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Precocious puberty (PP) is the second most common pediatric endocrine disorder 
globally and poses a growing public health concern, particularly among girls. While 
the exact biological mechanisms underlying PP remain unclear, unhealthy dietary 
patterns, particularly the consumption of a high-fat diet (HFD), are recognized as 
significant modifiable risk factors. The gut microbiota (GM) is an environmental 
factor that is disrupted by HFD and may modulate the onset and progression of 
PP. This review explored the intricate relationship between HFD, GM, and PP, and 
elucidated the potential mechanisms by which HFD may promote PP development 
by summarizing evidence from preclinical to clinical research, focusing on the 
role of GM and its derived metabolites, including short-chain fatty acids, bile 
acids, lipopolysaccharides, and neurotransmitters. Mechanistic exploration provides 
novel insights for developing microbiota-targeted therapeutic strategies, such 
as dietary and lifestyle interventions, fecal microbiota transplantation, probiotics, 
and traditional Chinese medicine, paving the way for promising approaches to 
prevent and manage PP.
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1 Introduction

Precocious puberty (PP) is characterized by the premature emergence of secondary sexual 
characteristics—before age 8 in girls and 9 in boys (Alghamdi and Alghamdi, 2023). PP can 
be classified into two main categories considering the underlying pathogenetic mechanism: 
central PP (CPP) and peripheral PP (PPP). CPP is caused by early activation of the 
hypothalamic–pituitary–gonadal (HPG) axis, leading to the development of both primary and 
secondary sexual characteristics. This form accounts for approximately 80% of PP cases. In 
contrast, PPP results from factors that elevate steroid hormone levels to those typical of 
puberty, independent of gonadotropin secretion (For detailed discussions on the etiology, 
diagnosis, and treatment of both subtypes, see the review; Cheuiche et al., 2021). Notably, the 
incidence of PP in girls is markedly higher than in boys, with a rate 15 to 20 times greater, and 
its global prevalence continues to rise (Shim et al., 2021; Park et al., 2021). The onset of PP 
results from a complex interaction of genetic, dietary, environmental, and lifestyle factors. 
Among these, a high-fat diet (HFD) has emerged as a modifiable risk factor that has garnered 
significant attention.
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With advancements in microbiomics, the gut microbiota (GM) 
and its derived metabolites have been increasingly recognized as 
important molecules in the gut-organ crosstalk, exerting either 
beneficial or detrimental effects on various extra-intestinal organs. 
Mounting evidence indicates various perturbations in GM associated 
with PP. Notably, excessive fat consumption in HFD results in 
consequences such as gut dysbiosis, gut barrier dysfunction, 
emphasizing GM’s potential mediating role in the pathogenesis of PP 
induced by HFD. In this review, we summarized studies exploring 
the relationship between HFD, GM, and PP and specifically 
discussed the direct effects of HFD on PP and its indirect effects 
mediated by GM and its metabolites. Finally, we  reviewed the 
potential of GM regulation as a strategy to mitigate or manage PP, 
offering valuable insights for future research and 
therapeutic interventions.

2 HFD promotes PP

HFD significantly disrupts neuroendocrine and metabolic 
homeostasis, serving as a critical environmental determinant in the 
pathogenesis of PP. Robust epidemiological studies have revealed 
differential effects of HFD components on pubertal timing 
(Supplementary Table 1; Chen et al., 2024; Gu et al., 2024; Günther 
et al., 2010; Xiong et al., 2022; Du et al., 2024; Cheng et al., 2021b; Xu 
et al., 2022; Cheng et al., 2021a; Shahatah et al., 2021; Nguyen et al., 
2020; Jansen et al., 2016; Mueller et al., 2015; Carwile et al., 2015; 
Mervish et al., 2013; Wiley, 2011; Rogers et al., 2010; Koo et al., 2002; 
Berkey et  al., 2000; Maclure et  al., 1991; Merzenich et  al., 1993; 
Szamreta et al., 2020). Animal protein intake is consistently associated 
with accelerated pubertal development, manifesting as premature 
onset of thelarche, enhanced growth velocity, and earlier menarche 
(Gu et al., 2024; Günther et al., 2010; Cheng et al., 2021b; Rogers et al., 
2010; Berkey et  al., 2000). Conversely, milk’s effects remain 
controversial, with studies reporting negative (Du et al., 2024; Wiley, 
2011), positive (Wiley, 2011), or no significant associations (Carwile 
et  al., 2015) with early pubertal onset, potentially due to genetic 
backgrounds, study design, dietary intake assessment, and temporal 
context. These inconsistencies highlight the need for future studies to 
control confounding variables more rigorously to derive 
precise conclusions.

Regarding dietary lipids, polyunsaturated fatty acids (PUFAs)—
essential steroidogenesis precursors—exhibited a dose-dependent 
positive correlation with earlier pubertal onset and menarche in girls 
(Xu et al., 2022; Cheng et al., 2021a; Nguyen et al., 2020; Rogers et al., 
2010), whereas monounsaturated fatty acids (MUFAs) demonstrated 
inhibitory effects (Nguyen et al., 2020). Additionally, plant-derived 
components such as flavonoids, soy, and dietary fiber were associated 
with delayed pubertal timing (Xiong et al., 2022; Nguyen et al., 2020; 
Mervish et  al., 2013), suggesting potential preventive strategies 
through reduced animal protein/dietary fat consumption and 
increased plant-based diet intake.

Human studies primarily provided observational evidence, but 
preclinical research established direct causality, demonstrating that 
maternal or female offspring exposure to HFD significantly accelerated 
vaginal opening (VO), a key marker of puberty onset, and gonadal 
maturation (Bo et  al., 2022; Wang et  al., 2020). The underlying 
mechanisms are illustrated in Figure 1.

