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Bactrocera dorsalis (Hendel)
(Diptera: Tephritidae) adults
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Cui-Kang Xu, Qing-Xiu Xie and Xiao-Zhen Li*

Department of Plant Protection, College of Agronomy, Jiangxi Agricultural University, Nanchang,
China

Background: Different insect tissues represent heterogeneous niches with

distinct physiological and biochemical characteristics, and therefore host

different bacterial communities.

Methods: In this study, those overlapping and specific bacterial communities

in the female gut (fG), male gut (mG), female reproductive system (fR), and

male reproductive system (mR) of Bactrocera dorsalis (Hendel) adults were

determined by high-throughput sequencing targeting 16S rRNA gene.

Results: The richness of bacterial taxa based on OTU was higher in fR

compared to the other three tissues. Among the 29 identified bacterial

phyla, Pseudomonadota, Bacillota, and Bacteroidota were predominant,

while among the 48 identified genera, Enterobacter, Kluyvera, Asticcacaulis,

Mesorhizobium, and Serratia were common in the four tissues. fG harbored

specific bacterial genus Morganella, mG harbored specific bacterial genera

Vagococcus, Lactobacillus, Lactococcus, Lactobacillales, and Bacilli, fR

harbored specific bacterial genera Blastomonas, Ralstonia and Providencia,

and mR harbored specific bacterial genera Sphingobacteriia, Asticcacaulis,

Caulobacter, Caulobacterales, Bradyrhizobium, and Luteimonas. In the 35

annotated KEGG pathways, high-abundance bacterial taxa were mainly enriched

in these pathways of membrane transport, carbohydrate metabolism, amino

acid metabolism, replication and repair, and energy metabolism, while low-

abundance bacterial taxa were involved in these pathways of cardiovascular

diseases, circulatory system, and excretory system. The abundances of the 5

pathways associated with cardiovascular diseases, circulatory system, excretory

system, membrane transport, and polysaccharide biosynthesis and metabolism

exhibited greater variations among fG, mG, fR, and mR. Among them, the

two pathways abundances of cardiovascular disease and circulatory system

were higher in the reproductive system, whereas the other three pathways

abundances were higher in the female gut.

Conclusion: Our study revealed the abundance, composition and function of

overlapping and specific bacterial communities in the gut and reproductive

system of B. dorsalis, providing valuable information for inhibiting the
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occurrence of B. dorsalis by interfering with these functional bacterial

communities in tissues.

KEYWORDS

Bactrocera dorsalis, gut, reproductive system, bacterial diversity, specific bacterial
communities, function annotation

1 Introduction

Insects often coexist with symbiotic bacteria living inside
their bodies (Amdam, 2012; Shi W. et al., 2012). Of special
interest are insect-associated bacterial communities, some being
ubiquitous across different insect tissues, others being specific
to particular tissues (de Bekker et al., 2013; Santos et al.,
2023). For example, Enterobacter, Kluyvera, and Asticcacaulis are
very common in the gut and reproductive system of insects,
such as Phlebotomus papatasi (Scopoli) (Maleki-Ravasan et al.,
2014), Ceratitis capitata (Wiedemann) (Ben-Yosef et al., 2008),
and Bactrocera cacuminata (Hering) (Thaochan et al., 2010). In
contrast, Wolbachia strains wCer1 and wCer2 are gram-negative
bacteria that exhibit significant tissue specificity, primarily residing
in the reproductive system of insects (Riegler and Stauffer,
2002). Insect-associated bacteria may establish a mutualistic
symbiotic relationship with insects (Adair and Douglas, 2017),
where insects provide space and nutrient for their associated
bacteria, while the bacteria support insect growth and health
by aiding insects in obtaining nutrients or resisting pathogens
(Kandasamy et al., 2022). An example of such a mutualistic
relationship is that two lactic acid-producing bacteria, Enterococcus
casseliflavus and Lactococcus lactis, may increase the resistance
of Bactrocera dorsalis (Hendel) to β-cypermethrin (Zeng et al.,
2024).

Different insect tissues exhibit physiological and functional
differences. For example, insect guts may contain specific
substances, such as digestive enzymes, proteins, and vitamins,
which aid in the degradation and absorption of dietary
ingredients (Douglas, 2009); and insect reproductive systems
contain nutrients and enzymes related to the formation and
maturation of eggs or sperms, helping insects to reproduce
offspring (Gavriel et al., 2011). The different tissues of insects
represent heterogeneous niches with distinct physiological
characteristics, and may thus host their own specific bacterial
communities (Santos et al., 2023). This heterogeneity may drive
the adaptive evolutionary and tissue-specific distribution of insect-
associated bacterial communities. Meanwhile, insect-associated
bacteria may also require localization in specific insect tissues
to function optimally (Feldhaar and Gross, 2009; Lu et al.,
2016).

