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Effects of antibiotics on chicken 
gut microbiota: community 
alterations and pathogen 
identification
Ruiqi Zhan †, Yining Lu †, Yuan Xu †, Xiaokun Li , Xilong Wang  and 
Guanliu Yu *

College of Life Sciences, Shandong Normal University, Jinan, China

The extensive use of antibiotics in animal husbandry, either for therapeutic purposes 
or as growth promoters, has raised significant concerns about their effects on 
poultry. However, when antibiotics are used as therapeutic agents, their impact 
on the gut microbiota of poultry remains unknown. This study aimed to address 
this gap by simulating therapeutic application of six frequently used antibiotics 
(lincomycin hydrochloride, gentamicin sulfate, florfenicol injection, benzylpenicillin 
potassium, ceftiofur sodium, and enrofloxacin infection) and investigated their 
effects on the composition and structure of poultry gut microbiota. Single-molecule 
real-time 16S rRNA sequencing was performed to analyze fecal samples collected 
from chickens treated with each antibiotic to assess the impact of antibiotic 
exposure on gut community diversity and dominant microbial species. Although 
the results demonstrated that antibiotic exposure reduced gut microbiota diversity 
and disrupted community stability, the impacts of different antibiotics differed 
considerably, specifically in the number of ASVs. Notably, the dominant bacterial 
phyla—Pseudomonadota and Bacillota—was largely consistent across different 
antibiotic exposures, except 11 days after gentamicin sulfate exposure. Moreover, 
six third-category pathogens were identified in fecal samples, namely, Shigella 
boydii, Escherichia coli, Shigella flexneri, Salmonella enterica, Corynebacterium 
bovis, Proteus mirabilis. Of these, three strains of Corynebacterium bovis were 
identified as potential novel pathogenic bacteria. These findings demonstrate 
the critical importance of rational antibiotics use in animal husbandry. This study 
provides a scientific basis for improving current antibiotics use in the treatment 
and prevention of poultry diseases, advancing the standardization and precision 
of antibiotic usage.
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1 Introduction

Poultry is a globally important source of meat and dietary protein (Whitton et al., 2021). 
However, the poultry industry is significantly affected by disease outbreaks, which cause 
substantial economic losses for farmers (Muhammad et al., 2020). Antibiotics are extensively 
used to mitigate these losses (Lhermie et al., 2022), they are administered in avian husbandry 
for either therapeutic objectives or as stimulants for growth enhancement. Antibiotic growth 
promoters operate via conventional anti-inflammatory mechanisms and potentially stimulate 
poultry growth and optimize feed conversion efficiency by modulating mitochondrial activity 
and gut microbiota (Fernández Miyakawa et al., 2024). However, excessive use disrupts gut 
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microbiota, impairs gut barrier function, and weakens immune 
responses, increasing susceptibility to infections (Guo et al., 2021).

The gut microbiota is vital in drug metabolism, affecting both drug 
efficacy and toxicity by regulating host metabolic pathways and 
competition for exogenous substrates. Therapeutic drugs, including 
antibiotics, can inadvertently disrupt gut microbiome, causing 
imbalances in microbial communities, which has potential long-term 
consequences (Wilson and Nicholson, 2016). Antibiotics, specifically, 
reduce gut microbiota diversity, disrupt metabolic functions, and 
increase the risk of antibiotic-induced diarrhea and recurrent Clostridium 
difficile infections (Mullish and Williams, 2018; Lesniak et al., 2021). For 
instance, ciprofloxacin administration can significantly reduce gut 
microbial richness and diversity in 3–4 days (Dethlefsen and Relman, 
2011). Furthermore, antibiotics in feed exert site-specific effects on gut 
microbiota composition (Looft et al., 2014). Fecal samples are frequently 
employed to evaluate gut microbiota composition (Suchodolski et al., 
2005) and its correlation with animal growth (Wang et al., 2021).

Recent advancements in gene sequencing, especially high-
throughput sequencing, have facilitated detailed analyses of microbial 
communities. Although second-generation sequencing technologies, 
such as Illumina, are widely used, they are limited by short read lengths 
and lower accuracy (Bi et al., 2024). Single-molecule real-time (SMRT) 
sequencing, a third-generation technology developed by PacBio, offers 
superior read lengths and accuracy (Glenn, 2011; Wei and Zhang, 
2018). Several studies have investigated the SMRT technique. For 
example, SMRT technology was used to sequence the complete 
genome of Escherichia coli E28 (Imke et al., 2017) and analyze the 
diversity of intestinal mucosa microbiota (Zhang C. Y. et al., 2021; 
Zhang T. et al., 2021). SMRT sequencing improves accuracy through 
circular consensus sequencing. Normally, SMRT sequencing directly 
analyzes extracted DNA without requiring amplification by polymerase 
chain reaction (PCR). But we employed PCR to specifically amplify the 
full-length 16S rRNA gene. This amplification step was used to ensure 
sufficient template quantity for targeted sequencing, and it does not 
contradict the inherent advantages of SMRT technology.

