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Intensified agricultural and urban activities have exacerbated nitrogen pollution,

posing a severe threat to freshwater ecosystems, particularly under intensified

agricultural and urbanization activities. This study systematically examined

Baiyangdian Lake (BYD) and its principal inflowing rivers, namely Fu River (FH),

Baigouyin River (BGY), and Xiaoyi River (XY) to characterize the spatio-temporal

distribution, primary nitrogen sources, and the impact on sediment microbial

community structure. Results indicated pronounced seasonal variations in

both nitrogen pollution loads and sources, with riverine nitrogen levels rising

markedly from dry season (May) to wet season (August). Atmospheric deposition

accounted for 43.9% of the nitrogen input dry season, whereas in wet season,

agricultural fertilizers and sewage contributed 23.3 and 26.4%, respectively.

Additionally, microbial communities exhibited distinct temporal and spatial

patterns, with significantly higher diversity and species richness being during

the wet season. The, microbial composition shifted, as evidenced by a decline

in Proteobacteria and increases in Firmicutes and Actinobacteriota. River-

lake connectivity emerged as a critical factor, with FH displaying a notably

higher connectivity index in wet season compared to BGY and XY rivers.

Structural equation modeling (SEM) analysis further revealed that river-lake

connectivity was significantly and positively correlated with nitrogen pollution,

was significantly and negatively correlated with microbial α-diversity. These

findings demonstrated that river-lake connectivity directly influenced nitrogen

concentrations, which in turn indirectly modulated microbial diversity.

KEYWORDS

nitrogen pollution, microbial community structure, spatio-temporal distribution, river-

lake connectivity, river-lake systems

1 Introduction

The influence of human activities on environmental quality has intensified significantly

in recent decades. Industrial, agricultural, aquaculture and domestic wastewater

discharge large amounts of nitrogen-containing compounds into aquatic ecosystems

(Rudneva and Omel’chenko, 2021). It is estimated that ∼120 million tons of reactive
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nitrogen are discharged into water bodies annually in China. In

aquatic ecosystems, nitrogen pollution can lead to the deterioration

of water quality, eutrophication, algal blooms, and a decrease in

oxygen availability for aquatic organisms (Yu et al., 2019; Qian

et al., 2025). This is especially true for microbial communities,

which play a crucial role in nitrogen cycling processes, such

as nitrogen fixation, nitrification, denitrification, and anaerobic

ammonia oxidation (Wen M. et al., 2024). Therefore, nitrogen

pollution has become an important environmental problem, that

has attracted wide attention from researchers worldwide (Wang

M. et al., 2024). Previous studies have focused on the nitrogen

pollution source analysis, nitrogen transformation processes, and

their impacts on aquatic ecosystems (Wang J. et al., 2024; Xu et al.,

2024; Zhou et al., 2024). However, most existing studies examine

nitrogen pollution and cycling processes at broader watershed

scales, yet they often overlook the influence of connectivity on the

spatial and temporal variations of nitrogen dynamics. As a result,

a comprehensive understanding of how hydrological connectivity

regulates nitrogen pollution sources and microbial community

structure in river-lake systems is still lacking.

Currently, stable isotope tracing and the Soil and Water

Assessment Tool (SWAT) model have been widely used for

nitrogen pollution source identification, and each method has

its own advantages and disadvantages (Guo et al., 2024; Arshad

et al., 2025). In particular, nitrate (NO−

3 -N) stable isotope analysis

can precisely identify nitrogen pollution sources, such as soil

nitrogen, atmospheric deposition, chemical fertilizers, and manure

and sewage. For example, in the Pearl River Basin, agricultural

runoff accounted for 52.25% of total nitrogen inputs during the

rainy season, while urban wastewater increased significantly to

44.37% during the dry season based on NO−

3 -N stable isotope

analysis (Wang C. et al., 2024). However, stable isotope analysis

is more suitable for small-scale source identification and lacks the

capacity to capture the pollution loads at a large scale. In view of

this, the SWAT model can integrate various data including land

use, hydrology, climate, and soil properties, to simulate nitrogen

transport and transformation at the watershed scale (Arshad et al.,

2025). For instance, the SWATmodel was applied in theMississippi

River Basin to quantify the contributions of agricultural activities to

nitrogen export and to assess the effectiveness of various mitigation

measures (Forgrave et al., 2024). The SWAT model demonstrated

an advantage in identifying the spatial and temporal patterns of

pollution loads, with its precision depending on high-resolution

input data at the sub-basin scale. Therefore, combining these two

methods can integrate their individual advantages. The integrated

application of stable isotope analysis and SWATmodel simulations

can be used to study how hydrological connectivity shapes nitrogen

pollution sources and microbial community structure in a river-

lake connected system.

