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The objective was to longitudinally assess the prevalence of F. necrophorum subsp. 
necrophorum, F. necrophorum subsp. funduliforme, F. varium, and Salmonella 
enterica in the nasal cavity, ruminal fluid, and feces of finishing beef steers with 
and without LA. Crossbred steers (n = 225; 353 ± 39.6 kg) were transported to a 
feedlot and fed a high-concentrate diet. Nasal, ruminal fluid, and fecal samples 
were collected following feedlot arrival (d 5), 1 week after adaptation to a finishing 
diet (d 35), and the day before harvest (study end). Livers were collected at harvest 
and examined for LA, and cattle were subsequently assigned into either control 
or liver abscess groups. Overall LA prevalence was 18.7%. The concentration and 
prevalence of Salmonella decreased in ruminal fluid and increased in feces with days 
on feed (p < 0.01). Conversely, ruminal fluid prevalence of F. necrophorum subsp. 
necrophorum and F. varium increased with days on feed (p < 0.01). Fusobacterium 
abundance in ruminal fluid and feces was not indicative of LA development except 
for F. varium being more abundant in the ruminal fluid of steers with LA (p < 0.01). 
Abundance of F. necrophorum subsp. necrophorum was greater in abscessed liver 
tissue than healthy tissue (p = 0.03), although no other differences in bacterial 
abundance or prevalence were observed in livers. Overall, Fusobacterium and 
Salmonella prevalence in the nasal cavity, ruminal fluid, and feces were affected 
by days on feed, but their prevalence and abundance were not indicative of LA 
occurrence.
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1 Introduction

Liver abscesses (LA) in finishing beef cattle are a significant 
economic concern for the feedlot industry because of decreased body 
weights and hot carcass weights (Brink et  al., 1990; Brown and 
Lawrence, 2010), contributing to an estimated economic burden of 
almost $1 billion (Lawrence, 2024). On an individual-pen basis, LA 
prevalence ranges from 0 to 95.5%, with the overall prevalence 
increasing since 2012 (Grimes et  al., 2024). Liver abscesses are 
complex, polymicrobial, and involve multiple organs (Broadway et al., 
2024). The bacterial etiology of LA has been extensively studied, with 
Fusobacterium necrophorum subsp. necrophorum considered the 
primary causative agent (Amachawadi and Nagaraja, 2016; Pinnell 
and Morley, 2022; McDaniel et al., 2024a).

Historically considered a normal resident of the bovine 
gastrointestinal tract (GIT; Jang and Hirsh, 1994; Langworth, 1977), 
F. necrophorum subsp. necrophorum is an opportunistic pathogen 
commonly isolated in both necrotic respiratory infections (Seimiya 
et al., 2004; Tadepalli et al., 2009) and LA (Nagaraja and Chengappa, 
1998). Recently, identification of F varium as the dominant species of 
Fusobacterium in the rumen of cattle has called into question the 
validity of previous culture-dependent methods (Schwarz et al., 2023; 
Deters et al., 2024a). Prevalence of F. necrophorum subsp. necrophorum 
in LA ranges from 71 to 100% (Herrick et al., 2022; Lechtenberg et al., 
1988; Nagaraja and Chengappa, 1998). The common theory on 
etiology of LA suggests acidosis-induced rumenitis allows for bacterial 
invasion and colonization of the ruminal wall (Jensen et al., 1954; 
Nagaraja and Lechtenberg, 2007), thereby increasing bacterial 
translocation into portal vein circulation (Tadepalli et al., 2009). Once 
F. necrophorum subsp. necrophorum is translocated to the liver, 
leukotoxins and endotoxins protect it from phagocytosis (Emery et al., 
1985; Tan et al., 1996) and induce hepatocyte-mediated apoptosis 
(Amachawadi and Nagaraja, 2016).

Recently, Salmonella enterica (denoted as Salmonella) has been 
isolated from LA (Amachawadi and Nagaraja, 2015; Amachawadi et al., 
2017) at a prevalence of 27.5% nationally and 23.8% in association with 
F. necrophorum (Herrick et al., 2022). Nonetheless, in the High Plains 
cattle feeding region, the incidence of Salmonella alone or with 
F. necrophorum increases to 84.6 and 76.7%, respectively (Herrick et al., 
2022). Hind-gut acidosis or stress-induced inflammation can increase 
the translocation of Salmonella across the intestinal epithelium, where 
Salmonella actively infects phagocytic and non-phagocytic cells (Ibarra 

and Steele-Mortimer, 2009; Sanz-Fernandez et  al., 2020). Thus, the 
lymphatic system could provide another pathway for Salmonella to enter 
the liver besides portal vein circulation. Currently, little data substantiates 
the role of Salmonella in LA formation or the concentration and 
prevalence of Fusobacterium and Salmonella throughout the GIT in 
relation to LA occurrence. Therefore, we  hypothesize that bacterial 
populations associated with LA will differ in the GIT of beef steers with 
and without LA. Our objective was to longitudinally assess the prevalence 
of F. necrophorum subsp. necrophorum, F. necrophorum subsp. 
funduliforme, F. varium, and Salmonella enterica in the nasal cavity, 
ruminal fluid, and feces of finishing beef steers with and without LA.

2 Materials and methods

All experimental procedures were approved by the Texas Tech 
University Institutional Animal Care and Use Committee (approval 
number 2022–1273) and conducted from May 2023 to February 2024.

2.1 Animal management

Crossbred steers (n = 225; 353 ± 39.6 kg) were sourced from the 
Texas Panhandle, transported to the Burnett Center for Research and 
Instruction, and blocked by arrival group into 2 source blocks. On d 
0, steers were received in soil-surface, partially shaded outdoor pens 
(4.9 m × 30 m), administered vaccinations (Myco-B One Dose, 
American Animal Health, Fort Worth, TX; Bovilis Vista 5Q, Merck, 
Rahway, NJ; Bovilis Vision 7 with Spur, Merck; I-site XP, Huvepharma, 
Peachtree City, GA), anthelmintic (Cydectin; Elanco, Indianapolis, 
IN), and received a Revalor-XS implant (200 mg of trenbolone acetate 
+40 mg of estradiol 17β; Merck). On d 21, steers were moved into 
concrete, slatted-floor pens. From d 0 to study end (d 250 for block 1 
and d 221 for block 2), steers were fed a standard grain-based finishing 
diet representative of those fed in the High Plains region (Table 1). At 
study end, steers were harvested at a commercial abattoir.