This study investigated the effects of various antibiotics on chicken 
fecal microbiota using SMRT sequencing. We performed diversity, 
species composition and phylogenetic analyses of SMRT sequencing 
results based on the hypothesis that antibiotics destroy chicken gut 
microbes to determine the specific manifestations of the effects of 
antibiotics on chicken gut microbes. Furthermore, we identified the 
affected key strains based on changes in gut microbial composition 
under antibiotic exposure, and provided insights that facilitate the 
development of precision medicine strategies to reduce disease spread, 
optimize feed utilization, and lower production costs. Ultimately, this 
study would provide a scientific basis for rational antibiotic use in 
poultry farming, minimize antibiotic residues in food, and ensure 
adherence to food safety standards.

2 Materials and methods

2.1 Experimental design

The study was conducted at Shandong Normal University in 
September 2024. Forty-nine 3-day-old, specific-pathogen-free chickens 
were purchased from Spirax Ferrer Poultry Science and Technology 
Co., Ltd., Jinan, China and underwent a 5-day acclimatization period 

in the experimental environment. The 12-day trial provided all chickens 
with ad libitum access to food and water. Windows were opened during 
the day and partially closed at night to regulate temperature and 
ventilation, ensuring a comfortable rearing environment.

After acclimatization, the chickens were randomly divided into 
seven groups: normal control (NC), lincomycin hydrochloride (LH), 
gentamicin sulfate (GS), florfenicol injection (FI), benzylpenicillin 
potassium (BP), ceftiofur sodium (CS) and enrofloxacin infection 
(EI). To fulfill the critical requirement for replication, we assigned 
seven chickens to each experimental group—each antibiotic treatment 
group had seven replicates and each replicate had one chicken. This 
design ensured statistical robustness and reliability in identifying the 
effects of antibiotic treatment. Each group was administered a different 
antibiotic via intramuscular injection, with dosages and treatment 
durations adhering to manufacturer’s instructions. The specific group 
assignments and corresponding antibiotic treatments are detailed in 
Supplementary Table S1.

Fecal trays were replaced daily, and fresh fecal samples (0.2–0.5 g) 
were collected at multiple time points, namely, at days 0 (day of 
antibiotic treatment), 3, 7, and 11 after treatment. Because the seven 
chickens in each group were housed separately, we randomly collected 
three samples from fecal trays for sequencing, each sample weighed 
approximately 5 grams. Foreign materials, such as feathers and feed 
particles, were removed from the collected fecal samples. The samples 
were split into two equal parts: one for DNA extraction and the other 
stored at −80°C until subsequent analysis. These procedures were 
meticulously standardized to ensure consistent and reliable sample 
handling across all experimental groups and time points. All animal 
experiments complied with the guidelines of the Shandong Animal 
Ethics Committee and relevant biosecurity regulations. The protocol 
received approval from the Animal Care and Use Committee of 
Shandong Normal University (AEECSDNU2024126).

2.2 DNA extraction

DNA extraction utilized the MagBeads FastDNA Kit 
(116564384C1) as per the manufacturer’s protocol (MP Biomedicals, 
Solon, CA, United States). Extracted DNA quality was assessed via 
0.8% agarose gel electrophoresis, and the concentration was 
determined by a NanoDrop NC-1000 spectrophotometer (Thermo 
Fisher Scientific, Waltham, MA, USA). DNA samples meeting quality 
criteria were stored at −80°C for subsequent library preparation.

2.3 PCR amplification and SMRT 
sequencing

Full-length 16S rRNA (~ 1,500 bp) was amplified by PCR to 
analyze bacterial diversity, using forward primer 27F (5′–barcode 
+AGAGTTTGATCMTGGCTCAG–3′) and reverse primer 1492R 
(5′–ACCTTGTTACGACTT–3′). The amplification process included 
an initial denaturation step at 98°C for 5 min, followed by 25–30 cycles 
of denaturation (98°C, 30 s), annealing (56°C, 30 s), extension (72°C, 
45 s), and a final extension at 72°C for 10 min. The PCR products were 
purified using Agencourt AMPure Beads (Beckman Coulter, 
Indianapolis, IN, USA) and quantified with the Quant-iT PicoGreen 
dsDNA Assay Kit (Invitrogen, Carlsbad, CA, United States) following 
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the manufacturers’ instructions. The 16S rRNA amplicons were 
sequenced on the PacBio Sequel II platform with the help of 
Personalbio Biotechnology Co., Ltd. Raw sequence data were 
deposited in the NCBI database (accession number PRJNA1194745).