Nitrogen pollution can be categorized into non-point source

(NPS) pollution and point-source (PS) pollution based on its

transport pathways. NPSs primarily enter rivers through soil

erosion and leaching, while PSs pollution is directly discharged

into water bodies via pipeline networks (Wen Y. et al., 2024).

At the watershed scale, these two pollution sources exhibit

significant differences in hydrological, physicochemical, and

biological conditions, leading to distinct spatiotemporal variations

in nitrogen pollution at watersheds scale. For example, in the

Yellow River Basin, NPS pollution was the main nitrogen pollution

source in the watershed, contributing up to ∼350,000 tons/year

through soil erosion (Zhang et al., 2024). In contrast, PS is generally

associated with higher nitrogen concentrations, which strongly

impact local microbial communities. For instance, in the Sava River

Basin, PS pollution was the main nitrogen pollution source in

water, particularly during the dry season, accounting for more than

60% of total nitrogen inputs (Vrzel et al., 2016). Hence, nitrogen

source pollution is characterized by significant temporal and

spatial differences. Moreover, long-term nitrogen inputs gradually

alter microbial community structure and function in the aquatic

ecosystem, promoting the proliferation of specific functional

microbes (e.g., ammonia-oxidizing bacteria and denitrifiers) and

affecting microbial functional diversity (Oulehle et al., 2015). In a

river-lake connected system, the hydrological connectivity plays a

crucial role in nitrogen migration and distribution at the watershed

scale, thereby significantly affectingmicrobial community structure

and functional activities (Wang et al., 2023). However, how

hydrological connectivity shapes nitrogen pollution sources and

microbial community structure in a river-lake connected at the

watershed scale remains poorly understood. Therefore, the main

objectives of this study were: (1) to clarify the spatiotemporal

variations of nitrogen pollution loads and sources in the river-lake

connected system; (2) to elucidate the spatiotemporal variations

of the microbial community in the connected system; and (3) to

establish the relationship between river-lake connectivity, nitrogen

pollution, and microbial community dynamics. The objective

of this study was to comprehensively understand the impacts

of hydrological connectivity on nitrogen pollution sources and

microbial community structure in a river-lake connected system.

2 Materials and methods

2.1 Study area and samples collection

The study was conducted in Baiyangdian Lake (BYD) and

its three main inflowing rivers: Fu River (FH), Baigouyin River

(BGY), and Xiaoyi River (XY). BYD is a significant freshwater

resource on the North China Plain, playing a crucial role in

the local wetland ecosystem and the nitrogen cycling process

Supplementary Text S1. This research selected rivers that represent

various nitrogen pollution patterns in BYD and its inflowing

rivers. The FH exhibited clear characteristics of PS pollution, the

XY was significantly influenced by NPS pollution, and the BGY

demonstrated features of mixed pollution from both PS and NPS.

Sampling was carried out inMay and August 2023, which represent

the transition between the dry and wet seasons and the peak of the

wet season, respectively. Totally 110 sampling sites were collected

at two seasons, thereinto, 16 sites in FH, 7 sites in XY, 8 sites

in BGY, and 24 sites in BYD (Figure 1). At each sampling site,

both water and sediment samples were simultaneously collected.

Water samples (collected at a depth of 10–30 cm) were gathered

in triplicate using pre-cleaned polyethylene bottles, while sediment

samples were taken from the top 0–5 cm of the surface sediment

in triplicate using a grab sampler (XDB0201, Pusen, China). Both
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FIGURE 1

The sampling sites and land use types in the Baiyangdian watershed.

the water and sediment samples were homogenized, placed in pre-

sterilized bags, and stored at −80◦C for subsequent analysis. After

sample collection, bacterial DNA was extracted from the sediment

samples, and physicochemical analyses were performed on both the

water and sediment samples.

2.2 Measurement of physicochemical
parameters

In this study, a total of 10 environmental parameters were

monitored. The concentrations of nitrate (NO−

3 -N), nitrite (NO
−

2 -

N), ammonium nitrogen (NH+

4 -N), total phosphorus (TP) and

total nitrogen (TN) in both water and sediment were quantified

using the methods listed in the Supplementary Text S2.

2.3 DNA extraction and sequencing analysis

DNA was extracted from the homogenized sediment samples

using a genomic DNA extraction kit specifically designed for

sediments (Solarbio, Beijing, China). The quality of the extracted

DNA was evaluated via 1% agarose gel electrophoresis, after

which it was stored at −20◦C for long-term preservation. PCR

amplification and high-throughput sequencing were performed by

Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China). The

amplification targeted the V3-V4 regions of the 16S rRNA gene,

using the primers 806R (5′-GGACTACHVGGGTWTCTAAT-

3′) and 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) (detailed

in Supplementary Text S3) (Curry et al., 2022). The sample

sequence data have been deposited in the Sequence Read Archive

(http://www.ncbi.nlm.nih.gov/sra/) for public access (Bioproject

number: PRJNA1212803).