2.2 Sample collection

Nasal, ruminal fluid, and fecal samples were aseptically collected 
after feedlot arrival (d 5), 1 week after adaptation to the finishing diet 

TABLE 1 Ingredient composition of diets fed to feedlot beef steers from d 0 to study end.

Receiving Transition 1 Transition 2 Finishing

Item d 0 to 7 d 8 to 14 d 15 to 21 d 22 to End1

Ingredient, % DM

 Steam-flaked corn 17.84 43.61 60.00 64.05

 Sweet bran2 56.61 33.96 20.98 24.44

 Alfalfa hay 21.86 18.08 13.59 6.88

 Supplement3 1.96 2.41 2.38 2.08

 Limestone 1.73 1.94 1.93 1.82

 Urea – – 1.12 0.73

1Study end was on d 250 for block 1 steers and d 221 for block 2 steers. 2Branded wet corn gluten feed (Blair, NE). 3Vitamins and minerals exceeded NASEM (2016) requirements for finishing 
beef steers. Rumensin 90 (Elanco, Greenfield, IN) was included at 330 mg/kg.
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(d 35), and the day before harvest (study end). Nasal samples 
(Salmonella only) were collected via a 5-in, rayon-tipped bacteriology 
swab (Fisher, Waltham, MA), whereas ruminal fluid was collected 
using a speculum and flexible tubing passed through the esophagus to 
the rumen, and feces were collected by rectal palpation. All samples 
were subsequently processed at the USDA-ARS Livestock Issues 
Research Unit (LIRU). At the commercial abattoir, LA prevalence was 
recorded by trained personnel from the Beef Carcass Research Center 
at West Texas A&M University. A 100-g sample of healthy and 
abscessed livers were collected before carcass chilling, placed in a 
sealable bag, and transported to LIRU. Liver samples were immediately 
emulsified using a blender for bacterial processing.

2.3 Sample processing for Salmonella 
enterica concentration and prevalence

Analysis of samples for Salmonella was conducted as described by 
Dornbach et al. (2023). To determine ruminal fluid, fecal, and liver 
Salmonella concentration and prevalence, 25 g of sample were diluted 
1:10 in phosphate buffered saline (PBS) in a lateral filtered stomacher 
bag (Seward Ltd.; West Sussex, United Kingdom) and homogenized 
(Stomacher® 400 Circulator; Seward Ltd.) for 2 min at 230 rpm. For 
nasal Salmonella prevalence, swabs were suspended in 4.5 mL of PBS 
and vortexed. Salmonella concentrations were determined via spiral 
plating (Eddy Jet 2 W, Neutec Group Inc., Farmingdale, NY) 100 μL of 
homogenate onto xylose lysine deoxycholate (XLD; Becton, Dickinson 
and Co., Franklin Lakes, NJ) agar containing novobiocin (25 μg/mL). 
Additionally, 1 mL of homogenate was enriched in a 1:10 dilution of 
Tetrathionate Hajna (Remel, San Diego, CA) broth with iodine and 
incubated overnight at 37°C. Likewise, 1 mL of homogenate was 
enriched in Rappaport-Vassiliadis (Oxoid Ltd., Basingstoke, UK) broth 
and incubated at 42°C overnight. After incubation, enrichment broths 
were vortexed, and a 10-μL loop was used to streak enriched cultures 
onto XLD agar containing novobiocin (25 μg/mL). Following overnight 
incubation at 37°C and an additional 24 h at 25°C, phenotypic colonies 
were subjected to latex agglutination (Salmonella Test Kit; Oxoid Ltd) 
and confirmed by PCR using the invA gene (Rahn et al., 1992). Assay 
running conditions included an initial incubation at 95°C for 1 min, 
followed by 35 cycles of 95°C for 30 s, 64°C for 30 s, and 72°C for 30 s. 
Following the last cycle there was a 4 min incubation at 72°C. Assays 
were performed using a Bio-Rad C1000 Thermal Cycler (Hercules, CA).

2.4 Sample processing for Fusobacterium 
necrophorum and Fusobacterium varium 
abundance and prevalence

To determine the absolute abundance (i.e., copies/g) and 
prevalence (i.e., %) of ruminal fluid F. necrophorum and F. varium, 
dimethyl sulfoxide (DMSO) was added to a final concentration of 5% 
v/v, while fecal and liver samples were diluted 1:1 in PBS containing 
10% DMSO. All samples were subsequently homogenized and frozen 
at-80°C. Frozen samples were then transported on dry ice to Sentinel 
Environmental in Houston, TX for analysis.

Ruminal fluid, fecal, and liver DNA were extracted using the 
ZymoBIOMICS™ 96 MagBead DNA kit (D4308-E, Zymo Research 
Corp. United States) and an OpenTrons OT-2 liquid-handling robot 

running a custom python script. Briefly, samples were partially thawed 
at room temperature to transfer 100 mg of sample into ZR 
BashingBead™ Lysis Tubes containing 375 μL ZymoBIOMICS™ Lysis 
Solution, 375 μL of DNA/RNA Shield™, and 1×106 copies of lambda 
phage genome (N3011S; New England Biolabs, Ipswich, MA). Following 
mechanical lysis with a Biospec Mini-Bead Beater-16 (BioSpec 
Products, Inc., Bartlesville, OK), samples were transferred to a 96-deep-
well plate. Extraction of DNA was conducted with the OpenTrons OT-2. 
As described by Deters et al. (2024a), the qPCR primers and probes 
used were designed to target hgdA for F. necrophorum (hgdA-n) and 
F. varium (hgdA-v), as well as the leukotoxin promotor region, lktA-n 
for F. necrophorum subsp. necrophorum and lktA-f for F. necrophorum 
subsp. funduliforme (Table 2). Probe concentrations were optimized for 
each target gene. Assay running conditions were 95°C for 5 min 
followed by 45 cycles of 95°C for 15 s and 60°C for 40 s. Assays were 
performed using a Bio-Rad CFX96 Real-Time System. Lambda phage 
DNA was quantified to assess efficiency of extraction using primers and 
probes as described by Beller et  al. (2002). Any sample with ≥102 
copies/g of Fusobacterium were considered positive for prevalence.

