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Biodegradable hydrogels and
microbial consortia as a
treatment for soil dysbiosis

Renee A. Davis , Korena K. Mafune * and Mari K. H. Winkler

Department of Civil and Environmental Engineering, University of Washington, Seattle, WA,

United States

Terrestrial microbial communities drive many soil processes and can be pushed

into a state of dysbiosis upon disturbance. This dysregulation negatively impacts

soil biogeochemical cycles, which threatens plant and soil health. E�ective

treatment of soil dysbiosis requires simultaneous restoration of multiple system

components, addressing both the physical structure of soil and its microbial

communities. Hydrogels with microbial consortia simultaneously remedy soil

hydrodynamics while promoting microbial reestablishment. The purpose of

this review is to shed light on soil management practices through the lens of

soil dysbiosis. This is important to address not only for soil health and crop

productivity, but also to mitigate climate change through improved soil carbon

sequestration and reduced greenhouse gas emissions. This review positions

hydrogels and microbes as tools for the treatment of soil dysbiosis, contributing

to agricultural and climate resilience.
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1 Introduction

Microbial organisms (e.g., bacteria, archaea, and fungi) operate in a network of
multifactional communities that drive biogeochemical soil processes (Philippot et al.,
2024; Sokol et al., 2022; van der Heijden et al., 2008). Anthropogenic activities can
disturb the equilibrium of these communities, pushing them into a state of dysbiosis,
which is characterized by an imbalance in soil microbial functionality. When soils
are in a dysbiotic state, abiotic and biotic processes are negatively impacted. These
altered processes push the ecosystem out of balance, hampering naturally occurring
healthy plant-soil feedback loops, which directly and indirectly influence aquatic and
atmospheric systems (Fra̧c et al., 2022; Giovannetti et al., 2023; Weller et al., 2002). Over
the last decade, the increased use of the term “dysbiosis” in environmental studies has
warranted the consideration of what defines a balanced state in agricultural settings. Both
homeostasis and eubiosis are terms originating from the medical field and describe a
healthy state of a person or their microbiome, respectively. They are both set relative
to the definition of dysbiosis, which describes a diseased state (Iebba et al., 2016).
The term homeostasis is more broad and can be used when describing the health of
the ecosystem at scale (e.g., a balanced equilibrium among the kingdoms of life, such
as plants, bacteria, and fungi), while eubiosis can be used when viewing soil health
through the lens of microbial community composition (e.g., a balance of healthy bacteria,
fungi, and archaea that promote healthy processes) (Dyke and Weaver, 2013). Therefore,
when soils are in a homeostatic state their biogeochemical processes move closer to
a state of equilibrium, which creates a more temporally stable system. An example
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of soils that have been far removed from homeostasis are ailing
agricultural soils, which often have multiple issues, such as
displaced microbial communities (i.e., dysbiosis), high salinity, low
nitrogen (N), phosphorus (P), and potassium (K) availability, and
altered pH (Giovannetti et al., 2023). The combination of these
issues directly impacts the equilibrium of the ecosystem.

For example, a major reason why there has been a global
decline in crop yields over the last several decades is because
soils are in dysbiosis, and biogeochemical cycles are unbalanced.
This decline has resulted in a critical conundrum regarding global
food security and bioenergy supply (Klock et al., 2024; Wing
et al., 2021), as food demand is projected to increase by 50%
to support the global population in 2050 (Falcon et al., 2022).
Often, management strategies prioritize increasing yields from a
plant-centric above-ground perspective; for instance, by focusing
solely on solutions that boost crop yield without considering other
potential repercussions. However, without a shift to more holistic
management approaches that focus on soil eubiosis to balance soil
microbial processes, food and energy security will be increasingly
harder to achieve (Amelung et al., 2020; Lal et al., 2011; Moinet
et al., 2023). Therefore, we are entering a part of the Anthropocene
where human impact on natural systems is so great that current
management practices are not viable solutions for a sustainable
future (Currie et al., 2023; Ramos and Timmis, 2021).

