fecal 
samples from eight healthy volunteers. They reported differences in the 
microbial abundance and composition of specific taxa and their 
metabolites, especially short-chain fatty acids. In another study, five stool 
collection methods and durations of storage (immediate freezing and 
incubation at room temperature for 96 h) resulted in some differences in 
alpha and beta diversity metrics (Vogtmann et al., 2017).

In addition to variations in stool collection and storage as 
preprocessing steps, DNA extraction methods, sequencing, and 
bioinformatic pipelines in the analytical phase also play key roles in 
microbiome studies that prevent the reproduction of the same results by 
different research teams (Nearing et al., 2021; Bharti and Grimm, 2021). 
Recent studies comparing various stool microbiome extraction kits 
revealed that DNA extraction kits have a significant effect either on the 
efficacy and quality of extracted DNA (Frau et al., 2019) or on the stool 
microbiome composition (Fiedorová et al., 2019; Mallott et al., 2019; 
Yang et al., 2020; Shaffer et al., 2022). Moreover, the fungal composition 
is also susceptible to reagent or kit contamination (Fiedorová et al., 2019; 
Angebault et  al., 2018). During the analytical phase, the type of 
sequencing, different reference databases, and bioinformatic tools and 
pipelines affect the results (Ramakodi, 2022; Allali et al., 2017; Clooney 
et  al., 2016; Lu and Salzberg, 2020; Odom et  al., 2023). With the 
introduction of whole-genome sequencing and long-read sequencing, 
more precise results are expected. For example, it is suggested to consider 
the use of larger V3–V5 fragments 16S rRNA sequences and long-read 
whole-genome sequencing rather than short-read sequencing to 
minimize the loss of sensitivity and specificity (Bharti and Grimm, 2021; 
Gehrig et  al., 2022). The use of microbiome profiling tools is also 
challenging, as some tools report relative sequence abundance, whereas 
others report relative taxonomic abundance among DNA-to-DNA, 
DNA-to-protein, and DNA-to-marker metagenomic profilers (Sun 
et al., 2021).

The variation in the downstream analytical phase mainly includes 
taxonomy filtrations, normalization, compositional and statistical 
analysis, diversity analysis, and functional genomics (Galloway-Pena and 
Hanson, 2020). For example, studies have investigated the effects of rare 
microbiome and low-abundance taxa filtration on the diversity and 
richness metrics of microbial communities (Nikodemova et al., 2023; 
Cao et al., 2021). Nearing et al. (2022) revealed significant variability 
among tools in identifying ASVs across 38 datasets, influenced by data 
preprocessing and sample characteristics, and suggested that ALDEx2 
and ANCOM-II offer more consistent and reliable results, aligning well 
with intersecting outcomes from diverse approaches. Moreover, the lack 
of detailed methodologies in published studies introduces more 
complications in comparing the results and repeating the experiments, 
hence indicating the need for standardized protocols.

In resilience studies where longitudinal data analysis is needed, 
statistical methods are more limited because the complexity of the 
communities over time and inherent features of the data need new 
approaches to overcome this challenge. The differential abundance of 
time series and between sample groups as well as the clustering of 
microorganisms that evolve over time and network modeling for 
temporal relationship identification are some approaches proposed by 
researchers (Kodikara et al., 2022; Bokulich et al., 2018; Silverman et al., 
2018). Shenhav et al. (2019) developed a linear mixed model with a 
variance component, the Microbial Temporal Variability Linear Mixed 
Model (MTV-LMM), which can identify time-dependent microbes. This 

model is designed to pinpoint microbes exhibiting time-dependent 
patterns, meaning that their abundance can be predicted by the previous 
microbial composition. This approach is particularly useful for 
examining the microbiome’s trajectory over time in longitudinal studies.