2.5 Statistical analyses

The experimental design was a randomized complete block with 
individual steer as the experimental unit. The GLIMMIX and MIXED 
procedures of SAS 9.4 (SAS Inst., Cary, NC) were used to evaluate 
binomial and continuous data, respectively, with fixed effects of 
treatment, sampling time, and treatment × sampling time interaction. 
The interaction of block × treatment × sampling time was included as 
a random effect. Sampling time was the repeated measure and 
individual steer within block was the subject. The Kenward Roger 
adjustment was used to correct the degrees of freedom because of 
unequal treatment numbers. The covariance structure autoregressive 
(1) was used based on evaluation of the Akaike’s information criterion. 
Least squares means were separated using the Tukey option in the 
LSMEANS statement of SAS. Outliers were identified using the Cook’s 
D outlier test; ruminal fluid data for 1 steer at study end was omitted 
using these criteria. A p ≤ 0.05 was considered significant and 
tendencies were discussed at 0.05 < p ≤ 0.10.

3 Results

3.1 Salmonella enterica concentration and 
prevalence in the nasal cavity, ruminal 
fluid, feces, and liver

Overall LA prevalence was 18.7% (n = 42). No treatment × 
sampling time interactions were observed throughout the study 
(p ≥ 0.14). Nasal Salmonella concentration did not differ between 
steers with or without LA (p = 0.85; Table 3) or by collection day 
(p = 0.50). Moreover, no differences in ruminal fluid Salmonella 
concentration were observed between steers with or without LA 
(p = 0.37); however, ruminal fluid Salmonella concentration decreased 
from feedlot arrival to harvest (p < 0.01). Conversely, fecal Salmonella 
concentration was greatest before harvest (p < 0.01) and tended to 
be  5.9% greater in steers without LA (p = 0.07). Liver Salmonella 
concentrations were not affected by LA presence (p = 0.18; Table 4).
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Mean nasal Salmonella prevalence was 34.5%, being greatest at 
feedlot arrival and least on d 35 (p < 0.01; Figure 1A), although 
prevalence was not indicative of the presence of LA (p = 0.73). 
Ruminal fluid Salmonella prevalence did not differ between steers 
with or without LA (p = 0.83; Figure 1B) whereby mean ruminal 
fluid Salmonella prevalence was 73.2%, with prevalence decreasing 
from 83.3% on d 35 to 55.3% at harvest (p < 0.01). Fecal Salmonella 
prevalence increased from 63.2% on d 5 to 96.6% by d 35 after 
transition to the finishing diet (p < 0.01; Figure 1C), with a mean 
fecal Salmonella prevalence of 81.7%. Fecal Salmonella prevalence 
tended to be 6.4% greater in steers with LA (p = 0.09), and liver 
Salmonella prevalence was 9.8 and 6.5% for steers with and without 

LA, respectively, but did not differ between groups (p = 0.47; 
Table 4).

3.2 Absolute abundance and prevalence of 
Fusobacterium necrophorum and 
Fusobacterium varium in ruminal fluid

Absolute abundance of F. necrophorum subsp. necrophorum 
(p = 0.38; Table 5) and subsp. funduliforme (p = 0.23) in ruminal fluid 
was not different between steers with or without a LA. Similarly, 
F. necrophorum subsp. necrophorum (p = 0.32) and subsp. funduliforme 

TABLE 2 Species and subspecies of Fusobacterium, genes targeted, and primer and probe sequences used in the qPCR assay.

Target species 
and subspecies

Gene 
target

Primer sequence (5′-3′) Probe sequence (5′-3′) Amplicon size

Fusobacterium 

necrophorum subsp. 

necrophorum

lktA-n

Forward: GCTTTGGAAGAAGCCAAACA
FAM- TGGAATCATTCCAGTAGATGGAAAAG-

ZEN™/3’IB®
93 bp

Reverse: AATGCTTCCATTCGGATTCA

Fusobacterium 

necrophorum subsp. 

funduliforme

lktA-f

Forward: 

AAAGACGCTCAAAATAGCAAAGTT
MAX- TTGTTCCACAACAGGATGGGAGTA-

ZEN™/3’IB®
80 bp

Reverse: TTTGGATTCAACGGAATCTTG

Fusobacterium 

necrophorum
hgdA-fn

Forward: 

CTTTTTCCAATACGGTAGATACTCC
5’TexasRed-X-

TGGATTATTTGATTGGACAGTTCGA-Iowa 

Black RQ

94 bp

Reverse: CCTGTCAATTCTTCCAACTGC

Fusobacterium varium hgdA-fv

Forward: 

TTCAAATACAGTGGATACACCAGAA Cy5-AGTGGATTATCTAATCGGACAATTTGA-

Iowa Black RQ
84 bp

Reverse: 

AATTCTTCTAATTGTTTGATTGCATAA

lambda phage
Forward: ACGCCACGCGGGATG TXRed-X-ACCTGTGGCATTTGTGCTGCCG-

Iowa Black RQReverse: AGAGACACGAAACGCCGTTC

TABLE 3 Concentration of Salmonella enterica in the nasal cavity, ruminal fluid, and feces of finishing beef steers with and without liver abscesses.1

Item Liver abscesses p-value2

Not present Present SEM3 Trt Time Trt × Time

n 183 42

Nasal cavity, log10 CFU/g

 d 5 3.16 (20/183) 3.16 (5/42) 0.096 0.85 0.50 0.93

 d 35 3.06 (10/183) 3.12 (3/42)

 End4 3.06 (10/183) 3.05 (2/42)