Due to these concerns, the focus has started to shift toward
managing ecosystems through the perspective of soil dysbiosis, as
it is a critical factor to be addressed in the search for climate-
smart agricultural solutions (Purohit et al., 2024; Sofo et al., 2024).
However, it is still not a term that is commonly used or considered
amongst the broad interdisciplinary scientific community when
considering the future management of ecosystems. A search for
“soil” and “dysbiosis” (i.e., ((soil) AND (dysbiosis))) among peer-
reviewed research articles and reviews in the JSTOR database over
the last 30 years (1995–2025) returned 133 results, which narrowed
to 64 articles when “agriculture” was included. However, no results
were achieved when the search was refined to pair the term
“soil” with “dysbiosis” (i.e., ((soil dysbiosis) AND (agriculture))),
reflecting the limited attention this term has received (in some
cases, the imbalance is referred to as “soil microbial dysbiosis”,
but only 16 results are returned when this term was paired with
“agriculture”). Therefore, the main driver of this review is to
shed light on soil management practices through the framework
of soil dysbiosis while emphasizing the importance of practices
that promote eubiosis by strengthening soil microbial processes
that can help move closer to a net state of soil and ecosystems
homeostasis. Therefore, management practices that focus on
addressing soil dysbiosis represent a powerful leverage point for
addressing these interconnected challenges in agriculture. Certain
sustainable agricultural management practices have turned to trials
that apply biofertilizers with microbial consortia, many of which
show promise in restoring microbial function while promoting
plant health (Waltz, 2023). Biofertilizer formulations consisting of
microbial consortia can address several aspects of soil geochemistry
and nutrient availability, such as P and K solubilization and other
plant growth promoting aspects such as phytohormone production
(Zuluaga et al., 2024; Olaniyan et al., 2022; Poveda and González-
Andrés, 2021). However, these products face several challenges with
market adoption due to inconsistent viability, short shelf life, and

unknown interactions with plants and native soil microbes (Fadiji
et al., 2024; Vejan et al., 2019). Therefore, holistic solutions that
aim to address soil dysbiosis via the reestablishment of eubiotic
microbial communities through biofertilizer application must also
consider the overall impact on the balance of surrounding systems
and how practices can foster long-term resiliency.

2 Soil dysbiosis mechanisms and
impacts

Soil microbial communities are diverse and interconnected,
comprising bacteria, archaea, fungi, protozoa, and nematodes;
all of which can form complex networks with plants. These
complex networks exist in either balanced (eubiotic) or imbalanced
(dysbiotic) states (Fra̧c et al., 2022), and this can significantly
impact ecosystem services (Banerjee et al., 2018). Approximately
38% of the earth’s terrestrial surface is agricultural land (Paustian
et al., 2019). In these soil systems, practices such as tilling,
fertilization, and pesticide use negatively impact biodiversity
(Kepler et al., 2020; Wipf et al., 2021), shifting soil functional
and interactive profiles, which can disrupt processes that are
crucial to the balance of the system. There are many biological
interactions that occur within the soil’s geochemical context, where
microbial activities can influence different nutrient pools, such as
carbon (C) and N pools, through extrapolysaccharide secretion and
necromass formation while also contributing to soil aggregation
(Costa et al., 2018; Wang et al., 2021). Below, we highlight various
examples of how anthropogenically induced soil dysbiosis has
shifted geochemical processes out of equilibrium and the aftermath
that it has on societal and planetary health.