The lack of consistency in experimental methods and bioinformatic 
approaches for other types of omics, such as transcriptomics, lipidomics, 
proteomics, and metabolomics, is another major concern, especially 
considering their potential use as biomarker panels and for 
understanding the mechanisms and factors involved in different 
conditions, including resilience (Safari et al., 2023; Wang et al., 2018). In 
numerous metabolomic and proteomics investigations, there can 
be significant variation in analyte sensitivity and coverage across different 
instruments or platforms. Hence, employing more than one analytical 
platform is strongly advised (Karu et al., 2018; Zhang and Figeys, 2019). 
For example, Moosman et al. reported a strong bias in stool metabolomic 
detection via different preprocessing methods and analytical instruments 
and developed a protocol for the extraction of human fecal samples and 
subsequent measurement via both NMR and LC–MS techniques (Karu 
et  al., 2018; Moosmang et  al., 2019). Technical variations affect the 
reproducibility and reliability of multi-omics studies, including 
microbiome profiling, and lead to inconsistencies in results, especially 
microbiome composition analysis, which is important for the 
interpretation of the results and correlations between disease and the 
microbiome, host–microbiome interactions, and microbial biomarker 
discovery, as well as the development of intervention strategies. 
Currently, there are some efforts to overcome these methodological 
variations, with some institutes collaborating to develop and harmonize 
methods in this field (Mandal et al., 2020).

7 Future direction

Advancements in sequencing and multi-omics techniques, 
coupled with a decrease in sample analysis costs and increased 
available computational approaches, have resulted in the generation 
of large amounts of data. In the recovery of HGM, however, most 
longitudinal studies that have investigated microbiome compositional 
changes under the pressure of stressors have focused primarily on 
bacteria, and few studies have focused on alterations in bacteriophage, 
virus (Abeles et al., 2015; Górska et al., 2018; Modi et al., 2013; Sutcliffe 
et  al., 2023; Wang L. L. et  al., 2023), and eukaryotic (fungi and 
parasites) populations (Zimmermann and Curtis, 2019; Lamendella 
et al., 2018; Haak et al., 2021). This highlights the need to conduct 
more studies to investigate the mechanisms of RM, considering 
different domains of microorganisms.

As with the current state of gut microbiome research, a critical gap 
persists in the availability of comprehensive multi-omics databases, 
specifically lacking databases encompassing microbial metagenomes, 
metabolites, transcriptomics, proteins, and lipids that can help to 
understate the mechanisms and biomarkers of resilient gut microbiomes. 
Following the Human Microbiome Project and numerous studies 
investigating the microbiome composition of healthy and unhealthy 
individuals, several databases focused on the human gut metagenome, 
all listed in Table 2 (Dai et al., 2022; Richardson et al., 2023; Forster et al., 
2016; Proctor, 2016; Zhang et  al., 2021). While metagenomics is a 
powerful technique for studying the diversity and function of microbial 
communities in the gut, especially when some of them are unculturable, 
the presence of unmapped reads that are either due to novel taxa or 
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poorly characterized with reference databases is of concern (Nayfach and 
Pollard, 2016; Zhu et al., 2019). This limits the ability to identify and 
characterize microbial taxa and genes and may result in an overestimation 
of the relative abundance of known taxa. Therefore, there is a need to 
expand the genomic resources for HGM by sequencing more isolates or 
metagenome-assembled genomes from different samples across the 
world with different lifestyles and diets (Nayfach and Pollard, 2016). 
Another area that needs further investigation is RNA studies, and not 
only coding RNAs but also noncoding RNAs need to be addressed. 
Noncoding RNAs, such as microRNAs, small nucleolar RNAs, and long 
noncoding RNAs, may be involved in intricate regulatory networks, 
influencing gene expression, metabolic pathways, and host–microbe 
interactions and influencing host health (Shen et al., 2023; Menard et al., 
2022; Zur Bruegge et al., 2017). Despite the lack of centralized databases 
specifically focused on HGM, resources such as miRCarta, Rfam, 
MGnify, and NCBI Gene Expression Omnibus (GEO) (Table 3) provide 
valuable data on noncoding RNAs across various environments 
(Richardson et al., 2023; Kalvari et al., 2021; Backes et al., 2018; Edgar 
et al., 2002).

Similarly, recent metabolomics databases, such as the Gut 
Microbiome Metabolite Database (GMMDB) and the GUT Microbial 
Metabolite Association with Disease (GMMAD), collect microbiome 
metabolite data from different cohorts. Additionally, general 
metabolite databases such as Global Natural Products Social 
Molecular Networking (GNPS) and the Human Metabolite Database 
(HMDB) are useful for metabolomics studies (Muller et al., 2022; 
Wang C. Y. et  al., 2023; Wishart et  al., 2022). Similar gaps and 
challenges exist in other omics fields, including lipidomics, 
proteomics, and functional genomics.