2.1 Hypothalamic microglial cells

Microglial cells play a critical role in the context of PP and exhibit 
heightened sensitivity to fatty acids, particularly long-chain saturated 
fatty acids, which further enhance their activation (Wang et al., 2012; 
Gupta et  al., 2012). Activated hypothalamic microglia release 
prostaglandins, acting as neurotrophic factors that stimulate GnRH 
neurons and subsequently hasten puberty (Sheremeta et al., 2024; 
Fujioka et al., 2013). Additionally, sustained HFD exposure further 
activates microglial cells to secrete pro-inflammatory cytokines, 
including interleukin-1β, interleukin-6, nitric oxide (NO), tumor 
necrosis factor-α, and reactive oxygen species, which collectively 
induce hypothalamic inflammation and exacerbate the aberrant 
activation of GnRH neurons (Tzounakou et al., 2024; Chen et al., 
2022). This mechanism has been thoroughly reviewed by Stathori 
et al., whose comprehensive analysis elucidates the potential pathways 
through which HFD-induced neuroinflammation affects the activity 
of HPG axis (Stathori et al., 2025). Intriguingly, evidence suggests that 
HFD Short-term HFD induces triggers microglial activation beyond 
the effects of obesity, suggesting that HFD introduces unique stressors 
to the central nervous system, amplifying microglial activation (Gao 
et al., 2014).

2.2 Phoenixin

Phoenixin, a reproductive peptide crucial for regulating the 
estrous cycle, is elevated in response to fatty acids such as palmitate 
and oleate (Mcilwraith et  al., 2018), thereby accelerating puberty 
through GnRH activation mediated by kisspeptin (Stein et al., 2016; 
Gozukara et al., 2016; Dhillo et al., 2005; Clarke and Dhillo, 2016). In 
addition, research studies have demonstrated that Phoenixin not only 
impairs the HPG axis but also adversely affects the follicular 
development and function. Nguyen et al. were the first to identify 
Phoenixin, along with its receptor G-protein coupled receptor (GPR) 
173, in the ovarian follicles of women post-cervical cancer surgery. In 
vitro studies further verified Phoenixin’s capacity to promote follicular 
growth and increase ovulated oocyte numbers, as well as enhance 
estradiol (E2) secretion in a dose-responsive manner (Nguyen et al., 
2019; Clarke and Dhillo, 2019). Overall, these findings establish 
Phoenixin serves as a key mediator of HFD-induced PP by integrating 
metabolic signals with the neuroendocrine system and 
ovarian development.

2.3 Transcription factor p53

The transcription factor p53, a well-known tumor suppressor, has 
also been found to regulate the genetic pathways governing puberty 
onset (Chen et al., 2020). In the HFD-induced PP model, hypothalamic 
p53 expression positively correlated with pubertal onset timing, where 
p53 overexpression significantly accelerated puberty progression, 
providing causal evidence for p53 in the development of PP (Chen 
et  al., 2021). Mechanistically, p53 exerts dual regulatory effects 
through the Lin28/let-7 system: centrally, it activates the Kiss1/GPR54 
and phosphatidylinositol 3-kinase (PI3K)-mammalian target of 
rapamycin (mTOR) signaling pathways to stimulate GnRH secretion 
(Chen et al., 2021; Xie et al., 2025); gonadally, it directly promotes 
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ovarian granulosa cells proliferation and E2 synthesis (Sui et al., 2023). 
In addition, p53 orchestrates estrogen signaling and ovarian function 
through multiple mechanisms: forming a bidirectional regulatory loop 
with estrogen receptor α (ERα) that enables mutual transcriptional 
control through promoter binding and estrogen response element-
mediated transactivation (Shirley et al., 2009; Berger et al., 2012); 
modulating estrogen levels and bioactivity by regulating the expression 
of aromatase (the rate-limiting enzyme in estrogen synthesis) and sex 
hormone-binding globulin (SHBG; Charni-Natan et al., 2019); and 
participating in ovarian function regulation via the mouse double 
minute 2 homolog (Mdm2)-p53-steroidogenic factor 1(SF1) signaling 
pathway in granulosa cells (Zanjirband et  al., 2023). While our 
understanding of the mechanisms and regulation of p53  in 
HFD-induced PP is gradually improving, the upstream mechanisms 
by which HFD upregulates p53 expression are not completely 
understood. However, emerging evidence suggests that ketone bodies, 
particularly β-hydroxybutyrate, may play a potential role in this 
regulatory process (Roberts et al., 2017).

2.4 Metabolic hormones

Long-term HFD consumption disrupts the regulation of key 
metabolic hormones, which regulate both energy homeostasis and the 
pathogenesis of PP. Clinical observations reveal that girls with PP 

exhibit characteristic endocrine alterations, including elevated leptin 
(Zurita-Cruz et al., 2021), insulin (Zhang et al., 2025), and insulin-like 
growth factor-1 (IGF-1; Zhang et al., 2025) levels alongside reduced 
adiponectin (APN; Zurita-Cruz et al., 2021; Sitticharoon et al., 2017), 
while ghrelin changes remain inconsistent (Tarçin et al., 2024; Zhu 
et  al., 2008). Mechanistic investigations have elucidated distinct 
neuroendocrine pathways through which metabolic hormones 
coordinate pubertal timing. Leptin accelerates sexual maturation 
through dual mechanisms, including central activation of 
hypothalamic Kisspeptin-GnRH neurons and direct stimulation of 
ovarian granulosa cell function (Childs et al., 2021). APN, conversely, 
exerts inhibitory control by suppressing GnRH neuronal activity 
through adenosine-monophosphate-activated protein kinase 
(AMPK)-mediated pathway (Mathew et al., 2018). Ghrelin activates 
GnRH neurons via growth hormone secretagogue receptors (GHSR) 
or kisspeptin-dependent pathways, and potentially modulates the 
HPG axis through adrenocorticotropic hormone (ACTH; Farkas 
et al., 2013; Shi et al., 2022). Insulin enhances leptin synthesis to exert 
synergistic effects, while IGF-1 likely regulates pubertal progression 
through multiple mechanisms involving IGF-binding proteins, GnRH 
neurons, Kisspeptin neurons, and gonadotropins (Salvi et al., 2006).