One biogeochemical cycle that is clearly in an unbalanced state
is the N cycle, and how soils are managed plays a crucial role,
as soil dysbiosis causes “leaky” N systems which cause a plateau
in agricultural yields. Part of this can be attributed to the fact
that intensive agricultural practices disrupt key genetic functions
like nitrogenase activity (which regulates biological N-fixation
via bacteria), while simultaneously increasing N loading to the
environment via fertilizer application. This has increased nutrient
leaching, water pollution, and greenhouse gas (GHG) emissions
(Daisley et al., 2022; Zhang et al., 2021; Yang et al., 2024; Wipf et al.,
2021; Suman et al., 2022; Wan et al., 2025). This is of particular
concern with nitrous oxide (N2O) emissions, which is∼300x more
potent than carbon dioxide (CO2) on a per-molecule basis (Tian
et al., 2020). Overfertilized soils are the biggest contributor to global
anthropogenic N2O emissions (Ramzan et al., 2020). It has been
shown that the application of N fertilizer can alter soil pH and
N and P availability, which subsequently impacts the ammonia-
oxidizing archaea (AOA) and bacterial (AOB) communities. These
functional groups are vital intermediates in soil N processes (Ma
et al., 2023), as AOB communities produce significantly more N2O
than AOA (Hink et al., 2017). Further, specialized processes like N-
fixation and nitrification undertaken by certain bacterial taxa are
particularly vulnerable to N loading, as healthy communities that
can promote closed-loop N-cycling are typically displaced under
heavy fertilization (Calderón et al., 2017). This impaired biological
cycling of N paired with copious amounts of N additions increases
losses to aquatic systems (through leaching of nitrate) and the
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atmosphere (as N2O) (Menegat et al., 2022; Shanmugavel et al.,
2023).

Agricultural practices and the induction of soil dysbiosis also
negatively impairs the C cycle, which is directly linked to theN cycle
(Osler and Sommerkorn, 2007). It is widely known that microbial
communities play a critical role in decomposition processes, which
influence soil organic matter accumulation and C-sequestration
(Tao et al., 2023). Agricultural soils are typically depleted in
soil C due to reduced net primary productivity, biomass export,
nutrient depletion, and anthropogenic disturbances. Sustainable
management practices that aim to shift an ecosystem closer to
equilibrium by addressing soil dysbiosis could reverse this trend,
enabling soils to act as a significant C sink with a global potential
to store up to 1.85 Pg C/yr (Zomer et al., 2017). If atmospheric
C could be more efficiently sequestered and soils better managed
for long-term storage, climate-change mitigation efforts could be
greatly advanced.

In addition to N and C cycling, water availability and P
resources are strained when soils are managed in a way that
promotes dysbiosis. From a water resource perspective, growing
crops on a global scale is extremely water-intensive, and the
recent increase in wide-spread drought has raised concern on
how to increase crop yield while minimizing the use of finite
water resources (Chen et al., 2016; Poudel et al., 2021). From a
nutrient perspective, P is an essential nutrient for plant growth
and a common fertilizer component. However, P is a nonrenewable
resource derived from mined rock phosphate and is facing
rising costs and geopolitical instability (Cordell et al., 2009).
Therefore, how to manage ecosystems in a way that returns
soil communities to balanced state is challenging because there
are microorganisms that can increase soil water holding capacity
through soil microaggregation (Zheng et al., 2018; Pauwels et al.,
2023), others that can solubilize residual P to plant available P, and
many have multi-functional benefits, such as increasing plant water
uptake and resiliency, while providing plants essential nutrients.

An example of this can be viewed with arbuscular mycorrhizal
fungi (AMF), which are an obligate plant mutualist and form
in extensive belowground networks. AMF associate with plants,
exchanging water and nutrients, such as P and N, for plant
derived photosynthates (Lanfranco et al., 2018). This mutualism
is ancient and broad, dating back to the terrestrial expansion of
plants. Today, ∼85% of land plant families associate with AMF
(Strullu-Derrien et al., 2018). AMF can enhance plant productivity,
as well as increase resiliency to salinity, pollution, and disease
(Begum et al., 2019). Recent research has illuminated how they
act as “fungal highways” and orchestrate bacterial diversity around
their hyphae (Warmink et al., 2011; Zhang et al., 2022). They
are also key components of the global soil C pool, storing ∼13
Gt of the CO2 fixed by plants (Hawkins et al., 2023). To add
to the complexity, plants can actively influence subterranean
communities by releasing root exudates that recruit specific
microbes, for example, during nutrient limitations (low N and P)
or drought conditions (Williams and de Vries, 2020; Pascale et al.,
2019). However, AMF abundance and network connections are
disrupted by intensifying agricultural practices (particularly tilling),
sending them into a dysbiotic state which can have a cascade effect
on other interactive microbial communities (Wipf et al., 2021).
For instance, the disruption of AMF communities can negatively