2.4 Isotope source analysis model (SIAR)

In this study, the SIAR isotope source analysis model

was employed to estimate the contribution of each nitrogen

pollution source. The SIAR model is represented by the

following equation:
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Xij =

K∑

k=1

pkqjk(Sjk + Cjk)

K∑

k=1

pkqjk

+ εij (1)

Sjk∼N(µjk,ω
2
jk)

Cjk ∼ N(λjk, τ
2
jk)

εjk∼N(0, σ 2
j )

Xjk is the value of the jth isotope in the ith sample (i = 1,2,3,...,

N; j = 1,2,3,...,J); Sjk is the value of the jth isotope in the kth source

(k= 1,2,3,...,K); is the mean value; ω2
jk
is the variance of the normal

distribution; Cjk is the fractionation factor of the jth isotope on

the kth source; λjk is the average value; τ 2
jk
is the variance of the

normal distribution; pk is the contribution of the kth source, which

is calculated by the model; qjk is the concentration of isotope j in

the kth seed source; is the residual, which represents the remaining

unquantified variation among the mixtures, with a mean of 0; σ 2
j is

the variance of the normal distribution (Stock et al., 2018).

2.5 SWAT model establishment

The SWAT model integrates land use data, soil characteristics,

digital elevation model (DEM) data, meteorological information,

daily stream flow records, and monthly monitoring data

for TN, NH+

4 -N, NO−

2 -N and NO−

3 -N (as outlined in

Supplementary Figure S1 and Supplementary Text S4). The

sources of water pollution include both PS and NPS. PS can be

divided into industrial zones, municipal wastewater treatment

plants, rural sewage treatment facilities, and industrial wastewater

discharges (Supplementary Text S5 and Supplementary Table S1).

NPSs include crop cultivation (Supplementary Table S2), scattered

small-scale animal feeding operations, and untreated rural sewage

(Supplementary Text S5).

The SWAT-CUP software (Calibration and Uncertainty

Programs) was used for model calibration and validation

(Supplementary Text S6) (Abbaspour et al., 2015). In this process,

the selected parameters were calibrated through 80,000 simulation

iterations, as detailed in Supplementary Table S3. The model

successfully simulated monthly discharge and nitrogen loads

during both the calibration and validation phases, with R2 values

exceeding 0.77 and Nash-Sutcliffe Efficiency (NSE) values >0.72.

Further details on the nitrogen source attribution method can be

found in the Supplementary Text S7.

2.6 Statistical analyses

A variety of statistical techniques were applied to analyze the

data. Mantel tests, Canonical Correspondence Analysis (CCA),

Principal Coordinates Analysis (PCoA), and Redundancy Analysis

(RDA)were conducted using the vegan package in R (version 4.1.2).

SPSS (version 26.0) was utilized for Wilcoxon rank-sum tests,

Kruskal-Wallis tests, one-way ANOVA, and Spearman’s correlation

analysis. Additionally, Random Forest analysis was performed

using the randomForest package in R (version 4.1.2). The

phenotype and metabolic functions of the microbial community

were predicted with the BugBase and Faprotax databases, along

with annotations of prokaryotic taxon functions. BugBase was

selected for its ability to predict the ecological characteristics of

microbial communities, while Faprotax was chosen for its specific

prediction of microbial metabolic functions such as nitrogen

cycling. Linear Discriminant Analysis Effect Size (LEfSe) and

bipartite association network analysis were also carried out. The

co-occurrence network was visualized using Gephi software, and

Structural Equation Modeling (SEM) was performed using the

piecewiseSEM package in R.

3 Results

3.1 Temporal and spatial variations in total
nitrogen and its forms

Temporally, the mean concentrations of TN, NO−

3 -N, NO
−

2 -

N, and NH+

4 -N in the connected system during the dry season

were 1.94 ± 1.22 mg/l, 1.42 ± 1.91 mg/l, 0.11 ± 0.09 mg/l,

and 0.23 ± 0.44 mg/l, respectively (Supplementary Figure S2). In

the wet season, these concentrations increased to 2.62 ± 1.11

mg/l, 1.24 ± 1.67 mg/l, 0.12 ± 0.11 mg/l, and 0.29 ± 0.36

mg/l, respectively. During the wet season, TN, NO−

2 -N, and

NH+

4 -N concentrations increased, whereas NO−

3 -N concentrations

decreased slightly, with NO−

2 -N exhibited the most significant

temporal variation (ANOVA, p < 0.05).

Spatially, significant differences in nitrogen concentrations

were observed among the regions (ANOVA, p < 0.05). The FH

region consistently exhibited the highest nitrogen concentrations

in both seasons. In contrast, the BGY and XY regions showed

moderate nitrogen levels, while the BYD region, serving as

the inflow lake, displayed the lowest TN, NO−

3 -N, NO−

2 -N,

and NH+

4 -N concentrations. This indicates that the BYD lake

system plays a crucial role in nitrogen dilution and retention, in

contrast to the pollution characteristics of the riverine regions

(Figure 2).