2.4 Microbiota community diversity 
analysis

The raw sequences from SMRT sequencing were processed on the 
Personalbio Cloud platform. Sequences that did not match the 
primers were discarded using QIIME2 (version 2022.11). The DADA2 
plugin was used for denoising, quality filtering, dereplication and 
chimera removal (Callahan et  al., 2016). High-quality reads were 
aligned and clustered into nonsingleton amplicon sequence variants 
(ASVs) via MAFFT (Katoh et al., 2002). The relative abundance of 
each sample was calculated using ASV rarefaction.

Alpha diversity indices, such as the Simpson diversity index, 
Shannon diversity index, and Chao1 richness estimator, were derived 
from ASV table generated by QIIME2. Structural variations in the gut 
microbiota across groups were analyzed with principal coordinate 
analysis (PCoA) (Anderson and Willis, 2003). A Venn diagram 
visualized ASVs differences among groups based on abundance data. 
QIIME2 was used to obtain the composition and abundance tables at 
the phylum, family, genus, and species levels, and the results were 
presented in bar charts. Bacterial ASVs with relative abundances 
exceeding 10.00% were considered dominant species.

2.5 Biomarker prediction

Biomarkers function as early warning signals reflecting gut 
microbiota changes, such as harmful bacterial proliferation. This 
enables breeders to detect issues early and implement preventive 
measures to curb disease spread.

LEfSe multilevel discriminant analysis was used to identify high-
dimensional biomarkers and genomic features (Segata et al., 2011). In 
LEfSe, the nonparametric Kruskal–Wallis (KW) test assessed species 
abundance differences across groups, followed by the Wilcoxon 
rank-sum test to confirm subgroups consistency. Lastly, linear 
discriminant analysis (LDA) was used to determine the impact of 
these species on group differences.

2.6 Functional analyses

We analyzed the pathogenic potential and microbial consortial 
characteristics of bacterial communities across the antibiotic 
treatment groups to investigate their biological functions. Metabolic 
functional profiles were evaluated using PICRUSt2 (Douglas et al., 
2020). Functional annotations, derived from 16S rRNA sequencing 
data, were obtained from the KEGG database1 using default system 
parameters2 (Langille et al., 2013).

1 https://www.kegg.jp/

2 https://github.com/picrust/picrust2/wiki

2.7 Phylogenetic analysis of potential novel 
pathogenic bacterial strains

To identify potential pathogenic microorganisms for humans and 
poultry, we compared the top 50 bacterial species from this study with 
entries in the Catalogue of Pathogenic Microorganisms Infecting 
Humans (Vision 2021, P.R. China Ministry of Health; Song et al., 
2023; Chen et al., 2024).

We then analyzed the full-length 16S rRNA sequences of the 
pathogenic bacteria obtained by SMRT sequencing and performed 
detailed phylogenetic analyses. The ASV sequences of each pathogenic 
bacterium were compared with representative sequences from the 
NCBI database using the ClustalW function in the MegAlian program 
(DNAStar software). Sequences with gene alignment < 96% were 
screened. Phylogenetic trees were constructed using the neighbor-
joining method within the MEGA program (Tamura et al., 2011). The 
genetic sequences of novel pathogenic bacteria were identified based 
on two criteria: (1) the strains’ sequences were located on distinct 
branches of the phylogenetic tree, and (2) their nucleic acid similarity 
rates were below 97.0% (Chen et al., 2024; Song et al., 2023, 2024). The 
gene sequences of these novel bacterial strains identified in this study 
were uploaded to the GenBank database (accession numbers 
PQ676072, PQ676073, PQ676074).

2.8 Statistical analysis

Relative abundance values were expressed as mean ± standard 
deviation. One-way analysis of variance and multiple comparison tests 
were conducted by SAS 9.1 software (SAS Institute, Inc., Cary, NC, 
United States) to assess group differences. Statistical significance was 
set at p-value < 0.05 or < 0.01.

3 Results

3.1 Bacterial diversity in fecal samples

A mean number of 62,749 ASVs were identified from the total 66 
samples, with a standard error of 229.2 (Supplementary Table S1). All 
antibiotics significantly influenced ASV counts, with notable 
variations across groups. On day 3, ASV counts for groups LH3, GS3, 
FI3, BP3, CS3, EI3, and NC3 were 5,936, 6,572, 3,992, 4,081, 2,869, 
6,064, and 5,670, respectively, with 15 common ASVs. On day 7, ASV 
counts for these groups were 6,056, 4,612, 2,586, 4,152, 6,012, 6,211, 
and 4,678, respectively, with 28 common ASVs. On day 11, ASV 
counts for the groups were 7,092, 5,663, 5,124, 7,779, 5,552, 5,392, and 
4,489, respectively, with 30 common ASVs (Figure 1a).

PCoA based on the Bray–Curtis measure revealed that samples 
from the same group were more similar, whereas those from different 
groups were more dispersed. Thus, intragroup differences were 
smaller than intergroup differences. Intestinal flora components from 
different groups showed significant variation (p < 0.05), indicating 
effective group separation (Figure 1b).