Ruminal fluid, log10 CFU/g

 d 5 3.61 (71/183) 3.83 (21/43) 0.200 0.37 <0.01 0.22

 d 35 3.41 (59/183) 3.39 (12/43)

 End4 3.16 (22/183) 3.13 (4/43)

Feces, log10 CFU/g

 d 5 3.48 (60/183) 3.50 (13/43) 0.035 0.07 <0.01 0.14

 d 35 4.62 (118/183) 4.47 (24/43)

 End4 4.96 (130/183) 4.36 (25/43)

1Numbers in parentheses are the number of enumerable samples and total samples. 2Trt = treatment effect; Trt × Time = treatment × sampling time effect. 3Standard error of the mean. 4Study 
end was on d 250 for block 1 steers and d 221 for block 2 steers.
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(p = 0.79) abundance in ruminal fluid did not change from feedlot 
arrival to harvest. Conversely, the abundance of F. varium in the 
ruminal fluid of steers with a LA was 192% greater than those without 
a LA (p < 0.01), although no differences across collection day were 
observed (p = 0.44). Ruminal fluid prevalence of F. necrophorum 
subsp. necrophorum, subsp. funduliforme, and F. varium were not 
suggestive of LA formation (p ≥ 0.16; Figures 2A–C). From feedlot 
arrival to harvest, F. necrophorum subsp. necrophorum and F. varium 
prevalence increased 54.4 and 300%, respectively (p < 0.01) regardless 
of LA prevalence. Mean F. necrophorum subsp. funduliforme 
prevalence in ruminal fluid was 99.2% and did not differ across 
collection day (p = 0.14).

3.3 Absolute abundance and prevalence of 
Fusobacterium necrophorum and 
Fusobacterium varium in feces

Absolute abundance of F. necrophorum subsp. necrophorum in 
feces did not differ between steers with or without a LA (p = 0.28; 
Table 6) or from feedlot arrival to harvest (p = 0.32). Similarly, fecal 
abundance of F. necrophorum subsp. funduliforme did not differ with 
the presence of LA (p = 0.19) or longitudinally (p = 0.49). 
Fusobacterium varium tended to have a greater abundance in the feces 
of steers without a LA (p = 0.10), although no differences were 
observed across sampling days (p = 0.35). The presence of LA at 
harvest was not attributable to differences in the fecal prevalence of 
F. necrophorum subsp. necrophorum, subsp. funduliforme, and 
F. varium (p ≥ 0.26; Figures 3A–C). Mean fecal F. necrophorum subsp. 
necrophorum and subsp. funduliforme prevalence was 16.8 and 30.8%, 
respectively, and did not differ from feedlot arrival to harvest 
(p ≥ 0.61). Fecal F. varium prevalence increased from 10.8% at feedlot 
arrival to 36.3% at harvest (p < 0.01).

3.4 Absolute abundance and prevalence of F. necrophorum and 
F. varium in livers.

Although liver F. necrophorum subsp. necrophorum prevalence 
was not affected by the presence of an abscess (p = 0.67; Table 7), 
F. necrophorum subsp. necrophorum abundance was 195% greater for 
steers with a LA compared with those without a LA (p = 0.03). The 
abundance (p ≥ 0.20) and prevalence (p ≥ 0.65) of F. necrophorum 

subsp. funduliforme and F. varium in liver were not affected by the 
presence of an abscess.

4 Discussion

Liver abscesses are frequently described as a polymicrobial 
infection, with most studies concluding that F. necrophorum is the 
primary causative agent (Broadway et al., 2024). Previous research has 
supported a causal link between acidosis-induced rumenitis and LA 
through increased bacterial translocation into portal vein circulation 
(Smith, 1944; Jensen et  al., 1954; Nagaraja and Chengappa, 1998; 
Tadepalli et al., 2009). Nonetheless, venous drainage is not limited to 
the rumen, draining the entire GIT and associated visceral organs. 
Although a few studies have isolated Salmonella from LA 
(Amachawadi and Nagaraja, 2015; Amachawadi et al., 2017; Herrick 
et al., 2022), no literature has directly investigated a link between the 
presence of LA and Salmonella in the GIT.

4.1 Salmonella enterica in the nasal cavity, 
ruminal fluid, feces, and liver

Salmonella transmission primarily occurs through direct fecal-
oral contamination (e.g., from other cattle, rodents, or birds) or 
indirectly through contaminated feed consumption (Cho et al., 2006; 
Stevens et al., 2009). Transdermal and intranasal Salmonella infection 
have also been recorded (Fedorka-Cray et al., 1995; Olafson et al., 
2016). In dairy calves experiencing salmonellosis, 18.2% (4/22) of 
nasal secretions were positive for S. Typhimurium (Nolan et al., 1995). 
Moreover, dairy calves intranasally inoculated with S. Dublin 
(1.8 × 106 cells/calf) had positive nasal mucosal secretions for up to 9 
d after inoculation and positive feces up to 14 d after inoculation 
(Nazer and Osborne, 1977). In the current study, nasal Salmonella 
concentrations remained low from feedlot arrival to harvest and were 
not indicative of LA presence. Shortly after steers were received in 
soil-surfaced pens, nasal Salmonella prevalence was 40.9% 
(Figure 1A); however, after placement onto clean, concrete slated-floor 
pens, prevalence decreased by 33.3%. Movement of cattle into concrete 
slated-floor pens likely lessened Salmonella reinfection. Miller et al. 
(2008) reported an increase in Salmonella enumeration on the hides 
of cattle exposed to dust. Nevertheless, from d 35 to study end, nasal 
Salmonella prevalence increased 29.3% despite the final collection 
occurring in winter. Allan et  al. (2004) reported that Salmonella 
survival on biologically contaminated concrete surfaces was greater 
compared with non-contaminated concrete surfaces at either 4°C or 
10°C. Therefore, accumulation of contaminated feces after 200 d in 
concrete pens and cross contamination with vectors, like birds and 
rodents, consuming feed from feed bunks during winter (Gwenzi 
et al., 2021) increased the likelihood of inhaling Salmonella.