The SWAT model results revealed significant temporal

variations in nitrogen loads between the two seasons (ANOVA, p<

0.05). During wet season, TN loads increased substantially across

all regions. Specifically, in FH, the TN load rose from 986,942 to

6,389,722 kg; in BGY, it increased from 1,080,121 to 4,261,240 kg;

and in XY, it grew from 210,681 to 1,426,230 kg. Similar temporal

increases were observed for NO−

3 -N and NH+

4 -N. In FH, NO−

3 -N

and NH+

4 -N loads increased from 34,499 to 788,545 kg and from

173,722 to 1,219,934 kg, respectively. In BGY, these loads increased

from 9,765 to 372,540 kg and from 11,526 to 87,421 kg, respectively,

and in XY, they increased from 2,341 to 105,740 kg and from 5,124

to 45,231 kg (Figure 3). Overall, nitrogen loads showed a significant

increase during the wet season, with the most notable changes

observed in FH.

The SWAT model accuracy was evaluated by comparing the

observed versus predicted nitrogen loads, and a satisfactory fit

was achieved (R2 > 0.85). The model results revealed significant

spatial variations in nitrogen loads among the three sub-basins

(ANOVA, p < 0.01). The spatial distribution consistently followed

Frontiers inMicrobiology 04 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1563578
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fmicb.2025.1563578

FIGURE 2

Seasonal and spatial variations of nitrogen components in samples.

FIGURE 3

Spatial distribution of di�erent nitrogen species in May and August simulated by the SWAT Model.

the tend: FH > BGY > XY. In dry season, the TN load in FH was

1,080,121 kg, which was higher than that in BGY (986,942 kg) and

XY (210,681 kg). This pattern became even more pronounced in

the wet season, when the TN load in FH increased to 6,389,722 kg,

compared to 4,261,240 kg in BGY and 1,426,230 kg in XY. NO−

3 -

N and NH+

4 -N loads displayed similar spatial trends, with FH

showing the highest loads in both seasons, followed by BGY and

XY. Additionally, NO−

3 -N loads exhibited clear spatial variations,

with the loads in FH being the highest, particularly during the wet

season, which served as the primary nitrogen output source. These

findings demonstrate significant temporal and spatial variations in

nitrogen loads.
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FIGURE 4

(A) Seasonal variations in proportional contributions of nitrogen sources, highlighting non-point source (NPS), and point source (PS) contributions

during May and August; (B) Spatial distribution of proportional nitrogen source contributions (Atmospheric Deposition, Chemical Fertilizer, Soil

Nitrogen, and Manure & Sewage) across di�erent regions (BYD, FH, BGY, and XY) in May and August. *p < 0.05.

3.2 Temporal and spatial variations in
nitrate nitrogen sources

The δ
15N-NO−

3 values ranged from −9.6 to 44.6‰ (mean:

8.94 ± 5.00‰) during the dry season and from −6.6 to 21.7‰

(mean: 7.54 ± 4.00‰) during the wet season. Significant spatial

differences were observed, with the mean δ
15N-NO−

3 values in river

systems being higher (dry season: 10.02 ± 4.75‰; wet season: 8.35

± 4.20‰) than those in lake systems (dry season: 7.12 ± 5.25‰;

wet season: 6.10± 4.50‰). Additionally, δ18O-NO−

3 values during

the dry season (20.77± 4.14‰)were significantly higher than those

during the wet season (−1.42 ± 3.50‰). δ
18O-NO−

3 values were

also higher in lake systems (dry season: 24.35± 5.20‰; wet season:

−1.20 ± 3.40‰) compared to river systems, where the variation

was less marked (dry season: 15.40 ± 5.00‰; wet season: −1.60

± 3.20‰) (Supplementary Table S5). Using the MixSIAR model,

the relative contributions of different nitrogen sources in rivers

and lakes were estimated based on δ
15N-NO−

3 and δ
18O-NO−

3

values. The results identified four potential nitrogen sources in

both seasons (Figures 4A, B). For further analysis, the sources were

classified into two categories: NPS, which comprises atmospheric

deposition (AP), chemical fertilizer (CF), and soil nitrogen (SN);

and NP, which includes manure and sewage (M&S) (Gao et al.,

2021; Ji et al., 2017; Kang et al., 2021; Yu et al., 2020). NPS showed

an increasing trend from the dry to the wet season, whereas PS

contributions decreased during the wet season in the connected
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system (Supplementary Figure S3). In terms of temporal variation,

significant differences were observed in the contributions of NPS

and PS between the dry and wet seasons (ANOVA, p < 0.01).

Spatially, the contributions of NPS and PS also varied significantly

between river and lake systems (ANOVA, p < 0.01).