Alpha diversity, which indicates the abundance and homogeneity 
of microbial communities, is often measured using the Chao1, 
Shannon, and Simpson indices. Box plots created based on the 
Kruskal–Wallis test results revealed significant differences in gut flora 
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diversity under different antibiotic exposures (Chao1, p = 9.4e-06; 
Shannon, p = 4e−06; Simpson, p = 5.9e−06; Figure 1c). The Chao1, 
Shannon, and Simpson indices generally decreased and then increased 
with prolonged antibiotic exposure. For instance, the Simpson index 
on day 3 after BP exposure was significantly lower than on day 11 
(p < 0.05). These results indicate that antibiotic exposure reduces gut 
flora diversity, with varying impacts across different antibiotics.

3.2 Bacterial taxonomy and relative 
abundance in fecal samples

Relative abundance was analyzed at the phylum, family, genus, 
and species levels. Pseudomonadota (59.25% on average) and 
Bacillota (36.23%) were the dominant phyla. Notably, on day 3 after 
exposure to FI, Pseudomonadota decreased sharply (1.53%), whereas 
Bacillus significantly increased (96.85%). These two phyla showed 
comparable percentages with no significant differences as the 
dominant phyla in the NC and other treatment groups. These 
microbial abundance changes in the FI group gradually recovered 
with exposure time and returned to normal levels by day 11. In 
contrast, an abnormality was noted in the GS group until day 11, 

when Bacteroidota spp. were detected (26.41%). Furthermore, the 
percentage of Pseudomonadota was significantly lower than those in 
the NC group (8.44% versus 82.25%, p < 0.05), which was not found 
in the other groups (Figure 2a). At the phylum level, the LH, BP, CS, 
and EI groups did not show much difference compared to the 
NC group.

The dominant families were Enterobacteriaceae (51.04% on 
average) and Lactobacillaceae (20.04%). In contrast, on day 3, the 
percentage of Enterobacteriaceae in the FI group was significantly 
lower than that in the NC group (0.64% vs. 71.15%, p < 0.05), whereas 
that of Lachnospiraceae (33.80%) was higher than that in the NC 
group. On day 7, the Lachnospiraceae in the FI group significantly 
decreased, reaching a level similar to that of the NC group. However, 
on day 11, a notably high percentage of Pseudomonadaceae (64.81%) 
was noted, which was not observed in the other groups. The 
percentages in the LH group were largely similar to those of the NC 
group on days 3 and 7. However, on day 11, Pseudomonadaceae 
(26.27%) spp. were detected at a percentage similar to that of the FI 
group. Lachnospiraceae (23.07%) spp. were also observed in the GS 
group on day 3 at a percentage similar to those of other groups on day 
7. However, the percentage of Enterobacteriaceae was lower than that 
of the NC group on day 11 (7.50% vs. 78.66%, p < 0.05). None of the 

FIGURE 1

Venn diagram of amplicon sequence variants (a); principal coordinate analysis plots (b); and Chao1, Simpson, and Shannon indices (c) of bacterial 
communities.
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EI, BP, and CS exposed from 3 to 11 days showed significant 
differences, except the NC group (Figure 2b).

Shigella (28.84% on average), Escherichia (20.05%), 
Levilactobacillus (13.19%) were the dominant genera. The microbial 
percentages in the CS and EI treatment groups did not differ 
significantly from those in the control group. On day 3, the FI group 
showed an extremely abnormal situation compared with the other 
groups. Specifically, Shigella was significantly lower than that in the 
NC group (0.21% vs. 56.88%, p < 0.05), and Blautia (33.71%) and 
Levilactobacillus (21.68%) were the dominant genera. On day 7, the 
percentage of Levilactobacillus continued to increase until it was no 
longer dominant on day 11. However, the microbial percentages in the 
FI group did not return to normal levels, and Pseudomonas (64.76%) 
spp. were even detected. Furthermore, the BP group was dominated 
by Levilactobacillus with a significantly higher percentage than that in 
the NC group (45.32% versus 4.37%, p < 0.05) on day 3. However, the 
difference gradually diminished by day 7. The effect of LH treatment 
was indicated by the presence of Pseudomonas (26.22%) on day 11 and 
Levilactobacillus (19.53%) as dominant genera relative to those in the 
control group (Figure 2c).