Collectively, these hormones act on both the hypothalamus and 
ovarian tissues to regulate pubertal progression, with leptin, insulin, 
and IGF-1 primarily exerting stimulatory effects while APN and 
ghrelin mainly demonstrate inhibitory actions.

FIGURE 1

The pathways through which HFD contributes to PP. HFD, a high-fat diet; GnRH, gonadotropin-releasing hormone; LH, luteinizing hormone; FSH, 
follicle-stimulating hormone; HPG axis, hypothalamic–pituitary-gonadal axis; E2, estradiol; SHBG, sex hormone-binding globulin; Mdm2, mouse 
double minute 2 homolog; SF1, steroidogenic factor 1; IGF-1, insulin-like growth factor-1. Figure created with BioRender.com.
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2.5 Reproductive programming

Reproductive system development begins around the fifth week 
of gestation and continues until after birth, during which newborns 
experience a temporary surge in gonadotropin levels, triggering a 
phenomenon known as “mini-puberty.” Following this transient 
activation, the HPG axis becomes dormant through a combination of 
gonadal and non-gonadal inhibitory mechanisms (Yao et al., 2021). 
These physiological changes highlight how adverse environmental 
conditions during pregnancy and the early postnatal period can 
significantly affect the development and function of the 
reproductive system.

Maternal overnutrition or obesity during pregnancy and 
lactation substantially accelerates reproductive maturation in 
offspring have been demonstrated. A large-scale cohort study found 
that daughters of mothers who gained more than 40 pounds during 
pregnancy were 30% more likely to experience menarche before age 
11 (Boynton-Jarrett et  al., 2011). Similarly, female offspring of 
maternal mice fed HFD during pregnancy and lactation also 
exhibited earlier puberty onset, with increased E2 levels and 
decreased luteinizing hormone (LH) levels. Interestingly, 
supplementation with conjugated linoleic acid during these stages 
effectively reversed early-onset puberty in offspring (Reynolds et al., 
2015). Collectively, maternal HFD during pregnancy and lactation 
promotes early puberty and reproductive system abnormalities in 
offspring by disrupting the developmental programming of the HPG 
axis and ovarian function, with dietary fatty acids potentially 
influencing this process.

3 HFD disrupts the balance of the GM

The GM exhibits high sensitivity to dietary shifts and changes in 
the physiological state of the digestive system, with effects observable 
within 24 h (Qin et al., 2020). Short-term HFD exposure induces 
dysbiosis characterized by an elevated Firmicutes/Bacteroidetes ratio 
(Shang et al., 2017), concomitant with increased abundance of bile-
resistant genera (e.g., Alistipes, Bacteroides) and decreased populations 
of plant polysaccharide-degrading Firmicutes (e.g., Roseburia, 
Ruminococcus bromii; Bisanz et  al., 2019; David et  al., 2014). 
Importantly, while short-term HFD induces transient microbial shifts, 
long-term dietary patterns exert more profound effects: European 
children consuming a long-term HFD, rich in animal proteins and 
fats, exhibited a gut microbiome predominantly composed of 
Bacteroides enterotypes, contrasting sharply with the microbial 
profiles of Burkinabe children maintained on traditional carbohydrate-
rich, low-protein diets (De Filippo et al., 2010; Daniel et al., 2014; Wu 
et al., 2011).

The types of fatty acids prevalent in HFD also have important 
consequences for both GM and health. Elevated n-6 PUFA levels 
promote the proliferation of pro-inflammatory species, such as 
Mucispirillum schaedleri and Lactobacillus murinus (Selmin et  al., 
2021), establishing a pro-inflammatory intestinal milieu that 
exacerbates metabolic endotoxemia and harms health. Furthermore, 
increased intake of saturated fatty acids, another key component of 
HFD, facilitates the entry of Gram-negative bacterial 
lipopolysaccharides (LPS) into the bloodstream, triggering the release 
of pro-inflammatory cytokines and activating the toll-like receptor 4 

signaling pathway, contributing to insulin resistance and inflammation 
(Hu et al., 2022).

4 Gut microbial imbalance promotes 
PP

Evidence that antibiotic exposure may elevate the risk of PP in 
children points toward a role of gut microbiome dysbiosis in PP 
pathogenesis (Hu et al., 2022). Multiple 16S rRNA gene sequencing 
studies have revealed global perturbations in the GM of girls with 
PP compared to healthy controls (Supplementary Table  2; Bo 
et al., 2022; Wang et al., 2020; Wang Y. et al., 2024; Wang L. et al., 
2024; Huang et al., 2023; Huang et al., 2022; Li et al., 2021b; Dong 
et al., 2020; Qian et al., 2024; Yi et al., 2024; Nguyen et al., 2024; 
Yuan et  al., 2023; Wang et  al., 2022), characterized by altered 
abundances of key taxa (such as Ruminococcus; Wang Y. et al., 
2024; Huang et  al., 2022; Dong et  al., 2020), Bifidobacterium 
(Wang L. et al., 2024; Huang et al., 2023; Qian et al., 2024), and 
Bacteroides (Wang Y. et al., 2024; Wang L. et al., 2024; Huang et al., 
2022; Qian et al., 2024), along with increased butyrate-producing 
bacteria (Wang Y. et al., 2024; Huang et al., 2022), and enhanced 
metabolic potential for neuroendocrine and oxidative stress-
related pathways (Wang Y. et al., 2024; Huang et al., 2023; Li et al., 
2021b). These findings were further validated in PP animal 
models (Bo et al., 2022; Yi et al., 2024). Integrating evidence on 
microbiota-derived metabolites such as short-chain fatty acids 
(SCFAs) and bile acids (BAs; detailed in Section 5.2), these 
observations suggest a role for GM and their metabolites in 
PP development.