3.3 Temporal and spatial variations in
microbial community composition

The α-diversity analysis of microbial communities revealed

significant temporal variations in species richness (Chao1),

diversity (Shannon), and evenness (Simpson) between the dry

and wet seasons (Supplementary Figure S5). Specifically, the Chao1

index ranged from 2,551 to 4,653 in the dry season from 2,941

to 5,763 in the wet season, with a notable difference observed in

the BGY region (ANOVA, p < 0.05). The Shannon index ranged

from 4.18 to 6.92 in the dry season and from 3.58 to 7.08 in the

wet season, reflecting shifts in microbial diversity across the two

seasons. The Simpson index, however, exhibited an opposite trend,

with values ranging from 0.0035 to 0.1247 in the dry season and

from 0.0034 to 0.1558 in the wet season, indicating significant

temporal differences in microbial evenness among three rivers

(ANOVA, p < 0.05).

To further examine the changes in microbial community

structure, taxonomic analysis was performed across the

FH, BGY, XY, and BYD regions during both seasons

(Supplementary Figure S4). The number of detected phyla

increased from 64 in the dry season to 69 in the wet season,

suggesting a greater community richness in the wet season. Cluster

analysis further confirmed these changes, showing difference in

microbial community structures between the rivers and the lake

(ANOVA, p < 0.05). In both seasons, Proteobacteria, Firmicutes,

and Actinobacteriota were the dominant phyla at all sampled sites

During the dry season, Proteobacteria was the most abundant

(26.73%), followed by Firmicutes (17.28%) and Actinobacteriota

(12.88%). However, in the wet season, the relative abundance

of Proteobacteria decreased to 20.73%, while those of Firmicutes

and Actinobacteriota increased to 18.55 and 16.13%, respectively

(Supplementary Figure S6). The ANOSIM analysis indicated

significant spatial differences in microbial community composition

in both seasons (p < 0.01, 999 permutations). Notably, the highest

microbial abundance was observed in the BYD region, followed

by FH, BGY, and XY. PCoA analysis also revealed clear separation

of microbial community structures among these regions in both

seasons. In the dry season, PCoA1 and PCoA2 accounted for 25.38

and 15.14% of the total variation, respectively. In the wet season,

these axes explained 30.68 and 16.98% of the variation, with BYD

showing a more concentrated distribution along the PCoA1 axis

compared to other regions (Figures 5A, B).

Spatial variations in the relative abundance of dominant

phyla were observed across regions (Figure 5C). During the

dry season, Firmicutes (17.28%) was most abundant in FH,

where it plays a crucial role in organic matter decomposition. In

contrast, Proteobacteria dominated the microbial communities

in BGY (25.33%), XY (26.63%), and BYD (26.13%). In the wet

season, the abundance of Proteobacteria decreased to 20.73%,

while Actinobacteriota (16.13%) became the most abundant

phylum in BYD. This shift in microbial community composition

reflects temporal changes in microbial diversity across regions.

Additionally, some microbial communities with increased

abundance were identified in FH, BGY, and XY. For example, the

abundance of Nitrospirota, a phylum associated with nitrification

and nitrogen cycling, increased from 0.097% in the dry season to

1.01% in the wet season. This increase may be linked to dynamic

changes in nitrogen cycling processes during the wet season and

microbial niche competition under eutrophic conditions. The

increased abundance of Nitrospirota suggests that nitrification

processes, which are crucial for nitrogen cycling, are more active in

the wet season.

Mantel test revealed that the NO−

3 -N concentration in water

(R = 0.587, p = 0.0562) was the most significant factor

associated with microbial community composition. CCA further

indicated that the TN concentration in sediment, which had the

highest R2 value, was the most influential factor for microbial

community composition (R2 = 0.459, p = 0.0291). Additionally,

ammonia nitrogen and nitrite exhibited strong correlations

with microbial populations (Supplementary Figure S7). These

findings support the hypothesis that nitrogen concentration is

a key factor influencing microbial community structure in the

Baiyangdian watershed.

3.4 Association between contaminant
transport mode and microbial
characteristics

Based on previous analysis, the rivers were classified into

three categories: PS-dominated river (PSDR), NPS-dominated

river (NPSDR), and balanced pollution river (BPR). The FH

is classified as a typical PSDR, primarily influenced by urban

sewage and industrial discharges. In contrast, the BGY exhibits

characteristics of an NPSDR, significantly impacted by agricultural

runoff and soil nitrogen sources. The XY River was identified

as a BPR, reflecting the combined effects of multiple pollution

sources. Based on the PCoA results (Figures 5A, B), the samples

from BGY, BYD, FH, and XY were clustered into four distinct

groups. Furthermore, the LEfSe analysis (Figure 6C) revealed

specific microbial taxa as significant biomarkers distinguishing

these rivers.