The development of new mathematical and computational 
approaches to quantify resilience is also necessary. Although 
mathematical approaches have been suggested for investigating resilience 
in other ecosystems, they are more difficult for microbial communities 
since multiple factors are usually involved in microbial dysbiosis, e.g., 
disease, infection, and medicine, and there is no defined approach to 
categorize resilient and non-resilient HGM (Philippot et  al., 2021). 
Orwin and Wardle (2004) suggested several indices to measure the 
resilience and resistance of the soil microbiome and listed several criteria 
for introducing an index, including a monotonic increase with increasing 
resilience. Ingrisch and Bahn (2018) categorized the currently applicable 
and suggested metrics to quantify resilience in ecosystems based on 
disturbance impact (category I), recovery relative to baselines (category 
II), and recovery relative to disturbance impact (category III) and 
discussed the missing common framework for comparable quantification 
of resilience, which does not facilitate standardized comparisons across 
different ecosystems or systems. They proposed a bivariate mapping 
approach for a quantitative assessment and comparison of resilience. 
This method involves integrating the major key components of resilience 
into a unified framework and using both resistance and recovery in this 
framework. However, these methods have not been effectively utilized in 
the HGM field and need further investigation. Furthermore, as a future 
direction, we  emphasize the need for the application of advanced 
technologies, such as artificial intelligence, machine learning approaches, 
and in silico studies, along with large-scale, longitudinal studies, to 
unravel the complexity of gut microbiota resilience and to identify 
meaningful and clinically relevant biomarkers.

An integration of multi-omics data using machine learning and 
artificial intelligence (AI) is poised to significantly enhance our 

understanding of gut microbiome resilience. Several multi-omics 
analysis tools (e.g., multi-omics factor analysis (MOFA)), MixOmics, 
and the integrated meta-omics Pipeline (IMP) have been introduced 
and developed recently that can be used for integrating multi-omics 
studies (Arikan and Muth, 2023). For instance, PALM (Pipeline for 
the Analysis of Longitudinal Multi-Omics Data) facilitates host-
microbiome interaction analysis by integrating omics datasets from 
time-series microbiome studies and constructing unified models 
using dynamic Bayesian networks (Ruiz-Perez et  al., 2021). 
Furthermore, machine learning techniques—including neural 
networks, and supervised and unsupervised learning methods—offer 
efficient solutions for analyzing integrated omics data. These 
approaches enable the identification of microbial clusters, patterns, 
and relationships that may not be  apparent through traditional 
methods, thereby facilitating the development of targeted and 
precision therapies (Huo and Wang, 2024; D’Urso and Broccolo, 
2024). As an example, Shenhav et al. (2019) developed a Microbial 
Temporal Variability Linear Mixed Model (MTV-LMM) that predicts 
gut microbiome dynamics by identifying time-dependent taxa based 
on prior compositions. By modeling microbiome transitions as a 
Markov process and fitting a sequential linear mixed model, 
MTV-LMM effectively captures microbial community changes over 
time. The model demonstrated significantly higher time-
explainability than previous methods, suggesting that gut microbiome 
dynamics are more predictable than previously assumed. Its 
predictive power makes it a valuable tool for studying microbiome 
resilience, distinguishing transient shifts from adaptive recovery after 
disturbances. Further, Zeevi et  al. (2015) developed a machine-
learning algorithm to predict personalized postprandial glycemic 
responses using individual and microbiome-related features. Their 
seven-day study demonstrated that this approach effectively reduced 
post-meal glucose levels. As these integrative methodologies continue 
to evolve, they are expected to yield novel insights into the factors 
that contribute to gut microbiome resilience, ultimately informing 
the development of targeted therapies and personalized interventions 
to maintain or restore gut health. However, several challenges remain, 
including the lack of standardized protocols, the need for secure yet 
accessible data, batch effects in longitudinal studies, and the difficulty 
of annotating unknown analytes and bacterial genomes (Arikan and 
Muth, 2023). Addressing these issues will be critical for realizing the 
full potential of AI-driven multi-omics approaches in gut 
microbiome research.