However, cross-sectional studies cannot distinguish whether 
microbial alterations represent causative “driver” microorganisms or 
secondary “passenger” species proliferating in the PP 
microenvironment. To address this limitation, recent animal 
experiments utilizing fecal microbiota transplantation (FMT) from PP 
donors (either human patients or PP model rats) to recipient female 
rats demonstrated accelerated puberty onset, accompanied by elevated 
serum levels of LH, follicle-stimulating hormone (FSH), and E2, as 
well as upregulated hypothalamic Kiss1 and Gnrh gene expression (Bo 
et al., 2022; Qian et al., 2024). These findings provided compelling 
evidence that GM can promote PP through modulation of the HPG 
axis, although the precise molecular mechanisms by which specific 
microbial taxa and their metabolic products regulate pubertal timing 
remain to be elucidated.

5 HFD promotes PP development 
through changes in GM

From a physiological standpoint, a pivotal connection between a 
HFD and PP lies in the GM, which acts as a “virtual endocrine organ” 
with endocrine function, and the bioactive metabolites it produces 
influence the host’s physiological processes. Figure 2 illustrates the 
interaction mechanisms through which HFD promotes PP by the 
modulation of GM and its metabolic products, including SCFAs, BAs, 
LPS, and neurotransmitters such as γ-aminobutyric acid (GABA), 
dopamine (DA), and serotonin (5-HT), which are further detailed in 
subsequent sections.
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5.1 Interaction between GM and sex 
hormones in HFD

Mutual interactions between GM and sex hormones have been 
reported, particularly in the context of HFD. The GM can directly 
modulate sex hormone levels. For example, β-glucuronidase, an 
enzyme secreted by Clostridium species prevalent in HFD, activates 
estrogen by deconjugation, thereby enhancing its bioavailability and 
absorption in the gut and peripheral tissues (Zengul, 2019). 
Conversely, sex hormone levels can also shape GM composition and 
diversity. Mueller et al. noted that premenopausal healthy women had 
lower Bacteroides and Prevotella abundances than age-matched men, 
a difference absent in postmenopausal women (Mueller et al., 2006). 
A parallel sexual dimorphism in the composition of rodent GM 
emerged concomitantly with pubertal onset and was subsequently 
abolished after castration (Org et  al., 2016). Additionally, direct 
evidence of the influence of sex hormones on the GM was provided 
in E2-induced PP mice, where an increase in Dubosiella, 
Faecalibaculum, and Bifidobacterium was noted in response to E2 (Bo 
et  al., 2022; For a more detailed discussion on the bidirectional 
interactions between GM and sex hormones, refer to the review; 
Calcaterra et al., 2022)

A deeper exploration of this complex interplay between GM and 
sex hormones will advance both mechanistic understanding of PP 
pathogenesis and development of microbiota-targeted therapies.

5.2 HFD promotes PP through metabolic 
intermediates

5.2.1 SCFAs
SCFAs are fatty acids with fewer than six carbon atoms, primarily 

produced in the colon through the fermentation of dietary fibers by 
GM. The most common SCFAs, including acetate, propionate, and 
butyrate, play crucial roles in gut health and overall metabolism. HFD 
typically suppresses the proliferation of SCFA-producing gut bacteria 
while fostering pathogenic bacteria growth (Onishi et al., 2017). The 
link between SCFAs and PP is long established, with a metabolomic 
study revealing negative correlations between fecal butyrate, 
isovalerate, and caproate levels and early puberty onset (Yuan et al., 
2023). Notably, a 2022 animal study provided the first experimental 
evidence that SCFAs exert protective effects against HFD-induced PP 
by reversing pubertal symptoms through the Kiss1-GPR54-protein 
kinase C (PKC)-extracellular-regulated kinase 1/2 (ERK1/2) signaling 
pathway (Wang et al., 2022). This suggests a promising non-invasive 
therapeutic strategy for preventing and ameliorating PP.

Despite these promising results, the role of SCFAs in PP is 
incompletely understood as 16S rRNA gene sequencing studies 
paradoxically revealed increased SCFA-producing bacteria in PP 
girls (Wang Y. et al., 2024; Huang et al., 2022; Dong et al., 2020). 
This discrepancy may reflect fundamental differences between 
experimental and physiological conditions. First, animal studies 

FIGURE 2

The interaction mechanisms through which HFD promotes PP by modulation of GM and its metabolic products. HFD, a high-fat diet; SCFAs, short-
chain fatty acids; LPS, lipopolysaccharide; GABA, Gamma-aminobutyric acid; DA, dopamine; 5-HT, 5-hydroxytryptamine; GLP-1, glucagon-like 
peptide-1; BAs, bile acids; E2, estradiol; iNOS, inducible nitric oxide synthase; NO, nitric oxide; GnRH, gonadotropin-releasing hormone; LH, luteinizing 
hormone. Figure created with BioRender.com.

https://doi.org/10.3389/fmicb.2025.1564902
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://BioRender.com


Wu et al. 10.3389/fmicb.2025.1564902

Frontiers in Microbiology 06 frontiersin.org

utilizing supraphysiological SCFA doses through direct 
administration may not accurately mirror the complex gut-brain 
communication mediated by microbial metabolites in humans. 
Second, cross-sectional human studies are unable to distinguish 
whether increased SCFA producers are drivers or passengers in 
PP. Third, physiological barriers—including intestinal absorption, 
hepatic metabolism, and blood–brain barrier permeability—may 
weaken SCFAs’ effects (Parker et al., 2020), explaining why higher 
SCFA-producing bacterial abundance does not necessarily prevent 
PP. Consequently, the dysbiosis induced by HFD, leading to 
altered SCFA profiles, necessitates further research within the 
PP context.