impact plant nutrient allocation, soil structure, and water retention
while limiting plant root exploration (Hartman and Tringe,
2019). Additionally, the impact that this has on AMF-associated
microbial communities and the repercussions those impacts hold
for soil biogeochemical cycling remains widely unexplored. Given
these complex interactions, effective treatment of soil dysbiosis
requires simultaneous restoration of multiple system components,
including microbial communities, soil structure, and nutrient
dynamics. Though the use of biofertilizers has started to expand
with sustainability goals as a focus, there are various things that
need to be considered for efficient delivery systems. For example,
shifting focus away from practices that aim to only increase plant
yield at the expense of soil eubiosis.

3 Hydrogel-based delivery systems

Hydrogel-based delivery systems hold high potential as
carrying agents for biofertilizers that aim to address soil dysbiosis.
Hydrogels have been studied for biological use for over 50 years
(Wichterle and Lím, 1960). They can be created from natural or
synthetic materials (Liu et al., 2022), but organic polymers are
the most common (Patra et al., 2022; Tariq et al., 2023). The
hydrogel structure consists of matrices created through either
chemical methods, such as cross-linking, or physical processes,
like the hydrophobic interactions among polar groups (Antunes
et al., 2024). Various encapsulation technologies, including spray
drying, emulsification, and ionic gelation for cross-linking are
used to produce hydrogels (Vejan et al., 2019), and they can be
shaped into various forms (e.g., spheres/beads). The hydrophilic
matrices in a hydrogel construct can absorb and desorb water into
the soil, hence regulating soil moisture (Patra et al., 2022). These
structures contain micropores and allow for the encapsulation and
immobilization of various agrichemicals, beneficial microbes, or a
combination of both. While agrochemicals have been a primary
focus, there is growing interest in co-immobilizing multiple
microbial strains for synergistic effects (Antunes et al., 2024;
Mafune and Winkler, 2024). Once applied, these materials degrade
within 12 weeks, with degradation rates influenced by several
environmental and material factors (Kurowiak et al., 2020; Wu
et al., 2016).

In the context of microbial consortia, hydrogels shieldmicrobes
from environmental fluctuations and dehydration (Antunes et al.,
2024; Liu et al., 2022). This protection enhances microbial survival
and facilitates controlled release dynamics for nutrients, water,
and microbes (Chaparro-Rodríguez et al., 2023). When applied
to soil, hydrogels can induce controlled delivery of nutrients
such as N, P, and K, as well as water (Hamed et al., 2024; Hu
et al., 2021). In addition to prokaryotic microbes (i.e., bacteria
and archaea), hydrogels can also house fungal spores, hyphae,
and propagules. For instance, recent compatibility tests have
demonstrated variation in AMF spore germination when co-
immobilized with diazotrophic bacteria in alginate beads (Mafune
et al., 2024). Combined, the versatility of hydrogels as moisture-
regulators and carriers for diverse microbial consortia, chemicals,
and physical components (e.g., zeolites or biochar) may offer
a multi-functional competitive advantage in commercializing
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FIGURE 1

Contrasting states of soil health: dysbiosis drives nutrient leaching and depletion while eubiosis promotes nutritional increases through microbial

flourishing. Inspired by concepts conveyed in Fra̧c et al. (2022), Giovannetti et al. (2023), and Purohit et al. (2024).

technology that aims to restore soils to a eubiotic state with the goal
of returning ecosystem processes to equilibrium.

4 Restoration mechanisms

The restoration of soils in a state of dysbiosis requires the
integration of practices that aim to improve soil physical, chemical,
and biological properties to improve soil health/homeostasis. As
this review has been emphasizing, soil dysbiosis is directly and
indirectly linked to soil abiotic processes. This is why approaching
the core issue of soil health through the lens of ecosystem
homeostasis is important, as holistic frameworks are integral to
decision making that results in restoration success (Wyant et al.,
1995; Heneghan et al., 2008). By focusing in on how balanced
microbial communities can promote beneficial soil aggregation,
balanced pH, plant growth, C accumulation and long-term storage,
and “non-leaky” nutrient cycles, scientists and engineers can
hopefully be inspired to innovate restorative soil solutions through
a broadened perspective.