Salmonella concentrations and prevalence in ruminal fluid were 
not associated with LA presence at harvest. Salmonella has previously 
been isolated from ruminal fluid at harvest, with prevalence ranging 
from 0.3 to 91% (Grau et al., 1968; Van Donkersgoed et al., 1999; 
McEvoy et al., 2003; Fegan et al., 2005). Previous literature attributed 
the variation in ruminal fluid Salmonella isolation to differences in 
ruminal pH and volatile fatty acid (VFA) concentrations, which are 
believed to exert bacteriostatic and bactericidal effects on Salmonella 

TABLE 4 Concentration and prevalence of Salmonella enterica in the 
livers of feedlot beef steers with and without liver abscesses.1

Item Liver abscesses P-
value2

Not 
present

Present SEM3 Trt

n 183 42

Salmonella 

concentration, 

log10 CFU/g

3.02 (4/183) 3.08 (1/42) 0.035 0.18

Salmonella 

prevalence, %
6.5 9.8 3.91 0.38

1Numbers in parentheses are the number of enumerable samples and total samples. 2Trt, 
treatment effect. 3Standard error of the mean.
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(Mattila et al., 1988; Corrier et al., 1990). To the authors’ knowledge, 
this study was the first to longitudinally assess Salmonella in the 
ruminal fluid of finishing beef cattle (Figure 1B). The decrease in both 
Salmonella concentration and prevalence with days on feed supports 
the previous notion that the rumen becomes an unfavorable 
environment for Salmonella persistence and multiplication as total 
VFA concentrations presumably increase with time on feed. From d 0 
to 7, cattle received a high-forage receiving diet before being 
transitioned to a high-concentrate finishing diet by d 22. Although 
we did not measure ruminal VFA concentrations in the current study, 
Penner et al. (2009) reported total VFA concentrations increase, while 
ruminal pH concurrently decreases, in cattle that are consuming a 
high-concentrate diet.

In contrast to ruminal fluid, fecal Salmonella concentrations 
increased with days on feed, likely reflecting the colonization of 

Salmonella in the lower GIT where fermentative activity is more 
limited than in the rumen (Bolton et al., 2011). From feedlot arrival 
to harvest, fecal Salmonella concentrations increased 39.3% 
regardless of LA presence (Figure  1C). Jennings et  al. (2021) 
previously reported that Salmonella incidence within ileal and 
colonic epithelial tissues increased with days on feed. From d 5 to 35, 
fecal Salmonella prevalence increased, corresponding to sample 
collections from late May to early August. Seasonality can partially 
explain this phenomenon as warmer seasons are favorable for 
Salmonella persistence in feedlots compared with colder seasons 
(Barkocy-Gallagher et al., 2003; Webb et al., 2017; Wottlin et al., 
2022). Greater temperatures during summer can induce heat stress, 
resulting in feed intake disruptions and inflammation that increase 
Salmonella colonization of the GIT. Likavec et  al. (2016) noted 
Salmonella incidence increased 54% for every 5°C increase in average 

FIGURE 1

Prevalence of Salmonella enterica in the nasal cavity (A), ruminal fluid (B), and feces (C) of finishing beef steers with (Present; solid red line with square 
marker) and without (Not Present; solid black line with diamond marker) liver abscesses (LA). Samples were aseptically collected after feedlot arrival (d 
5), 1 week after adaptation to the finishing diet (d 35), and the day before harvest (study end). Study end was on d 250 for block 1 steers and d 221 for 
block 2 steers. Error bars represent standard error of the mean. Trt = treatment effect; Trt × Time = treatment × sampling time effect.
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temperature and 29% for every 5-unit increase in the temperature 
humidity index. Temperature stability is also important for long-
term Salmonella survival in soil and manure (Holley et al., 2006; 
Semenov et  al., 2007). Large fluctuations in manure or soil 
temperature, such as freeze–thaw cycles associated with colder 
months, can rapidly decrease environmental Salmonella 
concentrations (Semenov et al., 2007). This might also explain the 
decrease in fecal Salmonella prevalence from d 35 to harvest as cattle 
were harvested in winter when environmental temperature fluctuated 
between-14°C to 24°C.

From feedlot arrival to harvest, fecal Salmonella concentration 
tended to be  greater in steers without LA, whereas Salmonella 
prevalence was greater in steers with LA. In the small intestine, 
Salmonella can either be endocytosed by M cells located in Peyer’s 
patches or induce cytoskeletal changes in epithelial cells, leading to 
membrane ruffling and bacterial internalization (Lostroh and Lee, 
2001). Entry into cells can result in a pro-inflammatory response and 
uptake by macrophages and neutrophils (Clark et al., 1994; Johansson 
et al., 2006). Survival and replication within macrophages are essential 
for entry and persistence in lymph nodes and eventual liver 
colonization (Watson and Holden, 2010; Ilyas et al., 2017). Although 
not measured directly in the current study, the greater fecal Salmonella 
concentrations coupled with lesser fecal Salmonella prevalence could 
suggest cattle without LA had improved lower GIT epithelial integrity. 
In dairy steers ruminally inoculated with both F. necrophorum and 
S. Lubbock, 60% of ruminal and ileal tissue samples were positive for 
Salmonella (McDaniel et al., 2024b). While information regarding a 
synergistic relationship between Salmonella and F. necrophorum 
remains elusive, greater LA severity and prevalence has been noted 
when Salmonella and F. necrophorum are cultured in combination 
from LA (Herrick et al., 2022; McDaniel et al., 2024b). Further studies 
are warranted to validate these findings and determine whether 
Salmonella acts as a primary pathogen contributing to LA development 
or if its presence in the GIT facilitates Fusobacterium entry into the 
portal circulation.