Shigella boydii (26.11% on average), Escherichia coli (19.67%), 
Levilactobacillus brevis (13.19%) were the most dominant species. 
However, prolonged exposure to antibiotics led to changes in the 
dominant strains of the intestinal tract, which were very similar to 
those at the genus level. On day 3, the FI group was dominated by 
Blautia wexlerae (33.70%) and Levilactobacillus brevis (21.68%), 
with the percentage of S. boydii being much lower than that in the 
NC group (0.19% vs. 40.83%, p < 0.05). Furthermore, the microbial 
percentage levels did not recover by day 11. The CS and EI groups 
differed slightly in the percentage of S. boydii and E. coli as 
dominant strains on day 7; however, this difference was quickly 
offset. The BP group showed high levels of Levilactobacillus brevis 
(45.32%) on day 3, which was not observed in the other groups. 
Similarly, the GS group exhibited high levels of Blautia wexlerae 
(22.93%) on day 3, which was similar only to the FI group. 
Furthermore, although the composition recovered slightly on day 
7, significant differences with the other groups were observed 
again on day 11, with S. boydii and E. coli being lower than those 
of the NC group (3.18 vs. 32.8, 3.53% vs. 36.81%, p < 0.05) 
(Figure 2d).

FIGURE 2

Amplicon sequence variants of the top 10 most relatively abundant bacteria detected at the phylum (a), family (b), genus (c), and species (d) levels.
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3.3 Biomarker prediction for fecal samples

LEfSe analysis was performed to identify statistically significant 
gut flora biomarkers across 22 groups, using an LDA threshold score 
of 5.0 to highlight differences in bacterial community structure. The 
relative abundance of most bacterial taxa among the above groups 
differed. In total, 27 intestinal microbial species showed significant 
differences in abundance among groups (p < 0.05). Potential 
biomarkers for the FI group included p_Bacillota, c_Clostridia, o_
Eubacteriales, c_Gammaproteobacteria, p_Pseudomonadota, c_Bacilli, 
o_Lactobacillales, and f_Lactobacillaceae. For the GS group, potential 
biomarkers included s_Shigella_boydii, g_Shigella, p_Bacteroidota, and 
c_Bacteroidia. Biomarkers identified in the EI, BP, and NC groups 
were o_Enterobacteriaceae, and f_Enterobacteriaceae, o_Moraxellales, 
g_Escherichia, and s_Escherichia_coli, respectively (Figure 3).

These biomarkers provide insights into the effects of antibiotics on 
gut microbes and enhance our understanding of their 
growth dynamics.

3.4 Metabolic functions and pathways

Analysis of the intestinal microbiota pathways identified 
carbohydrate metabolism as the most abundant pathway (Figure 4). 

These pathways promote the growth and reproduction of specific 
strains, thereby supporting microbial homeostasis.

Furthermore, the abundant pathways for the metabolism of amino 
acids, cofactors, and vitamins indicate that intestinal microorganisms 
respond positively to antibiotic-induced environmental changes, 
exhibiting sustained normal physiological functions. Gut microbes 
modify their metabolic pathways and physiological functions based 
on the type and concentration of amino acids in the environment. 
Some vitamins and their derivatives act as signaling molecules, 
regulating microbial gene expression and enhancing microbial 
adaptation to environmental changes.

Therefore, gut microbiota modulate the metabolism of 
carbohydrates, amino acids, cofactors, and vitamins in response to 
antibiotic-induced environmental changes, thereby preserving 
microbial homeostasis and normal physiological functions.

3.5 Third category of pathogens

Among the top 50 most abundant bacterial species, six (Shigella 
boydii, E. coli, Shigella flexneri, Salmonella enterica, Corynebacterium 
bovis, and Proteus mirabilis) were listed in the Catalogue of Pathogenic 
Infecting Humans. These six species are classified as third-
category pathogens.

FIGURE 3

Linear discriminant analysis (LDA) effect size (LEfSe) of fecal samples collected from the various treatment groups. The cladograms indicate the results 
for bacteria. Solid dots of different colors indicate significant discriminative taxonomic nodes in the samples, while hollow dots represent non-
discriminative taxonomic nodes. The branches are shaded based on the highest-ranked variety of each taxon (LDA = 5, p < 0.05).
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3.6 Potential novel pathogenic bacterial 
strains

Table 1 highlights three potential novel C. bovis strains identified 
in fecal samples from the GS3, GS7, FI3, and CS11 groups. These novel 
strains showed < 96.0% nucleic acid identity with the 16S rRNA 
sequences in the GenBank database. The 16S rRNA genomes of these 
three novel bacteria strains shared 94.4–96.4% nucleic acid similarity 
with representative strains (Table 2). Moreover, a phylogenetic tree 
constructed via the neighbor-joining method revealed that the three 
novel C. bovis strains occupied distinct branches from other 
representative strains (Figure 5). The above results signify that these 
three C. bovis may be three novel pathogenic bacteria.