When considering restoration practices that can have multi-
functional attributes, microbial-embedded hydrogels with a mixed
consortium can simultaneously address all three areas of soil health
(chemical, physical, and biological), which are all intrinsically
linked to some extent in soils. For instance, in terms of soil
physical properties, hydrogels undergo significant volume changes
as they absorb and release water, regulating soil moisture through
gradual diffusion. This leads to improved water hydrodynamics,
including water holding capacity and reduced soil compaction (e.g.,
a decrease in soil bulk density so roots have more exploration
accessibility) (Patra et al., 2022). The physical changes induced
by hydrogels create conditions that support both plant root
development and microbial re-establishment (Figure 1). Further,
these conditions also can drive nutrient transformation and

translocation, which links the hydrogels impact on soil physical
properties to soil biological and chemical properties.

Another example of the hydrogel construct as a multifunctional
biotechnology for soil restoration can be demonstrated from
the viewpoint of soil chemistry. The hydrogel can biodegrade
slow enough to support microbial activities that may drive soil
organic C formation. The high-water content of the hydrogel
(approximately 75% at capacity) also creates an environment that
facilitates plant-microbe interactions (Aung et al., 2018; Gajić
et al., 2023). Hydrogel-encased consortia can include a variety of
beneficial organisms, including, but not limited to, diazotrophic
(N-fixing) bacteria, phosphate solubilizing bacteria, and AMF that
together drive nutrient availability and exchange. Outside of the
microbial players in the hydrogel, AMF can also orchestrate a
bacterial community in the rhizosphere that improves nutrient
availability, e.g. through increased P mineralization (Wang et al.,
2023; DiLegge et al., 2022). AMF also play an important role in
soil macroaggregation, impacting soil structure, which can further
support microbial growth and reestablishment (Hestrin et al.,
2021). This demonstrates how a complex biological community
within a hydrogel construct could benefit soil biological, physical,
and chemical properties.

Further studies would be needed to shed light on how hydrogel
consortia assemble, and how this assembly is influenced by soil
chemical and physical properties. Hydrogels have potential to
enhance synergistic community assembly by protecting microbes
from environmental stressors including dehydration, pH changes,
temperature fluctuations, and washout. This is particularly
important for plant growth promoting bacteria (PGPB), which are
often gram-negative (meaning that they have thinner cell walls)
and more sensitive to environmental stressors during biofertilizer
production (Chaparro-Rodríguez et al., 2023). The potential uses
and applications of hydrogels with microbes and/or consortia
go beyond nutrient restoration and mineralization processes.
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TABLE 1 Summary of hydrogel-based or microbial consortia agricultural studies, grouped by study type.

Type of hydrogel Inclusions Release rates Major findings Shelf life/viability Reference

Field studies

Maltodextrin and gum
arabic microcapsules

Bacillus subtilis B99-2 n/a Microencapsules
containing B. subtilis
were effective against
Rhizoctonia tomato rot.

B. subtilis had a greater
survival rate in
microcapsules (87.53±
0.84%) than wettable
powder (47.06± 1.49%)
after 540 days in storage.

Ma et al., 2015

Sodium alginate Paenibacillus polymyxa

MSRH5, Bacillus
nakamuraiMSRH1, and
Bacillus pacificusMSRH3

n/a Microbial consortia
produced indole acetic
acid (IAA) and improved
water retention during
salinity stress in wheat
plants.

n/a Saad et al., 2020

Lignin Ferrous sulfide
nanoparticles

n/a The composites removed
37.6% of Cd from soil
and 34.5% from water
spinach within 30 days,
while also increasing soil
nitrogen by 16.1% and
organic matter by 13.8%.
Soil microbial
functioning was also
improved.

n/a Wei et al., 2023

Sodium alginate and
chitosan microcapsules

Chlorantraniliprol Chlorantraniliprol
release increased linearly
in the first 12 h,
continued steadily to
48 h, and slowed from 46
to 92 h.