8 Conclusion

The human gut microbiome plays a critical role in health and 
disease, influenced by a myriad of intrinsic and extrinsic factors. 
Dysbiosis, characterized by microbial imbalance, can arise from intrinsic 
factors like genetics, host immunity, and age, as well as extrinsic factors 
including diet, medications, and environmental exposures. Xenobiotics, 
especially antibiotics further complicate this balance, potentially leading 
to prolonged dysbiosis. Despite these challenges, the healthy gut 
microbiota exhibits remarkable resilience and resistance, capable of 
rebounding to a stable state following perturbations return to its baseline 
completely or partially, and adapt its function under new conditions. 
This review is among the first that tried to define and suggest 
RM-associated biomarkers and offers insights into the detection and 

https://doi.org/10.3389/fmicb.2025.1559521
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Safarch
i et al. 

10
.3

3
8

9
/fm

icb
.2

0
2

5.1559
52

1

Fro
n

tie
rs in

 M
icro

b
io

lo
g

y
18

fro
n

tie
rsin

.o
rg

TABLE 3 Available online databases  for multi-omics analysis of human gut microbiome.

Databases Metagenomics and 
functional genomics

Transcriptomics and 
Noncoding RNA

Metabolomics Metaproteomic Metalipidomic Website

Human Microbiome Project (HMP) Y Y Y Y Y https://www.hmpdacc.org/

Gut microbiota data repository (GMRepo) Y https://gmrepo.humangut.info/

home

Human Pan-Microbe Communities (HPMC) Y http://www.hpmcd.org/

Metagenomics of the Human Intestinal Tract 

(MetaHIT)

Y Y https://www.

gutmicrobiotaforhealth.com/

metahit/

MGnify Y Y https://www.ebi.ac.uk/

metagenomics

GutMEGA Atlas Y http://gutmega.omicsbio.info

miRCarta Y https://mircarta.cs.uni-saarland.

de/

Rfam Y https://rfam.org

NCBI Gene expression Omnibus (GEO) Y Home - GEO DataSets - NCBI 

(nih.gov)

UniProt Knowledge Base (UniProt KB) Y https://www.uniprot.org/

Kyoto Encyclopedia of Genes and Genomes 

(KEGG)

Y Y Y KEGG: Kyoto Encyclopedia of 

Genes and Genomes

Evolutionary genealogy of genes: Non-

supervised Orthologous groups (EggNOG)

Y http://eggnog.embl.de

Curated Gut Microbiome-Metabolome Data Y Home · borenstein-lab/

microbiome-metabolome-

curated-data Wiki

GUT Microbial Metabolite Association with 

Disease (GMMAD)

Y http://guolab.whu.edu.cn/

GMMAD

Global Natural Products Social Molecular 

Networking (GNPS)

Y Y http://gnps.ucsd.edu

Human Metabolite Database (HMDB) Y http://www.hmdb.ca

Microbial Metabolites Database (MimeDB) Y MiMeDB

Virtual Metabolic Human Database (VMH) Y www.vmh.life

Curated Gut Microbiome Metabolome Data 

Resource

Y https://github.com/borenstein-

lab/microbiome-metabolome-

curated-data

(Continued)
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prediction of RM in individuals, aiding in the development of targeted 
personalized interventions such as dietary modifications, prebiotics, and 
probiotics as well as helping clinicians and diagnostic labs to predict the 
possible outcome of antibiotics administration. However, challenges 
remain in standardizing methodologies and conducting human trials, 
hindering comprehensive understanding and clinical application. 
Addressing these limitations will pave the way for future research, 
enhancing our ability to harness microbiome resilience for improved 
health outcomes.

We suggest that future research should focus on exploring the 
temporal and spatial variations in the gut microbiome and its 
functions; identifying the key species or core members that are 
crucial for maintaining ecosystem balance; modeling the stable 
landscape and the response of the microbiome to disturbances via 
mathematical tools; and performing transcriptome, proteome, 
metabolome, and lipidome studies to obtain enough data about 
restoring the gut microbiome composition and function to a resilient 
healthy state. Additionally, we propose that metabolic and pathway 
network integration and genome-scale modeling can help to predict 
how different microbes interact with each other and with the host 
under various conditions. Finally, we  advocate for developing 
personalized nutritional and probiotic interventions based on 
individual characteristics of HGM.
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