4 Discussion

Poultry gut microbiota establishes early in life and remains 
relatively stable, albeit shaped by environmental and host factors 
(Hasan and Yang, 2019). Recent studies have demonstrated that 
antibiotic exposure causes significant shifts in microbiota composition 
and diversity (Zhang C. Y. et al., 2021; Zhang T. et al., 2021; Liang 
et al., 2023). However, large-scale studies with extensive data and large 
sample sizes on the impact of antibiotics on poultry gut microbiota 
remain scarce. This study addresses this gap by analyzing dynamic 
changes in poultry gut microbiota following exposure to six 

representative antibiotics using SMRT sequencing. This study 
highlights the distinct effects of different antibiotics on the gut 
microbiota, providing insights for the development of targeted 
strategies to reduce unnecessary antibiotic use and combat 
antibiotic resistance.

Antibiotic exposure impacts poultry gut microbiota in complex 
and multifaceted ways. Consistent with previous studies (Francino, 
2016; Patangia et  al., 2022), we  found that antibiotics exposure 
significantly altered gut microbiota composition and diversity, which 
are key factors influencing microbiota stability. BP is a well-known 
antibiotic that was discovered by Alexander Fleming and has since 
revolutionized modern medicine by treating various bacterial 
infections. BP reduces host toxicity by inhibiting cell wall synthesis 
with minimal impact on human cells. BP and CS, both beta-lactam 

FIGURE 4

Metabolic functional profiles of bacteria across different groups, as determined by PICRUSt2 analysis.

TABLE 1 Potential novel Corynebacterium bovis strains identified from 
fecal samples.

Bacteria name 
(GenBank No.)

No. of strains Group distribution

Corynebacterium sp. ASV 

84840 (PQ676072) 48 GS3, FI3, CS11

Corynebacterium sp. ASV 

226330 (PQ676073) 32 GS3, GS7, CS11

Corynebacterium sp. ASV 

456335 (PQ676074) 6 GS3
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TABLE 2 Comparison of sequence similarity between the potentially novel Corynebacterium bovis strains identified in this study and other 
representative strains.

Divergence (%) Nucleotide identity (%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 PQ676072 *** 96.2 94.5 95.6 96.1 95.4 95.4 96.1 96.1 96.1 96.0 96.0 96.0 95.6 96.1 95.6 95.6

2 PQ676073 3.9 *** 96.2 95.4 96.0 95.2 95.3 95.6 95.6 95.6 95.6 95.6 95.5 95.6 96.4 95.7 95.7

3 PQ676074 5.7 3.9 *** 95.3 94.9 95.1 95.1 94.8 94.8 94.8 94.7 94.7 94.6 95.4 95.1 94.4 94.4

4 AB821589 4.6 4.7 4.9 *** 95.5 99.5 99.7 96.0 96.0 96.0 96.0 96.0 95.9 99.7 96.3 96.7 96.7

5 FN563321 4.0 4.1 5.3 4.7 *** 95.3 95.3 96.6 96.6 96.6 96.5 96.5 96.6 95.7 96.7 95.8 95.8

6 GU303564 4.7 4.8 5.0 0.4 4.7 *** 99.4 95.7 95.7 95.7 95.7 95.7 95.7 99.4 96.1 96.5 96.5

7 EU381663 4.7 4.9 5.0 0.3 4.8 0.4 *** 95.9 95.9 95.9 95.8 95.8 95.8 99.6 96.1 96.6 96.6

8 JX198601 4.1 4.5 5.4 4.2 3.5 4.3 4.3 *** 100.0 100.0 99.5 99.5 99.4 96.2 96.3 96.9 96.9

9 EF399490 4.1 4.5 5.4 4.2 3.5 4.3 4.3 0.0 *** 100.0 99.5 99.5 99.4 96.2 96.3 96.9 96.9

10 EU009792 4.1 4.5 5.4 4.2 3.5 4.3 4.3 0.0 0.0 *** 99.5 99.5 99.4 96.2 96.3 96.9 96.9

11 EF436363 4.1 4.6 5.5 4.2 3.5 4.3 4.3 0.5 0.5 0.5 *** 100.0 99.3 96.2 96.2 96.8 96.8

12 EF399033 4.1 4.6 5.5 4.2 3.5 4.3 4.3 0.5 0.5 0.5 0.0 *** 99.3 96.2 96.2 96.8 96.8

13 HQ759263 4.1 4.6 5.6 4.2 3.4 4.3 4.3 0.6 0.6 0.6 0.7 0.7 *** 96.1 96.2 96.9 96.9

14 AB612831 4.5 4.5 4.8 0.3 4.4 0.5 0.4 4.0 4.0 4.0 4.0 4.0 4.0 *** 96.5 96.7 96.7

15 DQ456223 4.1 3.7 5.1 3.8 3.4 3.9 4.0 3.8 3.8 3.8 3.9 3.9 3.9 3.5 *** 97.2 97.2

16 HQ759378 4.5 4.4 5.9 3.3 4.4 3.5 3.5 3.2 3.2 3.2 3.3 3.3 3.2 3.3 2.8 *** 100.0

17 DQ456215 4.5 4.4 5.9 3.3 4.4 3.5 3.5 3.2 3.2 3.2 3.3 3.3 3.2 3.3 2.8 0.0 ***

Nucleotide sequences of three novel Corynebacterium bovis and 14 reference strains in bold.