5.2.2 BAs
BAs are vital for fat metabolism, aiding in the emulsification and 

absorption of dietary fats and fat-soluble vitamins in the intestine. 
HFD significantly boosts bile acid (BA) synthesis and secretion—
particularly of hydrophobic secondary BAs—with certain gut bacteria 
(such as Clostridium and Ruminococcaceae families; Araki et al., 2005; 
Stenman et al., 2013; Chen et al., 2023; Jiao et al., 2017) catalyzing this 
process via 7α-dehydroxylation reactions (Li et  al., 2021a). The 
relationship between BAs and puberty was first noted by Bergmann 
et  al. in 1986, who found elevated BA saturation during female 
puberty, positively correlating with estrogen levels (Bergmann et al., 
1986). Recent integrated 16S rRNA gene sequencing and metabolomic 
analyses revealed notably decreased metabolites involved in primary 
BA biosynthesis (such as glycocholate, cholic acid, and 
taurochenodeoxycholic acid) in CPP, with glycocholate potentially 
enhancing sex hormone absorption (Huang et  al., 2023). 
Mechanistically, HFD-induced female PP rats showed significantly 
reduced GDCA levels, with glycodeoxycholic acid (GDCA) 
supplementation ameliorating PP symptoms through the modulation 
of the hypothalamic Sirt1/Kiss1 signaling pathway (Wu et al., 2025). 
BAs may also exert diverse biological effects via receptors, such as 
takeda G-protein-coupled receptor 5 (TGR5) and farnesoid X receptor 
(FXR). As Vanden Brink et al. showed, hypothalamic TGR5 receptor 
activation accelerated puberty in normal female rats through 
kisspeptin receptor-dependent GnRH secretion (Vanden Brink et al., 
2024). This ‘paradox’ may be attributable to factors such as genetic 
background variations, context-dependent effects (HFD versus 
normal diet), and non-native forms of GDCA that mediate 
hypothalamic signaling. Importantly, significant species differences in 
BA metabolism—particularly the abundance of rodent-specific 
hydrophilic and 6α-hydroxylated BAs—underscore the need for 
clinical validation when translating these animal findings to human 
applications (Straniero et al., 2020).

5.2.3 LPS
LPS, a major component of the outer membrane of Gram-negative 

bacteria, acts as an endotoxin that triggers strong inflammatory 
responses in host organisms. Mounting evidence indicates that HFD 
increases the prevalence of LPS-producing bacteria (such as those in 
the S24-7 family, Enterobacteriaceae, and Desulfovibrionaceae), and 
exacerbate intestinal permeability, leading to elevated intestinal LPS 
levels entering the bloodstream (Stenman et al., 2013; Moreira et al., 
2012; Kang et al., 2017). LPS activates toll-like receptor 4 receptors on 
glial cells in the brain, inducing the release of inflammatory mediators 
and promoting potentiates oxidative stress, which may be accentuated 

during puberty (Iwasa et al., 2015; Zhao et al., 2019; Schoeler and 
Caesar, 2019).

Additionally, LPS stimulates the expression of inducible NO 
synthase in various cells, increasing NO levels that are involved in 
regulating female reproduction. A research group found that the NO 
synthesis pathway is more active in girls with CPP compared to 
healthy controls. Further mechanistic studies showed that NO not 
only stimulates GnRH secretion (Araki et al., 2005; Zhao et al., 2019), 
but may also promote follicular development through the PI3K/
protein kinase B (AKT)/FoxO3a pathway, thereby accelerating 
puberty onset (Han G. et al., 2022; Luo et al., 2021; Li et al., 2020).

5.2.4 Neurotransmitters
Most neurotransmitters closely associated with PP are produced 

by the GM. HFD disrupts the intestinal microbial balance, diminishing 
populations of Lactobacillus and Bifidobacterium, both known to 
produce GABA through glutamate decarboxylase activity (Chen et al., 
2023; Strandwitz, 2018). Genome-wide association studies have 
identified several alleles associated with the GABA signaling pathway 
that correlate with the age of menarche (Perry et al., 2014). GABA acts 
as a critical inhibitory modulator of hypothalamic GnRH neurons by 
engaging GABA receptors, thereby suppressing GnRH secretion 
(Watanabe et al., 2014). Further experiments in prepubertal rhesus 
monkeys demonstrated that GABA inhibits the upstream gene Kiss1 
and its expression, contributing to the delay in puberty onset (Kurian 
et  al., 2012). Additionally, GABA reduces NO production in the 
hypothalamus, diminishing the stimulation of the HPG axis and the 
promotion of follicular development (Yang et al., 2020).

In parallel, HFD also augments gut bacteria linked to intestinal 
inflammation (e.g., Bilophila, Desulfovibrio, and Escherichia), which 
synthesize neurotransmitters like dopamine and 5-HT, both of which 
are critical regulators during puberty (Chen et  al., 2023; Wang 
M. et  al., 2024). DA activates GnRH through a cAMP-mediated 
mechanism, enhancing the amplitude and duration of GnRH pulses 
to promote the onset of puberty (Winters et al., 2014). In contrast, 
5-HT exerts a biphasic effect on GnRH neurons: rapid inhibition via 
5-HT1A receptors, followed by slow excitation through 5-HT2A 
receptors (Bhattarai et  al., 2014). Despite these insights, the exact 
mechanisms and causal relationships between neurotransmitters and 
PP require more detailed exploration.

6 Targeting GM modulation for PP

6.1 Dietary and lifestyle interventions

Recent advancements in dietary interventions have demonstrated 
their effectiveness as a supplemental strategy for managing PP by 
influencing GM composition and biological activity, thereby 
modulating the host’s sexual development. Diets rich in vegetables and 
proteins have shown effectiveness in mitigating the onset and 
progression of PP (Gu et al., 2024). Specifically, plant-based high-fiber 
diets may diminish estrogen levels by inhibiting the dissociation of 
estrogen-binding proteins and facilitating increased estrogen excretion 
via feces. This reduction in circulating estrogen may delay puberty 
onset and slow sexual maturation (Cheng et al., 2012).