The microbial communities in the NPSDR exhibited

significantly higher species richness and community diversity

(p < 0.05; Wilcoxon rank-sum test), indicating increased

within-habitat diversity in the NPSDR. Compared with the

PSDR and BPR, the NPSDR also showed a significantly greater

number of microbial species (Supplementary Figure S8). The

findings suggested that the microbial communities in the PSDR

experienced a reduction in both population size and diversity,

potentially favoring certain functional groups and leading to

biotic homogenization.

In the random forests analysis, the eight most important

features were used as biomarkers to distinguish between
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FIGURE 5

Characterization of microbial communities in BGY, BYD, FH, and XY in May and August. (A, B) Principal Coordinates Analysis (PCoA) of microbial

communities in May and August; (C) Top 25 Community composition at the phylum level in May and August.

PSDR and NPSDR (Figure 6A), with the abundances of these

biomarkers detailed in Supplementary Table S4. Four biomarkers,

Patescibacteria, Synergistota, NBI-j, and Chloroflexi, were more

prevalent in PSDR than in NPSDR, whereas the remaining

biomarkers, Actinobacteriota, GAL15, Deferisomatota, and

FCPU426, were more prevalent in NPSDR than in PSDR

Frontiers inMicrobiology 08 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1563578
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fmicb.2025.1563578

FIGURE 6

(A) Barplot of variable importance on phylum level, showing the most influential phyla distinguishing between NPSDR and PSDR groups; (B)

Correlation heatmap between selected phyla and environmental factors, comparing NPSDR and PSDR groups; (C) LEfSe analysis identifying

significant microbial taxa across di�erent river sites (BGY, BYD, FH, and XY).

(Supplementary Figure S9). The correlation analysis between the

relative abundance of these selected biomarkers and the measured

physicochemical properties of the rivers revealed two distinct

clusters (Figure 6B). The four biomarkers enriched in the PSDR

showed positive correlations with most environmental factors

(e.g., water nitrate, water nitrite, and total nitrogen in water),

whereas the, four bacterial families from the NPSDR exhibited

negative correlations with most environmental factors (e.g.,

sediment nitrate, sediment ammonium). Consequently, rivers

with different nitrogen contamination transport modes exhibited

variability in sediment microenvironments and differences in

microbial communities.
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3.5 Influence of river-lake connectivity on
nitrogen migration and microbial
distribution

The river-lake connectivity index results revealed significant

spatial differences among rivers in both seasons. The average

connectivity index for FH was 0.250 in the dry season and 0.285 in

the wet season, values that were significantly higher than those for

BGY and XY (dry season: BGY = 0.120, XY = 0.165; wet season:

BGY= 0.169, XY= 0.178).

The relationships between the river-lake connectivity index,

TN, NO−

3 -N, NH
+

4 -N concentrations, andmicrobial community α-

diversity (Chao1 and Shannon indices) were examined. The results

revealed significant positive correlations between the connectivity

index and TN (r= 0.76, p< 0.01), NO−

3 -N (r= 0.79, p< 0.01), and

NH+

4 -N (r= 0.75, p< 0.01) concentrations. In contrast, significant

negative correlations were observed between the connectivity index

and microbial community alpha diversity (Chao1: r = −0.74, p <

0.01; Shannon: r = −0.72, p < 0.01) (Supplementary Figure S10).

These findings suggest that higher connectivity can enhance

nitrogen migration and accumulation in water bodies, potentially

affecting community diversity. Further Mantel tests indicated

a significant positive correlation between connectivity and

microbial community similarity (r = 0.45, p < 0.05) (Figure 7B).

This finding suggests that connectivity plays a crucial role

in shaping the spatial distribution of microbial communities,

with higher connectivity associated with increased community

composition similarity. Enhanced connectivity promotes the

spread of specific functional microbes in water bodies, potentially

reducing local species diversity (i.e., α-diversity). Functional

diversity analysis further revealed differences in microbial

functional characteristics among rivers. In high-connectivity

and high-nitrogen rivers (e.g., FH), microbial communities were

enriched with functions such as chemoheterotrophy, aerobic

chemoheterotrophy, and nitrate reduction (Figure 7A), which are

essential for the nitrogen cycle. This result suggests that river-lake

connectivity can promote the dispersal of nitrogen-metabolizing

microbes, thereby influencing nitrogen transformation and

ecosystem function.

SEM was employed to further explore the relationships

among connectivity, agricultural activities, population density,

wastewater discharge, environmental factors, and microbial

communities. The SEM results (Figure 7C) revealed significant

direct and indirect interactions among these factors, demonstrating

how connectivity and nitrogen pollution influence microbial

distribution patterns. The model indicated that connectivity had

a direct positive effect on nitrogen pollution (path coefficient

= 0.43, p < 0.05), which can explaining 53% of the variation

in nitrogen pollution. These results suggest that increased

connectivity enhances nitrogen transport, leading to elevated

nitrogen concentrations. Furthermore, nitrogen pollution directly

influenced microbial communities (path coefficient = 0.42, p <

0.05), explaining 49% of the variance in microbial community

structure, which indicates that nitrogen pollution can alter

microbial composition by promoting the growth of nitrogen-

metabolizing microbes. Agricultural activities (R2 = 0.46) and

population density (R2 = 0.51) were also identified as significant

drivers of nitrogen pollution, indirectly affecting microbial

communities by increasing nitrogen load andwastewater discharge.