Microcapsules
containing
chlorantraniliprole were
effective as biocontrols
for rice stem borers.

n/a Yang et al., 2021

Layers of alginate, chitosan,
and modified starch

Bacillus velezensis NH-1 After 28 days in soil, the
release reached 2.51×
107CFU/g. After 45 days,
it increased to 108

CFU/g.

Monolayer alginate
microcapsules exhibited
the highest efficacy
(100%) in controlling
Fusarium wilt in the
field.

Viable cells detected in
ALG after 65 days in dry
storage.

Luo et al., 2019

Greenhouse studies

n/a Glomus mosseae,

Penicillium

simplicissimum, and
Trichoderma harzianum

n/a G. mosseae and T.

harzianum increased
plant growth more than
T. harzianum alone.

n/a Chandanie et al., 2009

Sodium alginate Dinotefuran (DIN) After 63 days, the
cumulative release of
DIN in hydrogels varied
by soil type and
temperature:
Black soil: Release
increased by
8.02–60.73% at 20◦C and
7.70–75.23% at 30◦C
(compared to 10◦C).
Yellow soil: Release
increased by
4.08–41.77% at 20◦C and
6.12–46.58% at 30◦C.
Red soil: Release
increased by
2.41–16.79% at 20◦C and
2.96–31.01% at 30◦C.

The release rates of DIN
encapsulated in
microspheres varied
based on temperature
and soil type, and
reduced signs of copper
toxicity.

n/a Du et al., 2023

n/a Azotobacter

chroococcum, Bacillus

polymixa, Pseudomonas

putida, and Glomus

intraradices

n/a The consortia improved
Stevia rebaudiana

growth. Dual
inoculations generally
yielded better results
than complex consortia.

n/a Vafadar et al., 2014

(Continued)
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TABLE 1 (Continued)

Type of hydrogel Inclusions Release rates Major findings Shelf life/viability Reference

Pot studies

Calcium alginate (Ca-alg) Pseudomonas putida A
(ATCC 12633) and
perlite

Ca-alg beads w/0.2%
perlite released microbial
cells at 4.2 x 105

CFU/mL. Beads w/0.4%
perlite released microbial
cells at 8.2 x 105

CFU/mL.

The beads enhanced
plant growth in
Arabidopsis thaliana,
with an increase in
colonization from 2.1×
104 to 9.2× 105 CFU/g
soil after 21 days.

The beads remained
viable for 150 days at
both 4◦C and 24◦C, with
no significant loss in
viability.

Liffourrena and
Lucchesi, 2018

n/a Funneliformis mosseae

and Pseudomonas putida

n/a The consortia improved
growth and defense
against Tuta absoluta,
biomass increased by
57.34% and 54.46% with
single inoculations, while
dual inoculation led to a
255.49% increase.

n/a Zhao et al., 2024

Sodium alginate Ochrobactrum ciceri Slow release over the
course of 30 days.

The beads were effective
against against
Sclerotium rolfsii in vitro,
and improved chili plant
growth.

n/a Riaz et al., 2023

In planta studies

Sodium alginate Pseudomonas

plecoglossicida R-67094
and Rhizophagus

irregularisMUCL 41833

n/a Co-entrapment of P.
plecoglossicida improved
hyphal branching of R.
irregularis in potato
plant roots.

n/a Demortier et al., 2017

Sodium alginate Pseudomonas sp. DN18,
zinc oxide nanoparticles,
and salicylic acid

n/a The beads were effective
against Sclerotium rolfsii,
and improved growth in
rice seedlings.

n/a Panichikkal et al., 2021

In vitro studies

Sodium alginate Glomus mosseae and
Trichoderma harzianum

n/a The percentage of viable
propagules for T.
harzianum peaked on
day 6 and G. mossea

reached its peak on day
14. Both can grow
outside the alginate
beads.

All treatments had
similar final germination
rates by day 14.

De Jaeger et al., 2011

Leather waste collagen Ensifer sp.Y1 Cumulative release of N
and K reached∼55%
after 60 h.