In addition to dietary modifications, clinical trials have 
highlighted the efficacy of certain supplements in delaying sexual 
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development. For instance, a combination of GnRHa and pomegranate 
extract has proven more effective than GnRHa alone in managing 
idiopathic CPP (Liu and Tang, 2017). Treatment with decaffeinated 
green tea polyphenol in prepubertal obese girls not only improved 
obesity but also delayed puberty onset (Xie et al., 2021). Lifestyle 
interventions like intermittent fasting have yielded positive outcomes 
in PP management (Yu et  al., 2021). Taken together, while these 
dietary and lifestyle interventions show promise in alleviating 
symptoms of PP, further research is required to identify and establish 
the most effective and evidence-based approaches for managing 
this condition.

6.2 Probiotics

Probiotics are live microorganisms that confer health benefits to 
the host when administered in adequate amounts (Sanders et  al., 
2019). While direct clinical studies on the effects of probiotics in 
children with PP are lacking, emerging animal researches evaluate 
potential advantages. Specific gut microbial combinations, such as a 
regimen predominantly containing Bifidobacterium longum or a blend 
of Lactobacillus rhamnosus and Lactobacillus helveticus, have 
demonstrated the potential in delaying puberty onset in female mice 
with PP (Yuan et al., 2023; Cowan and Richardson, 2019). Future 
research should prioritize large-scale, randomized controlled trials to 
confirm the efficacy and safety of these interventions.

6.3 FMT

FMT is an innovative therapeutic option in treating conditions 
such as Clostridium difficile infection (Cheng Y. W. et  al., 2021), 
diabetes (De Groot et al., 2021), metabolic syndrome (Li et al., 2016), 
and autism (Kang et al., 2020). This procedure involves transplanting 
fecal material from a healthy donor into the patient’s gastrointestinal 
tract to reestablish microbial balance (Hamamah et al., 2022). There 
are currently only two animal experimental studies that have been 
reported FMT could play a critical role in puberty regulation. In both 
studies, researchers transplanted fecal microbiota from HFD-induced 
PP rats and from PP girls, and observed an accelerated puberty onset 
in healthy rats (Bo et al., 2022). In summary, FMT could serve as a 
viable future treatment for PP, although more studies are needed to 
fully elucidate the underlying mechanisms and safety in children (Yue 
and Zhang, 2024).

6.4 Traditional Chinese medicine (TCM)

TCM has been effectively utilized for centuries to treat various 
health issues, including Alzheimer’s disease (Ding et  al., 2022), 
Parkinson’s disease (Muhammad et al., 2022), rheumatoid arthritis 
(Jakobsson et al., 2022), and PP (Han X. X. et al., 2022). Several TCM 
herbs, such as Anemarrhena (Yan et al., 2021), Phellodendron (Su 
et al., 2021), Berberine (Yang et al., 2022), and Poria (Shan-Shan et al., 
2019), show efficacy in modulating the dysregulation of the gut 
microbial ecosystem. Currently, commonly prescribed formulations 
for PP in clinical practice include Zhibai Dihuang Wan, Dabu Yin 
Wan, and Shugan Zhi Yin Jiao Huo Fang. A meta-analysis also 

revealed integrating TCM with GnRHa therapy improved treatment 
outcomes compared to GnRHa alone (Lee et al., 2020). Despite these 
advantages, integrated treatment approaches should be approached 
cautiously, with careful consideration to ensure that TCM 
complements rather than interferes with conventional therapies.

7 Discussion

Given the contribution already made by the study described 
above, we believe that future research should focus on the following 
key areas:

7.1 The relationship between HFD, GM, and 
PP

Extensive observational studies have established that HFD 
(particularly PUFAs and animal proteins) represents a significant risk 
factor for PP in girls (Chen et al., 2024; Gu et al., 2024; Günther et al., 
2010; Xiong et al., 2022; Du et al., 2024; Cheng et al., 2021b; Xu et al., 
2022; Cheng et al., 2021a; Shahatah et al., 2021; Nguyen et al., 2020; 
Jansen et al., 2016; Mueller et al., 2015; Carwile et al., 2015; Mervish 
et al., 2013; Wiley, 2011; Rogers et al., 2010; Koo et al., 2002; Berkey 
et al., 2000; Maclure et al., 1991; Merzenich et al., 1993; Szamreta et al., 
2020). Preclinical investigations further revealed that maternal or 
prepubertal HFD exposure induces PP in rodent models (Bo et al., 
2022; Wang et al., 2020), with the reported potential mechanisms 
involving two distinct yet interconnected pathways: microbiota-
independent mechanisms (detailed in Section 2), including 
hypothalamic microglial activation, p53 upregulation, metabolic 
hormone dysregulation, and others, all of which have been elucidated 
in multiple reviews as contributing to the activation of the HPG axis 
(Stathori et al., 2025; Calcaterra et al., 2023; Valsamakis et al., 2021); 
and microbiota-dependent pathways, whereby HFD-induced gut 
dysbiosis directly interferes with sex hormone metabolism while 
modulating key metabolic mediators (such as SCFAs, BAs, and LPS) 
through microbial enzymatic activities. The latter pathway highlights 
the mediating role of gut microbiota and their metabolites in 
HFD-induced PP.