In addition, the SEM results showed that wastewater discharge

(R2 = 0.69), which was significantly influenced by population

density (path coefficient = 0.51, p < 0.05), was one of the

primary sources of nitrogen pollution. Moreover, environmental

factors (R2 = 0.28) exhibited indirect effects on microbial

communities by modulating nitrogen pollution pathways. These

findings indicate that in river-lake systems, microbial diversity

and composition in rivers with high nitrogen pollution and

connectivity are predominantly influenced by connectivity and

nitrogen pollution.

4 Discussion

4.1 Influence of nitrogen pollution sources
and hydrological connectivity on
spatiotemporal variations in nitrogen
concentrations

This study revealed marked seasonal and spatial variations in

nitrogen concentrations in the Baiyangdian watershed. During the

wet season, nitrogen concentrations increased across the watershed,

particularly in regions with high hydrological connectivity (e.g.,

FH). This increase was driven by intensified precipitation and

surface runoff, which not only enhanced nitrogen transport

but also altered the distribution of pollution sources. The

elevated hydrological connectivity facilitated the transport of

NPS pollutants, leading to a significant rise in nitrogen loads.

In the wet season, compared to the dry season, concentrations

of TN, NH+

4 -N, and NO−

3 -N exhibited substantial increases.

These results are consistent with findings from other river

basins, where increases in precipitation and runoff have been

shown to mobilize and intensify nitrogen influx from both

agricultural and urban sources into water bodies (Levy-Booth

et al., 2014; Zhang T. et al., 2022). This underscores the critical

role of hydrological conditions in governing the spatiotemporal

dynamics of nitrogen pollution (Yin et al., 2018; Zhang X. et al.,

2020).

Spatially, BYD exhibited relatively lower nitrogen

concentrations during the wet season, indicating that the

lake system plays an important role in buffering nitrogen pollution

through dilution and biogeochemical transformation. This

effect may be attributed to a combination of sedimentation,

denitrification, and nutrient exchange processes between water

and sediments (Li et al., 2020). In contrast, FH and BGY exhibited

higher nitrogen concentrations, mainly influenced by agricultural

runoff, urban wastewater, and industrial discharges. These spatial

differences highlight the diverse nitrogen pollution sources across

the watershed, with hydrological connectivity playing a crucial role

in the migration and accumulation of pollutants. Regions with

stronger connectivity and concentrated water flow, such as FH, not

only experience increased nitrogen transport but also demonstrate

higher retention of nitrogen loads, exacerbating local pollution

(Masoner et al., 2023).
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FIGURE 7

(A) Comparison of metabolic functions in the BGY, BYD, FH, and XY using FAPROTAX; (B) Relationship between connectivity and microbial community

similarity. (C) Structural equation model of factors influencing nitrogen pollution and microbial community. *p < 0.05, **p < 0.01, ***p < 0.001.

The SWAT model results further validate the significant role

of hydrological connectivity in nitrogen load transmission.

High-connectivity regions, particularly FH, experienced

substantial nitrogen accumulation, indicating that increased

water flow not only expedites nitrogen dispersal but also

amplifies nitrogen deposition in specific areas. This finding

is consistent with studies conducted in other watersheds,

which have emphasized the importance of hydrological

connectivity in regulating the spatial distribution of nitrogen

pollution (Lei et al., 2024; Wen Y. et al., 2024). However,

it is important to acknowledge that while the SWAT

model effectively estimates nitrogen transport patterns and

hydrological connectivity, it does not explicitly simulate

hydrodynamic variables such as flow velocity and turbulence

intensity.

4.2 Influence of nitrogen sources on
microbial community structure

The significant seasonal differences in nitrogen source

contributions, with NPS playing a more dominant role in the wet

season, while PS were more prevalent in the dry season. These
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seasonal variations are likely linked to increased surface runoff

during the wet season, which transports more nitrogen from

fertilizers and soil into the water system (Cao et al., 2024). This

finding underscores the influence of hydrological conditions on the

seasonal dynamics of nitrogen sources, with precipitation intensity

playing a key role in the contribution of NPS pollution (Li et al.,

2019; Soana et al., 2024).