Controlled release of N
and K occurred over the
span of 40 days.

n/a Hu et al., 2021

Calcium alginate (Ca-alg),
blended with supplemental
materials

Cellulosimicrobium

cellulans GS6
Release rates varied
based on bead
composition (vR/day):
Ca-alg: 0
Ca-alg w/gelatin: 8.9 x
103

Ca-alg w/cellulose: 13 x
103

Ca-alg w/chitin: 22.8 x
103

Ca-alg w/olive oil: 40.9 x
103

Modifying capsule
materials can improve
the controlled release of
microbes.

n/a Liu et al., 2008

Sodium alginate,
carboxymethyl cellulose,
eggshell

Copper (Cu2+) ions Slow release in a model
soil solution over a
period of 14 days.

The biocomposites
absorbed Cu2+ions
depending on moisture
content (up to 281mg
g−1 for wet and 49mg
g−1 for dry composites).

n/a Skrzypczak et al., 2019

(Continued)
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TABLE 1 (Continued)

Type of hydrogel Inclusions Release rates Major findings Shelf life/viability Reference

Calcium alginate Saccharomyces cerevisiae

and Beauveria bassiana

Variable. Microbial consortia
affected CO2 release
rates, an attractant for
agricultural pests
including western corn
rootworm larvae.

n/a Vemmer et al., 2016

Sodium alginate and
chitosan microcapsules

Trichoderma virideand
Cu2+ ions

T. viride spore release
lagged initially, then rose
exponentially. Cu2+ ions
had a faster initial
release, which eventually
slowed over a period of
14 days.

Electrostatic interactions
between microscapsule
materials affected
encapsulation efficiency
and stability.

The presence of Cu2+

ions did not affect T.
viride spore viability.

Vinceković et al., 2016

Sodium alginate Glyphosate (Gly) with
attapulgite

60% of Gly was released
in alkaline solution (pH
= 8.5) within 70 h (the
rate was 20% in neutral
and acidic pH
conditions).

pH impacted release
rates of Gly. Alginate
offered better protection
against UV and
temperature fluctuations,
retaining 95% of Gly
after 300 h of exposure.

The half-life of Gly in
soil was 65.89 h, and Gly
encased in hydrogel had
a similar half-life (66.27)
whereas attapulgite-Gly
had a shorter half-life of
31.18 h.

Zha et al., 2022

Some calcium-alginate hydrogel bead systems incorporate the
entomopathogenic (insect pathogen) fungus Metarhizium spp. for
pest control (Antunes et al., 2024). Alginate beads also have
been tested in bioremediation practices, for instance, Pseudomonas

fluorescenswas encased in alginate beads to explore their efficacy on
PCB degradation (Power et al., 2011).

5 Future directions

Biodegradable hydrogels with microbial consortia offer a
sustainable solution for soil health due to their customizable nature
and broad applications. However, several key knowledge gaps need
to be addressed. The first priority is optimizing microbial consortia
composition, and understanding how different players interact
to influence soil dynamics and plant growth. Ideally, hydrogel
consortia should be selected based on the ecosystem they are
intended to be applied to (Mafune and Winkler, 2024), and more
research is needed. PGPB serve diverse functions in soil, from
N-fixation to P-solubilization and organic matter decomposition.
Therefore, some species like Azospirillium brasilense, are versatile
and often used in commercial biofertilizers (Rodriguez et al.,
2004). These rhizospheric “multitaskers” are particularly valuable
for inclusion in hydrogel formulations. However, repercussions of
their application could be different across ecosystem types, and
native communities could potentially be better suited to promote
soil eubiosis. This is because interactions between bacterial species
can create beneficial synergies—for instance, certain Pseudomonas

strains can enhance the N-fixing ability of Azospirillum brasilense,
while increased N availability in turn promotes Pseudomonas

aeruginosa growth (Sanow et al., 2023; Marogi et al., 2024).
Understanding these metabolic relationships across different soil
types and in ecosystems is important for designing and engineering
hydrogel consortia and synthetic communities.