FIGURE 5

Phylogenetic tree based on 16S rRNA of potential novel Corynebacterium bovis strains in conjunction with reference strains. The genetic sequences of 
the four newly identified Corynebacterium bovis strains are indicated in red font. Constructed using MEGA 7.0 software using the neighbor-joining 
analysis, the phylogenetic tree presents 1,000 bootstrap replicates for confidence assessment. The scale bar indicates the number of nucleotide 
substitutions per site.
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antibiotics, inhibit peptidoglycan synthesis by acylating transpeptidase 
to disrupt bacterial cell wall formation (Lima et al., 2020). Despite 
belonging to the same antibiotic class, their impacts on gut microbiota 
diversity differ. We found that microbiota diversity was significantly 
lower after BP exposure than after CS exposure. This could be due to 
the presence of beta-lactamase-producing E. coli and Pseudomonas sp. 
TS1138 in the gut, which degrade or modify the antibiotic before it 
reaches the target site (Wilke et al., 2005). Compared with the more 
beta-lactamase-resistant CS, BP is more easily hydrolyzed, thereafter 
exhibiting reduced antibacterial efficacy in targeting specific sensitive 
bacteria. Furthermore, since BP primarily targets Gram-positive 
bacteria, it has a narrower antibacterial spectrum, causing a more 
uneven effect on gut microbiota and a greater reduction in diversity. 
A more diverse microbiota better maintains stability and more easily 
recovers from disturbances (Fassarella et al., 2021), indicating that BP 
exposure could lead to a more unstable microbiota community with 
reduced recovery potential. Taxonomic analysis further confirmed 
that by day 11, microbiota in chickens treated with EI and CS had 
largely recovered, whereas the parameters for those treated with BP 
still differed significantly from those of controls. These findings align 
with earlier studies indicating the lasting impact of BP on gut 
microbiota (Leclercq et al., 2017), although a mouse study reported 
that EI can also induce persistent microbiota changes (Elokil et al., 
2020). Species differences, such as between mice and poultry, 
underscore the need for further studies on the recovery mechanisms 
of poultry microbiota after prolonged antibiotic exposure.

Bacillota and Bacteroidetes typically dominate chicken gut 
microbiota (Ye et al., 2021), However, after antibiotic exposure in this 
study, Pseudomonadota and Bacillota became predominant, except in 
the GS11 group. At the phylum level, Pseudomonadota and Bacillota 
collectively accounted for 95.48% of the average relative abundance 
across all samples. Therefore, antibiotic exposure may reduce 
Bacteroidetes colonization while increasing Pseudomonadota 
colonization in poultry gut. Increased Pseudomonadota abundance 
after antibiotic exposure may indicate gut microbiota dysbiosis, as 
their adaptive capabilities allow them to dominate microbial 
communities (Shin et al., 2015). A reduction in Bacteroidetes, which 
are associated with fat accumulation and improved growth 
performance in poultry (Chen et  al., 2020), may indicate 
hindered growth.

While dominant bacterial phyla after antibiotic exposure were 
largely consistent across the different antibiotics tested, significant 
differences were observed at the family, genus, and species levels. The 
distinct changes induced in gut microbiota species composition also 
varied with antibiotic type. At 3, 7, and 11 days after GS exposure, 
E. coli abundance was significantly lower than that in the NC group. 
The reduction may be correlated with the pharmacological mechanism 
of GS, an aminoglycoside antibiotic extracted from Micromonospora 
purpurea, known for its broad-spectrum bacteriostatic effect. GS 
primarily targets Gram-negative bacteria, and, thus, strongly inhibits 
E. coli (Bai et al., 2022). GS binds to specific sites on the 16S rRNA of 
the E. coli 30S ribosomal subunit, disrupting mRNA translation. This 
causes incorrect tRNA pairing, abnormal amino acid incorporation, 
and protein synthesis disruption, ultimately killing the bacteria 
(Garneau-Tsodikova and Labby, 2016). FI is a protein synthesis 
inhibitor that exhibits bacteriostatic activity. It is a broad-spectrum 
antimicrobial of the chloramphenicol class with a similar mechanism 
of action as GS. FI is rapidly absorbed in the poultry gut (Watteyn 

et al., 2018). Its long half-life and good tissue distribution effectively 
treat respiratory and gastrointestinal infections, including 
salmonellosis and colibacillosis. The broad-spectrum antimicrobial 
properties of FI significantly reduced the abundances of E. coli and 
S. boydii in the FI group compared with those in the NC group. 
Specifically, FI binds tightly to the 50S subunit of the 70S ribosome 
(Guo et  al., 2024), inhibiting peptidyl transferase and thereby 
impeding peptide chain elongation and formation, arresting protein 
synthesis. Reduced ethanol production by E. coli, which is linked to 
intestinal permeability, lowers gut oxygen levels (Dobrzanska et al., 
2020), favoring the growth of anaerobic bacteria, such as Clostridium 
phoceensis and L. brevis, while suppressing aerobic bacteria, such as 
S. flexneri and B. wexlerae.