Although 16S rRNA gene sequencing and metabolomics from 
clinical and preclinical studies have identified characteristic microbial 
and metabolic signatures in PP, these cross-sectional approaches 
cannot establish causal relationships with HFD-induced PP (Bo et al., 
2022; Wang et al., 2020; Wang Y. et al., 2024; Wang L. et al., 2024; 
Huang et al., 2023; Huang et al., 2022; Li et al., 2021b; Dong et al., 
2020; Qian et al., 2024; Yi et al., 2024; Nguyen et al., 2024; Yuan et al., 
2023; Wang et al., 2022). Intervention studies employing FMT and 
targeted metabolite administration have confirmed that GM 
influences HFD-induced PP by regulating the hypothalamic Kiss1-
GnRH system, with specific metabolites like SCFAs and GDCA 
exerting ameliorative effects through this pathway (Bo et al., 2022; 
Wang et al., 2022; Wu et al., 2025). GDCA upregulated Sirt1 expression 
to suppress the Kiss1 gene. Intriguingly, SCFAs (Jiao et  al., 2020; 
Caetano-Silva et  al., 2023; Lin et  al., 2022) and specific BAs 
(Shihabudeen et al., 2015; Yanguas-Casás et al., 2017; Paluschinski 
et al., 2019; such as tauroursodeoxycholic acid, glycochenodeoxycholic 
acid, chenodeoxycholic acid, and others) may inhibit multiple key 
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nodes in microbiota-independent pathways, including attenuating 
p53 expression, reducing microglial activation, and modulating 
metabolic hormone dysregulation. Leptin, in turn, has been reported 
to modulate gut microbial metabolic function by enhancing duodenal 
sympathetic tone and to regulate systemic BA metabolism (Wen et al., 
2021; Toledo et al., 2025). However, critical issues still remain: first, 
the discordance between increased SCFA-producing bacteria and 
their biological effects in PP may stem from multiple factors, such as 
pharmacologic versus physiologic concentration disparities, cross-
sectional study limitations, and distinct mechanisms of direct 
interventions versus microbial-mediated actions; second, species-
specific variations in BA metabolism constrain clinical translation to 
humans (Straniero et al., 2020); third, it remains unclear the specific 
microbial sources of bioactive metabolites and how GM and 
metabolites regulate hypothalamic gene expression via the microbiota-
gut-brain (MGB), potentially through vagal or circulatory pathways 
(detailed in Section 7.2).

Additionally, key neuromodulators (GABA, DA, 5-HT) and LPS 
are promising metabolites warranting further investigation, though 
their precise roles and concentration changes in HFD-induced PP 
remain to be elucidated. Collectively, HFD impacts pubertal timing 
through both microbiota-dependent and microbiota-independent 
pathways that exhibit cross-regulation, providing a conceptual 
framework for understanding PP pathogenesis and developing 
targeted interventions.

7.2 Evidence between the gut-brain axis 
and PP

Mounting evidence linking the GM to hypothalamic dysfunction 
in the context of PP has underscored the bidirectional communication 
between the GM and the brain via the MGB axis. MGB axis is 
theorized to occur through various systems, including the autonomic 
and enteric nervous systems, neuroendocrine pathways, and the 
immune system (Cryan et al., 2019). Nowadays, understanding of the 
mechanisms of PP through the MGB axis focuses on several pathways.

First, GM may modulate brain function through vagal nerve 
activation, the most extensively studied pathway. Clinical evidence 
shows cardiac autonomic dysfunction in girls with idiopathic PP, 
mainly manifested as a decrease in vagal nerve tension (Yi et al., 2017). 
Animal experiments further demonstrate that prepubertal vagotomy 
could lead to ovarian dysfunction, confirming its crucial role in the 
development of puberty (Morales-Ledesma et  al., 2004). 
Mechanistically, as the main conduction pathway connecting the 
enteric nervous system and the central nervous system, the vagus 
nerve expresses receptors for a variety of bioactive compounds on its 
surface (such as GLP-1 receptor, cholecystokinin 1 receptor, 
neuropeptide Y receptor Y2, GPR35, and GPR119), enabling direct 
recognition of signaling molecules from GM and their metabolites, 
such as LPS-producing bacteria (Ma et al., 2024), acetate-producing 
bacteria and acetate (Zheng et al., 2021), kynurenic acid (Fan et al., 
2023b), indole (Jaglin et al., 2018) and others. While cross-disease 
studies provide experimental support for vagus nerve–mediated 
microbiota-brain communication, critical gaps persist in 
understanding its specific regulatory mechanisms in PP 
pathogenesis—particularly how distinct microbial metabolites 
modulate HPG axis activity via the vagus nerve.

Second, under pathological conditions, harmful gut microbes 
and their metabolites in the bloodstream can also disrupt 
hypothalamus function. Given its anatomical proximity to the 
blood–brain barrier (BBB), the hypothalamus is particularly 
vulnerable to the detrimental effects of BBB dysfunction and 
leakage (Thaler et al., 2012). Developmental studies have shown 
that sex hormones in the neonatal period can significantly regulate 
the development of cerebral blood vessels and the integrity of the 
BBB. This critical period coincides with the early activation peak 
of the HPG axis, providing important clues for understanding the 
association between PP and abnormal BBB function (Collignon 
et al., 2024). In addition, a study demonstrated a causal relationship 
between microbial alterations and gut barrier dysfunction, as 
alterations were observed in gut barrier permeability and in tight 
junction protein occludin in both the frontal cortex and 
hippocampus in germ-free adult mice, and these alterations were 
shown to recover following treatment with SCFA-producing 
bacterial strains or sodium butyrate (Braniste et al., 2014). These 
findings provide direct evidence for the regulation of 
neuroendocrine function by the MGB axis, suggesting that the GM 
may play a crucial role in the pathogenesis of PP by affecting the 
integrity of the BBB. However, direct animal and clinical data on 
the specific regulatory mechanisms of the MGB axis in PP are 
remain lacking, underscoring the urgent need for future research 
in this field.

Although there is growing discussion about the role of the MGB 
axis in regulating neurological and metabolic disorders, direct animal 
and clinical evidence in the context of PP remains lacking. Future 
research in this area is urgently needed.