Nationally, Salmonella has been isolated from 33.3% of LA from 
fed beef steers, with regional prevalence ranging from 0% in the 
North Plains and Pacific Northwest to 84.6% in the High Plains 
(Herrick et al., 2022). Seasonally, LA prevalence is reported to be less 
in January and greater in late spring/early summer (e.g., April to 
June; Grimes et al., 2024). In the current study, cattle were harvested 
from late January to early February. Mean liver Salmonella prevalence 
was not affected by the presence of LA. Likewise, Dockray (2022) did 
not find a difference in Salmonella prevalence or concentration 
between healthy and abscessed livers collected quarterly from 
commercial beef processing plants in the High Plains region. 
Although seasonality could potentially explain the decreased 
Salmonella prevalence observed in the current study compared with 
regional means, further studies are warranted to elucidate the effects 
of regionality and seasonality on Salmonella prevalence in healthy 
and abscessed livers.

4.2 Fusobacterium necrophorum subsp. 
necrophorum, subsp. funduliforme, and 
F. varium in ruminal fluid, feces, and liver

Until recently, F. necrophorum enumeration in ruminal contents 
relied on culture-dependent methods that incorporated selective 
growth medium containing lactate as the primary carbon source and 
indole as a growth indicator (Tan et  al., 1994); however, this 
methodology to quantify F. necrophorum unintentionally inflated cell 
densities because of similar fermentative mechanisms shared with 
F. varium (Schwarz et al., 2023). Therefore, it is likely that for many 
years F. necrophorum subsp. necrophorum has been misidentified from 
culture methods (Schwarz et al., 2023; Deters et al., 2024a). The recent 
development of a qPCR assay (Deters et al., 2024a) to detect and 
quantify F. necrophorum subsp. necrophorum, subsp. funduliforme, 
and F. varium has greatly improved identification and enumeration of 
these bacterial species across different sample types.

TABLE 5 Absolute abundance (copies/g) of Fusobacterium necrophorum subsp. necrophorum, F. necrophorum subsp. funduliforme, and F. varium in 
the ruminal fluid of feedlot beef steers with and without liver abscesses.

Item Liver abscesses P-value1

Not present Present SEM2 Trt Time Trt × Time

n 42 42

Fusobacterium necrophorum subsp. necrophorum

 d 5 1.97 × 106 4.04 × 106 1.866 × 106 0.38 0.32 0.85

 d 35 5.69 × 105 7.35 × 105

 End3 2.07 × 106 3.64 × 106

Fusobacterium necrophorum subsp. funduliforme

 d 5 1.04 × 107 9.03 × 106 1.148 × 107 0.23 0.79 0.42

 d 35 1.82 × 106 2.98 × 107

 End3 6.93 × 106 8.52 × 106

Fusobacterium varium

 d 5 4.52 × 102 9.05 × 107 3.667 × 107 <0.01 0.44 0.41

 d 35 8.25 × 104 1.50 × 106

 End3 1.82 × 106 9.99 × 104

1Trt = treatment effect; Trt × Time = treatment × sampling time effect. 2Standard error of the mean. 3Study end was on d 250 for block 1 steers and d 221 for block 2 steers.
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We noted that F. necrophorum subsp. necrophorum and subsp. 
funduliforme abundance in ruminal fluid were not indicative of LA 
presence. Although in agreement with Deters et al. (2024a), samples 
in that study were collected once at harvest, not longitudinally before 
harvest as in the current study. Unlike Deters et al. (2024a), F. varium 
abundance in ruminal fluid in the current study was greater in cattle 
with LA. Nonetheless, the role of F. varium in LA development is still 
yet to be fully understood. Although F. varium is considered actively 
invasive (Manson McGuire et al., 2014), it lacks the leukotoxin gene 
found in F. necrophorum that induces abscess development 
(Narayanan et al., 2001). Unlike Schwarz et al. (2023), F. varium was 
not the dominant Fusobacterium species in ruminal fluid in the 
current study. Differences in sample collection day relative to harvest, 

feedlot regionality, and sample analysis (i.e., absolute vs. relative 
abundance) and processing (i.e., samples were not enriched prior to 
qPCR analysis in the current study) makes a direct comparison 
between studies difficult. Nevertheless, F. varium has been associated 
with human infections and diseases such as ulcerative colitis and acute 
kidney failure (Minami et al., 2009; Lee et al., 2022), justifying further 
research to understand its pathogenicity and risk as a potential 
zoonotic cattle pathogen.

From feedlot arrival to harvest, subsp. necrophorum and F. varium 
prevalence in ruminal fluid increased, a response that could 
be  associated with long-term feeding of high-concentrate diets. 
Fusobacterium necrophorum can use lactate as a carbon and energy 
source, and increasing the proportion of grain in finishing cattle diets 

FIGURE 2

Prevalence of Fusobacterium necrophorum subsp. necrophorum (A) Fusobacterium necrophorum subsp. funduliforme (B) and Fusobacterium varium 
(C) in the ruminal fluid of finishing beef steers with (Present; solid red line with square marker) and without (Not Present; solid black line with diamond 
marker) liver abscesses (LA). Samples were aseptically collected after feedlot arrival (d 5), 1 week after adaptation to the finishing diet (d 35), and the day 
before harvest (study end). Study end was on d 250 for block 1 steers and d 221 for block 2 steers. Error bars represent standard error of the mean. Trt, 
treatment effect; Trt × Time = treatment × sampling time effect.
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increases ruminal lactate production (Monteiro and Faciola, 2020) 
and F. necrophorum concentrations as well (Tan et al., 1996). Although 
it has been speculated whether F. varium uses lactate as an energy 
source, the presence of a lactate dehydrogenase gene in the F. varium 
genome highlights potential overlapping metabolic pathways and 
similar ecological niches with F. necrophorum (Schwarz et al., 2023).