Our study has demonstrated that exposure to different antibiotics 
affects the diversity of gut microbial communities in poultry (Patangia 
et al., 2022). Moreover, because the gut microbiome is a complex 
microbial ecological network, the impacts of different antibiotics vary, 
(Fishbein et  al., 2023), as established herein, further indicating 
variations in the exposure time required for different antibiotics to 
alter the community structure and in the recovery time of microbial 
communities. Specifically, CS and EI had the least impact on the 
composition of the chicken gut microbiota, caused the weakest 
disruption, and exhibited the fastest recovery times. By day 11, 
microbial levels had essentially returned to normal. In contrast, FI and 
GS exhibited the strongest destructive effects on the gut microbiota 
structure, which was evident from day 3 and persisted until day 11 
without recovery. The LH group only showed significant differences 
compared with the NC group on day 11. Although BP disrupted the 
gut microbiota on day 3, the microbial levels had essentially recovered 
by day 7. Therefore, future studies need to further determine the 
specific times to reach maximum efficacy and for the efficacy to 
dissipate for each antibiotic.

Notably, this study identified three potentially novel C. bovis 
strains. The genome of C. bovis contains multiple copies of 16S rRNA 
gene (the rrnDB database). This genomic feature minimizes 
intragenomic sequence heterogeneity (i.e., sequence variations 
between multiple rRNA copies within the same genome), thereby 
reducing artifactual ASV (amplicon sequence variant) splitting caused 
by technical sequencing errors or natural copy number variations. 
Enhanced sequence uniformity improves taxonomic resolution at the 
strain level. For example, the sequencing E. coli 16S rRNA, based on 
the cyclic coherence sequencing technology of the PacBio platform, 
resulted in E. coli strains being accurately categorized into the 
O157:H7 and K12 subspecies branches, thereby demonstrating the 
utility of ASVs in accurately differentiating between strains (Callahan 
et  al., 2019). Furthermore, soil bacterial analysis by sequence 
comparison of ASV numbers demonstrated that ASVs can represent 
strain species (Kim et al., 2024). Therefore, although the sequences of 
the three ASVs obtained showed 94–96% similarity to the published 
gene sequences of C. bovis, the SMRT sequencing results could 
be attributed to C. bovis based on their ASV numbers.

The sequences were obtained by SMRT 16S rRNA sequencing. 
Thus, not all potential novel pathogens may have been identified 
because of their relatively low abundance and the targeted nature of 
the sequencing, which targeted ribosomal genes rather than entire 
genomes (Chen et al., 2024). Identifying novel potential pathogens is 
vital for the prevention and control of poultry diseases. Future studies 
should include an in-depth analysis of poultry gut microbiota that 
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particularly focuses on pathogenic microbial variants that emerge 
under antibiotic selective pressure.

One strategy for mitigating the impact of antibiotics is to 
coadminister other drugs or substances during antibiotic treatment to 
modulate antibiotic potency and minimize harm to beneficial bacteria. 
In particular, prebiotics can promote the growth of beneficial bacteria 
and help restore the microbiota structure and function (Bedu-Ferrari 
et al., 2022). Implementing these strategies may help preserve gut 
microbiota balance, support infection treatment, and mitigate the 
adverse effects of antibiotics. Future research should also focus on 
identifying relevant drugs or prebiotics and investigating the 
effectiveness and optimal applications of these strategies for more 
precise and less disruptive antibiotic treatment.

5 Conclusion

This study showed that antibiotics significantly affected microbial 
diversity and community structure, with FI, GS, and BP having the 
most significant and long-lasting effects. The CS and EI treatment 
groups showed significant early effects but faster recovery compared 
to the other groups. The LH treatment group showed late variability. 
Phylogenetic analysis revealed three potentially new pathogenic 
strains of C. bovis. Therefore, in developing a strategy for antibiotic 
use, antibiotics with the weakest impact on the gut flora and the fastest 
recovery, e.g., CS and EI, should be prioritized. The use of antibiotics 
significantly disruptive to the ecological balance of gut flora, e.g., FI, 
BP, and GS, should be minimized, considering therapeutic efficacy is 
ensured. Furthermore, antibiotic monotherapies should be avoided, 
and the combination of probiotics and antibiotic therapy should 
be considered to promote the growth of beneficial bacteria. This study 
further demonstrated the disruptive effects of certain antibiotics on 
the ecological balance of the poultry gut microbiota at specific doses, 
providing an important foundation for strategies to rationalize the use 
of antibiotics and mitigate resistance.
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