7.3 The role of HFD and obesity

The relationship between HFD, obesity, and PP has been a 
subject of ongoing debate. Emerging evidence confirms that HFD 
can indeed trigger PP through obesity-independent pathways: first, 
animal studies demonstrate that both HFD-induced and kisspeptin-
induced PP occur independently of weight changes, with short-
term HFD exposure sufficient to elevate gonadotropins without 
altering body fat or leptin levels (Ullah et al., 2019; Frisch et al., 
1977; Sahin et al., 2015); second, gut microbes specifically enriched 
in female rats with PP (such as Bilophila; Kimura et  al., 2013; 
Kimura et  al., 2011), Lachnoclostridium (Zhao et  al., 2021), 
Lactobacillus (Henning et al., 2018), Lactobacillus murinus (Li et al., 
2024), Lactobacillus reuteri (Zhang et  al., 2022) are negatively 
correlated with obesity, indicating differences between the microbial 
communities regulating pubertal development and the microbiota 
associated with obesity; third, the conventional paradigm 
recognizes obesity as a significant risk factor for PP through its 
induction of metabolic hormone dysregulation, a well-established 
mechanism extensively documented in reviews (Shi et al., 2022; 
Calcaterra et  al., 2023). However, HFD serves as the primary 
instigator of both metabolic hormone imbalance and subsequent 
obesity development (Chakraborty et al., 2016; Fan et al., 2023a). 
Under HFD conditions, metabolic hormone dysregulation and 
obesity exhibit complex bidirectional interactions, with obesity 
serving as an exacerbating factor rather than a prerequisite for 
metabolic dysfunction. This is evidenced by findings that long-term 
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HFD-fed mice exhibit increased GLP-1 secretion and insulin 
resistance independent of obesity and body weight (Wang et al., 
2015; Clegg et al., 2011), and girls with CPP show high serum leptin 
levels uncorrelated with body mass index (BMI; Zurita-Cruz et al., 
2021; Kang et al., 2018). Collectively, these findings confirm that 
HFD induces PP not only through the traditional “obesity-
metabolic hormone” pathway but also via obesity-
independent mechanisms.

7.4 Integrated omics technologies and 
population research

Intestinal microbes and their metabolic byproducts provide new 
biological insights into the link between HFD and PP. However, 
existing research still has significant limitations. Firstly, the current 
evidence primarily relies on cross-sectional designs and the 
low-resolution 16S rRNA gene sequencing technology, which limits the 
comprehensive revelation of dynamic evolution of GM and lacks 
precision at the species level. To break through this bottleneck, future 
research should prioritize conducting longitudinal cohort studies 
combined with high-throughput technologies such as metagenomic 
sequencing for multi-omics integration analysis (including 
metabolomics, epigenomics, and proteomics). Such research can 
dynamically capture the key biological processes in the occurrence and 
development of PP, identify reliable biomarker prediction models 
through machine learning algorithms, and deeply analyze the 
“microorganisms-metabolites-hosts” interaction network. The 
feasibility of this methodological approach has been well established in 
prior research. For example, Huang et  al. developed a diagnostic 
classifier to differentiate CPP from healthy controls using integrated 
microbiome-metabolome analysis, identifying potential therapeutic 
biomarkers (Huang et al., 2023). In addition, complementary animal 
studies using combined transcriptomic-epigenomic profiling elucidated 
critical regulatory genes and pathway networks in PP pathogenesis 
(Mohamed et al., 2022). Secondly, most mechanistic data on PP is 
largely based on animal experiments and lacks sufficient clinical 
evidence to definitively support its role in humans. Given the 
complexity and specificity of the disease, large-scale clinical studies are 
likely to provide more valuable insights into its pathophysiology than 
animal models.

In conclusion, HFD-induced PP arises from the overlapping effects 
of GM dysbiosis and high-fat intake, involving multiple mechanisms. 
Fortunately, advances in omics research and breakthroughs in 
mechanistic studies using animal models are rapidly enhancing our 
understanding of the causal mechanisms between HFD, GM, and 
PP. These advancements also reveal the potential therapeutic effects of 
key bacterial species or taxa, paving the way for optimizing microbiota-
based therapeutic strategies and developing innovative, non-invasive 
treatment options for children with PP.
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Glossary

PP - precocious puberty

HFD - a high-fat diet

GM - gut microbiota

CPP - central precocious puberty

PPP - peripheral precocious puberty

HPG - hypothalamic–pituitary-gonadal

NO - nitric oxide

E2 - estradiol

LPS - lipopolysaccharides

SCFAs - short-chain fatty acids

SCFA - short-chain fatty acid

BA - bile acid

BAs - bile acids

GABA - γ-aminobutyric acid

5-HT - serotonin

DA - dopamine

GLP-1 - glucagon-like peptide-1

GPR - G-protein coupled receptor

FMT - Fecal Microbiota Transplantation

TCM - Traditional Chinese medicine

MGB - microbiota-gut-brain

BBB - blood–brain barrier

GDCA - glycodeoxycholic acid

BMI - body mass index

PKC - protein kinase C

ERK1/2 - extracellular signal-regulated kinase1/2

LH - luteinizing hormone

FSH - follicle-stimulating hormone

APN - adiponectin

IGF-1 - insulin-like growth factor-1

PI3K - phosphatidylinositol-3-kinase

MUFAs - monounsaturated fatty acids

PUFAs - polyunsaturated fatty acids

TGR5 - takeda G-protein-coupled receptor 5

FXR - farnesoid X receptor

mTOR - mammalian target of rapamycin

SF1 - steroidogenic factor 1

Mdm2 - mouse double minute 2 homolog

AMPK - adenosine-monophosphate-activated protein kinase

ACTH - adrenocorticotropic hormone

ERα - estrogen receptor α

GHSR - growth hormone secretagogue receptors

AKT - protein kinase B
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