At harvest, F. necrophorum subsp. necrophorum and F. varium 
prevalence in ruminal fluid was 93.3 and 71.2%, respectively, 
regardless of the LA status (Figures  2A,C). Deters et  al. (2024a) 
reported F. necrophorum subsp. necrophorum was more prevalent in 
the ruminal contents of cattle with LA than without; however, mean 
subsp. necrophorum prevalence was less than 29% regardless of LA 
presence. This lead Deters et al. (2024a) to suggest that F. necrophorum 
subsp. necrophorum is not a normal inhabitant of the rumen. The data 
presented herein contradict that suggestion and agree with previous 
reports (Langworth, 1977; Wada, 1978; Smith and Thornton, 1993; 
Tadepalli et  al., 2009) that infer subsp. necrophorum is a normal 
inhabitant of the rumen. Fusobacterium necrophorum subsp. 
funduliforme was present in 100% of ruminal fluid samples at harvest 
in the current study (Figure  2B). Deters et  al. (2024a) reported 
F. necrophorum subsp. funduliforme prevalence was over 90% in 
ruminal content regardless of the LA status, therein validating subsp. 
funduliforme as a normal inhabitant of the rumen. Of note, ruminal 
fluid in the current study was collected from cattle longitudinally at 1 
feedlot in the High Plains while Deters et al. (2024a) collected ruminal 
fluid from cattle originating from 12 feedlots at a Midwest commercial 
beef abattoir, and a better understanding of regional influences on 
ruminal F. necrophorum populations could prove worthwhile. Though 
ruminal fluid was not collected, Herrick et al. (2022) reported the 
incidence of F. necrophorum subsp. necrophorum and subsp. 
funduliforme in fed beef livers differed across regions of the U.S., 
suggesting a potential effect of region currently exists. Additionally, 
cross-sectional data from Deters et al. (2024a) was gathered from a 
single collection timepoint, thereby limiting the ability to assess 
temporal changes associated with dietary transition and disease 

progression. In contrast, the present study used a longitudinal 
approach to track shifts in Fusobacterium and Salmonella populations 
within individual animals over time in response to 
feedlot management.

Despite the belief that fecal excretion of F. necrophorum is the 
primary source of foot rot, the presence of F. necrophorum in feces is 
rare (Nagaraja et al., 2005). Smith and Thornton (1993) reported 2.5% 
(2/81) of calves sampled on a farm experiencing necrobacillosis were 
fecal positive for F. necrophorum biovar A (i.e., subsp. necrophorum). 
This led the authors to conclude that a surprisingly small proportion 
of cattle were excreting F. necrophorum despite high ruminal 
prevalence (83%). Moreover, neither fecal nor soil Fusobacterium were 
selected for model inclusion when estimating the LA occurrence 
within pens (Weinroth et al., 2019). In English sheep farms, Clifton 
et al. (2019) reported F. necrophorum was not ubiquitous in soil, and 
was only cultured from the surface of wet, highly-trafficked areas. This 
suggests F. necrophorum contamination of soil is transient. Kilama 
et al. (2024) reported that bull feces were negative for F. necrophorum 
subsp. necrophorum, subsp. funduliforme, and F. varium when assayed 
using qPCR; however, 12.5% of fecal samples were F. varium positive 
following enrichment. In the current study, fecal F. necrophorum 
subsp. necrophorum and subsp. funduliforme prevalence did not differ 
from feedlot arrival to harvest and were not associated with LA 
presence (Figures  3A,B). Jennings et  al. (2021) reported colonic 
F. necrophorum subsp. necrophorum prevalence ranged from 0 to 
19.6% over a 231-d feeding trial, with prevalence greatest on d 112. 
Mean fecal prevalence of F. necrophorum subsp. necrophorum in the 
current study was 16.8%. The increased prevalence of F. varium from 
d 35 to harvest is potentially associated with increased ruminal 
prevalence over the same timeframe (Figure 3C). Nonetheless, the 
lack of a similar response in F. necrophorum subsp. necrophorum 
warrants further investigation. Fecal Fusobacterium abundance in the 
current study was low and not altered by collection day or LA 
prevalence. Previously, Kim and Wells (2016) assigned 7 bovine fecal 
microbiome sequences out of 13,663 to Fusobacteria (0.0005%; Kim 

TABLE 6 Absolute abundance (copies/g) of Fusobacterium necrophorum subsp. necrophorum, F. necrophorum subsp. funduliforme, and F. varium in 
the feces of feedlot beef steers with and without liver abscesses.

Item Liver abscesses P-value1

Not present Present SEM2 Trt Time Trt × Time

n 42 42

Fusobacterium necrophorum subsp. necrophorum

 d 5 2.09 × 104 1.34 × 107 5.196 × 106 0.28 0.32 0.32

 d 35 9.39 × 104 1.56 × 105

 End3 1.81 × 102 7.62 × 104

Fusobacterium necrophorum subsp. funduliforme

 d 5 2.83×103 1.01 × 105 3.846 × 104 0.19 0.49 0.41

 d 35 6.88 × 103 1.13 × 104

 End3 9.72 × 103 2.81 × 104

Fusobacterium varium

 d 5 6.21 × 104 5.23 × 104 1.184 × 105 0.10 0.35 0.26

 d 35 3.86 × 105 1.96 × 103

 End3 1.18 × 104 1.01 × 104

1Trt = treatment effect; Trt × Time = treatment × sampling time effect. 2Standard error of the mean. 3Study end was on d 250 for block 1 steers and d 221 for block 2 steers.
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and Wells, 2016), further suggesting the lower GIT is an unfavorable 
environment for Fusobacterium survival and proliferation.

The abundance of F. necrophorum subsp. necrophorum in 
abscessed liver tissue was greater than in healthy liver tissue. This was 
expected and in agreement with previous reports (Stotz et al., 2021; 
McDaniel et al., 2024b). An unexpected response, however, was the 
lack of difference in F. necrophorum subsp. necrophorum prevalence 
between healthy and abscessed liver tissue. Even though earlier 
studies have documented F. necrophorum subsp. necrophorum in 
healthy liver tissue (Stotz et al., 2021; McDaniel et al., 2024a, 2024b), 
the prevalence of subsp. necrophorum in LA in the current study 
(54.8%) is less than the reported average of 79.3% for fed beef steers 

(Herrick et al., 2022). Potential reasons for this disparity include study 
scale (i.e., feedlot specific vs. national) and that half the liver samples 
received at LIRU from cattle recorded to have LA did not have a 
physical abscess in the processed sample. As a result, it is possible the 
abundance and prevalence reported in the current study is 
an underestimation.