An interesting pursuit in search of these solutions would be
to understand how hydrogel encased communities derive C from

the surrounding environment and hydrogel material for either
growth or respiration, since this determines how much soil organic
C can be accumulated and sequestered (Tao et al., 2023). These
further impacts physical parameters such as aggregate stability
and water repellency (Blanco-Canqui and Benjamin, 2013). The
addition of particles to the mixed-microbial hydrogel construct
(such as biochar) can also enhance how physical, chemical, and
biological processes are benefitted. For example, biochars have
porous surfaces that provide additional habitat for microbes
while contributing to potentially long-term C sequestration (Yang
et al., 2020). Spatial patterns show clustering around specific
microniches, such as root and biochar micropores (Schmidt
et al., 2018). Within these microniches, various levels of resource
exchange and interkingdom signaling occur, highlighting the
importance of a healthy rhizosphere microbiota (DiLegge et al.,
2022).

To date, most research on microbial based hydrogels has been

limited to greenhouse, pot, and other in vitro studies, though a
couple of studies have applied microbial hydrogels in the field

(Table 1). This demonstrates that long-term hydrogel application

studies are important to evaluate real-world performance over

multiple growing seasons. These studies would help determine

optimal application rates and treatment durability; however, it

is emphasized that major consideration should be given when

selecting what microbial consortia is to be applied. This is because

there is little knowledge on what repercussions are associated with

applying non-native or genetically modifiedmicrobes into different

soil communities (Mafune and Winkler, 2024). The degradation

process of hydrogels in soils also requires further investigation.
While two studies have addressed the biodegradation of alginate

beads (Kurowiak et al., 2020; Song et al., 2020), to our knowledge,
none have fully characterized the products of degradation, which
may have further benefits in soil. For example, oligomers from
alginate, chitosan, and carrageenan can support plant growth and
disease protection through various pathways and mechanisms
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(Moenne and González, 2021). Downstream degradation products
could provide additional benefits, with C-richmonomers serving as
nutrients for microbes, fungi, and plants.

From a commercial perspective, several factors will influence
market adoption of biodegradable hydrogels with microbial
consortia. The plant growth-promoting properties of microbial-
encased hydrogels suggest they be used as a biofertilizer, either as
supplement or replacement for conventional fertilizers. However,
successful commercialization will depend on achieving cost-
effective manufacturing at scale, while concurrently balancing
chemical inputs to soils. The cost of fertilizers has been rising
and when paired with the concern of widespread soil dysbiosis,
farmers face challenges sustaining profitable yields. For example,
ammonia production has been steadily increasing over the last few
decades, and costs fluctuate between 400 and 1600 USD/t because
of transportation costs from centralized manufacturing centers,
as well as natural gas prices and sources (Fernández et al., 2024;
Zhang et al., 2020). Additionally, the production of conventional
N fertilizers is energy-intensive and accounts for approximately
2% of global CO2 emissions (Menegat et al., 2022). P is a non-
renewable resource and comes with its own set of rising costs and
geopolitical instabilities (Brownlie et al., 2023). This combination
not only puts stakeholder livelihoods at risk, but it also contributes
to the looming concern of global food security. Therefore, there
is a need to determine the energy, production, and application
costs of hydrogels at scale. There is also a need to understand the
potential for this biotechnology in the Carbon Dioxide Removal
(CDR)market, while also including emissions other than CO2, such
as N2O. As N2O is∼300x more potent than CO2, is emitted largely
from fertilized soils, and if the reduction is prioritized, it could
greatly benefit the environment, as well as boost CDRmarket efforts
and reach (Tian et al., 2020).

As high-throughput culturing technology advances, there may
be a viable niche for cost-effective and labor-efficient customization
of enrichment, isolation, and reapplication of site-specific, well-
adapted microbial consortia. These would have the added benefit
of being non-invasive and naturally evolved to dominate and adapt
to local conditions. It could provide an avenue to introduce high-
performing strains into the field at higher concentrations, further
accelerating N and C translocation and boosting plant yield.

Overall, in vitro and greenhouse studies have provided a
foundation for understanding microbial consortia encased in
a hydrogel construct. Moving forward, research into microbial
synergies, field application methods, ecological impacts, and
biodegradation profiles are key. Efforts along these lines will
not only advance the scientific understanding of hydrogel-
microbe interactions, but also provide the evidence needed to

accelerate adoption of this promising biotechnology for sustainable
agriculture and restoration practices beyond the agricultural sector.
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