Microbial community composition was closely associated with

seasonal changes in nitrogen sources. The increased abundance

of nitrifying bacteria (e.g., Nitrospirota) in the wet season

indicates the strong influence of seasonal nitrogen inputs on

microbial nitrogen metabolism (Zhang Y. et al., 2022). These

findings suggest that elevated nitrogen concentrations in the wet

season directly stimulate the proliferation of nitrogen-metabolizing

microorganisms, thereby enhancing nitrogen transformation

processes (Ren et al., 2024). In contrast, in low-nitrogen regions

such as BYD, the microbial community was predominantly

composed of nitrogen-fixing bacteria, characterized by higher

abundances of Actinobacteria and Cyanobacteria. These nitrogen-

fixing microbes contribute to the biological fixation of atmospheric

nitrogen, converting it into a usable nitrogen source and

maintaining nitrogen cycling in low-nitrogen environments (Zhao

et al., 2022). This shift in microbial community composition and

functionality underscores the significant impact of nitrogen sources

on microbial community structure and ecosystem function (Zhu

et al., 2023; Sun et al., 2024).

4.3 Influence of river-lake connectivity on
nitrogen migration and microbial
distribution

The results of this study indicate that river-lake connectivity

plays a critical role in the migration of nitrogen and the distribution

of microbial communities in the Baiyangdian watershed. These

findings are consistent with previous studies demonstrating that

river-lake connectivity significantly influences the transport of

nutrients and pollutants, thereby affecting both water quality and

ecosystem functioning (Zhang Z. et al., 2020; Wen Y. et al., 2024).

The analysis indicates that microbial community α-diversity is

significantly negatively correlated with the river-lake connectivity

index. This phenomenon may be attributed to several factors,

including hydrodynamic disturbances, changes in nitrogen

sources, and alterations in water quality. Higher river-lake

connectivity increases hydrodynamic turbulence and physical

mixing, potentially disrupting native microbial habitats by

accelerating water flow, and thereby disturbing the microbial

community structure. In this process, microorganisms that

are better adapted to dynamic hydrological conditions may

dominate the community, resulting in homogenization and

a subsequent reduction in diversity. Furthermore, enhanced

river-lake connectivity can significantly alter the types of nitrogen

sources in rivers and lakes. For example, in FH regions, urban

wastewater discharge provides a substantial nitrogen source.

Increased connectivity accelerates nitrogen migration and

accumulation, promoting the growth of nitrogen-metabolizing

microorganisms, such as nitrifiers and denitrifiers, which

further alters the microbial community composition and

decreases diversity. Additionally, higher river-lake connectivity

may affect water quality indicators, such as dissolved oxygen,

transparency, and pH, thereby further influencing the microbial

habitat. For instance, a decrease in dissolved oxygen may favor

the growth of anaerobic microorganisms while inhibiting

the proliferation of aerobic microbes. These findings are

consistent with previous studies, which suggest that river-

lake connectivity plays a crucial role in the transport of nutrients

and pollutants, thereby significantly shaping microbial community

composition and function (Freimann et al., 2015; Pan et al.,

2022).

Furthermore, SEM analysis revealed that river-lake

connectivity had a significant indirect effect on microbial

community structure through nitrogen concentrations. The

model showed a positive path coefficient (0.43, p < 0.05) between

connectivity and nitrogen pollution, with nitrogen pollution

further influencing microbial diversity (0.42, p < 0.05). This

finding suggests that enhanced river-lake connectivity accelerates

the migration of nitrogen, which in turn alters microbial

community composition, leading to changes in microbial diversity

and ecosystem functions (Crevecoeur et al., 2023). These results

emphasize the complex interplay among hydrological connectivity,

nitrogen pollution, and microbial communities, highlighting the

need for integrated management strategies that consider both

physical and ecological connectivity.

5 Conclusion

In summary, this study reveals the relationship among

nitrogen pollution sources, hydrological connectivity, and

microbial community diversity. The results show significant

seasonal variations in nitrogen sources, with NPS such as

agricultural fertilizers and soil nitrogen contributing more in the

wet season, whereas PS dominate in the dry season. Hydrological

connectivity plays a key role in nitrogen migration and microbial

community distribution, particularly in regions with high

connectivity, such as FH. These areas exhibit higher nitrogen

concentrations and reduced microbial diversity, indicating that

hydrological connectivity accelerates the spread of pollutants

and facilitates the proliferation of specific functional microbes,

leading to microbial community homogenization. Microbial

community analysis revealed that high-nitrogen regions, such as

FH and BGY, were enriched with nitrogen-metabolizing bacteria,

including Proteobacteria and Firmicutes, which contribute to

nitrogen cycling and water self-purification. In contrast, in low-

nitrogen environments such as BYD, the microbial community

was predominantly composed of nitrogen-fixing bacteria, such

as Actinobacteria and Cyanobacteria, which play a key role in

maintaining nitrogen cycling through biological nitrogen fixation.

Overall, the interactions among nitrogen pollution sources,

hydrological connectivity, and microbial communities exhibit

significantly spatial-temporal difference.
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