When rumenitis or intestinal barrier dysfunction occurs, the 
translocation of gut bacteria and pathogens into portal circulation is not 
necessarily selective. Hence, it could be expected that greater ruminal 
fluid prevalence of F. necrophorum subsp. funduliforme will lead to 
greater liver prevalence of subsp. funduliforme than subsp. necrophorum. 
Nevertheless, prevalence of subsp. funduliforme in LA was 42.9% in the 

FIGURE 3

Prevalence of Fusobacterium necrophorum subsp. necrophorum (A) Fusobacterium necrophorum subsp. funduliforme (B) and Fusobacterium varium 
(C) in the feces of finishing beef steers with (Present; solid red line with square marker) and without (Not Present; solid black line with diamond marker) 
liver abscesses (LA). Samples were aseptically collected after feedlot arrival (d 5), 1 week after adaptation to the finishing diet (d 35), and the day before 
harvest (study end). Study end was on d 250 for block 1 steers and d 221 for block 2 steers. Error bars represent standard error of the mean. 
Trt = treatment effect; Trt × Time = treatment × sampling time effect.
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current study. Herrick et  al. (2022) reported subsp. funduliforme 
prevalence to range from 15.4 to 44.0% in LA, with prevalence being 
greatest in the Pacific Northwest and lesser in the High Plains and 
Desert Southwest. Moreover, regardless of region, subsp. funduliforme 
prevalence in LA was not associated with subsp. necrophorum or 
Salmonella prevalence in LA (Herrick et  al., 2022). Lesser subsp. 
funduliforme prevalence in LA is likely attributable to the weaker 
promoter associated with the lktA operon in F. necrophorum subsp. 
funduliforme, thereby inferring less virulence when compared with 
subsp. necrophorum. The leukotoxin operon in F. necrophorum subsp. 
necrophorum and subsp. funduliforme is tricistronic and comprised of 
lktB, lktA, and lktC genes. Work by Tan et al. (1992) noted F. necrophorum 
subsp. funduliforme leukotoxin specific mRNA expression was 18-fold 
less than subsp. necrophorum. Tadepalli et al. (2008) later validated this 
competitive disadvantage, reporting a 21-fold decrease in gene 
expression of lktA in F. necrophorum subsp. funduliforme.

The abundance of F. varium in livers was low, with prevalence 
ranging from 4.8 to 7.1% for healthy and abscessed livers, respectively. 
Deters et al. (2024b) reported qPCR prevalence of F. varium in LA to 
be 1% before enrichment and 10.4% after enrichment. As F. varium 
does not contain the leukotoxin gene found in F. necrophorum subsp. 
necrophorum and subsp. funduliforme to evade host defense 
mechanisms, it is not surprising F. varium abundance in the liver is 
the lowest of the 3 Fusobacterium quantified. Since F. varium is 
considered actively invasive, it is likely that a portion of F. varium will 
inevitably reach the liver (Schwarz et al., 2023); however, whether this 
pathogenesis aids in the ability for subsp. necrophorum to enter portal 
circulation has yet to be demonstrated.

5 Conclusion

The results of this study provide important insights into the 
dynamics of Fusobacterium and Salmonella populations within the 
GIT of feedlot cattle with and without LA. While direct correlations 

between bacterial populations and LA presence were not observed, 
the findings herein highlight the complexity of factors influencing 
pathogen persistence in the GIT. For instance, the observed differences 
in fecal Salmonella concentration and prevalence between steers with 
and without LA suggest that gut barrier function may influence the 
risk of LA development. Moreover, the transition to a high-concentrate 
diet appears to create an unfavorable environment in the rumen that 
limits Salmonella persistence but enhances the proliferation of 
F. necrophorum subsp. necrophorum and F. varium regardless of LA 
presence. Thus, high-concentrate feedlot diets potentiate the risk of a 
Fusobacterium infection in the rumen, while facilitating Salmonella 
persistence in the lower GIT with greater days on feed. Although 
current results suggest Fusobacterium species are normal inhabitants 
of the ruminal microbiome in feedlot cattle, fecal Fusobacterium 
abundance and prevalence is low. Nevertheless, Fusobacterium were 
prevalent in both healthy and abscessed livers, with subsp. 
necrophorum abundance being greater in abscessed liver tissue. In 
conclusion, entry of Fusobacteria and Salmonella into portal 
circulation is possible throughout the GIT though the abundance and 
prevalence of these bacterial populations are not directly suggestive of 
LA formation. These results underscore the need for further 
investigation into the complex interactions between host immunity, 
gut microbiome dynamics, and pathogen colonization. Future 
research should focus on how dietary transitions affect microbial 
communities in modulating Fusobacterium and Salmonella 
populations in feedlot cattle. Additionally, studies investigating the 
effects of feedlot health management practices on gut epithelial 
integrity and LA formation in feedlot cattle will aid in understanding 
the broader factors influencing LA susceptibility and progression.
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TABLE 7 Absolute abundance and prevalence of Fusobacterium necrophorum subsp. necrophorum, F. necrophorum subsp. funduliforme, and F. varium 
in the livers of feedlot beef steers with and without liver abscesses.

Item Liver abscesses P-value

Not present Present SEM1 Trt

n 42 42

Absolute abundance, copies/g

  Fusobacterium necrophorum subsp. 

necrophorum
8.33 × 105 6.13 × 107 1.983 × 107 0.03

  Fusobacterium necrophorum subsp. 

funduliforme
6.96 × 104 5.17 × 104 3.397 × 107 0.29

 Fusobacterium varium 3.16 × 102 2.66 × 103 1.273 × 103 0.20

Prevalence, %

  Fusobacterium necrophorum subsp. 

necrophorum
50.00 54.76 7.791 0.67

  Fusobacterium necrophorum subsp. 

funduliforme
40.48 42.86 7.697 0.83

 Fusobacterium varium 4.76 7.14 3.690 0.65

a,b,cMeans with different superscripts in same row differ, p ≤ 0.05. 1Standard error of the mean.
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