Bacterial communities in different insect tissues have received
considerable attentions. We retrieved over 50 articles from PubMed
database, exploring the diversity of bacteria in the gut of insects,
such as Laodelphax striatellus (Fallen) (Zhang et al., 2020), Recilia
dorsalis (Motschulsky) (Huang et al., 2023), Schistocerca gregaria
Forskål (Dillon et al., 2010), Sogatella furcifera (Horvath) (Bing
et al., 2020), and Zeugodacus cucurbitae (Coquillett) (Lakshmi

et al., 2023), and six articles retailing the bacterial communities
in the reproductive system of insects, such as B. dorsalis (Shi
Z. et al., 2012), B. minax (Enderlein) (Wang A. L. et al., 2014),
and Blattella germanica L. (Kakumanu et al., 2018). However, few
studies were conducted on those overlapping and unique bacterial
communities in specific insect tissues. Here, we only found 2 similar
articles: one recording the overlapping bacteria between the gut and
feces of B. germanica (Kakumanu et al., 2018), and the other one
determining the overlapping microbiota between the intestinal and
reproductive tract of chickens (Shterzer et al., 2020). Studying those
overlapping and specific bacterial communities in various insect
tissues may offer insights into the intrinsic relationship between
bacterial communities and the function of tissues associated with
bacteria.

Bactrocera dorsalis (Hendel), also known as the oriental
fruit fly, is a highly invasive pest of fruits and vegetables,
infesting a wide range of crops including citrus, mango,
carambola, and guava (Wang H. et al., 2014; Li X. Z. et al.,
2024). Due to difference in physiological and biochemical
characteristics, the gut and reproductive system of B. dorsalis
adults may harbor their specific bacterial communities, in addition
to sharing some common bacterial communities (de Bekker
et al., 2013). Phylogenetic analyses have shown that the gut
of B. dorsalis harbors bacterial genera, such as Enterobacter,
Citrobacter, Klebsiella, Pantoea, Pectobacterium, and Serratia
(Gwokyalya et al., 2024; Yong et al., 2017; Liu et al., 2016;
Behar et al., 2008), whereas its reproductive system contains
bacterial species, namely Enterobacter sakazakii, Klebsiella oxytoca,
Klebsiella pneumoniae, Raoultella terrigena, and Enterobacter
amnigenus (Shi Z. et al., 2012). However, the overlapping
and specific bacterial communities, particularly the functional
pathway underlying their enrichment, in the gut and reproductive
system of B. dorsalis still remained an area ripe for further
exploration.

This study aimed to elucidate the overlapping and specific
bacterial communities present in the gut and reproductive system
of male and female B. dorsalis. The gut and reproductive system
was chosen here because they are the main functional tissues of
B. dorsalis and the optimal ecological niches for the development
and proliferation of bacteria (He et al., 2022; Yin et al., 2024).
Due to the differences in physiological functions and nutritional
components among different tissues (Douglas, 2009; Gavriel et al.,
2011), we hypothesized that there would also be some variations
in bacterial taxa, as well as the abundance and functions of
bacteria communities within each tissue. Our study would provide
a comprehensive catalog of bacterial taxa present in B. dorsalis
different tissues, contributing to functional study of important
bacteria.
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2 Materials and methods

2.1 Sample preparation

The laboratory population of B. dorsalis was derived from 50
to 100 infested navel oranges (Citrus sinensis Osbeck cv. Newhall)
collected from an orchard (115◦65′E, 25◦97’N) in Ganzhou, Jiangxi
Province, China in late October, 2018. Larvae from these infested
oranges were isolated, and subsequently fed with an artificial
diet consisting of wheat bran (300 g), beer yeast (60 g), white
sugar (40 g), potassium sorbate (0.8 g), methyl-p-hydroxybenzoate
(0.8 g), and water (1,000 mL) until pupation. Pupae were kept in
a plastic tray containing 5 cm of loose wet soil (approximately
400 cm3) until adults emerged. Newly emerged adults were
separated by sex, and housed separately in an insect-rearing box
(78× 50× 55 cm), where they were provided with a diet consisting
of beer yeast, diluted honey (1%), and water (Li W. J. et al.,
2024). During the feeding process, the B. dorsalis population was
maintained at 26.5 ± 2◦C with 75 ± 5% relative humidity under a
14 h: 10 h (light: dark) photoperiod cycle.

Before sampling, 5-day-old virgin flies were starved for 12 h
to eliminate resident bacterial communities retained in their guts
and reproductive systems (Andongma et al., 2015). Flies were
then surface-sterilized with a 75% ethanol solution for 2–3 min,
followed by three rinses in sterile water before dissection. These
flies were carefully dissected using a blade on a plate containing
3 mL sterile phosphate-buffered saline (PBS, pH 7.4) underneath
a stereomicroscope (CNoptec, Chongqing, China). The female
gut (fG), male gut (mG), female reproductive system (fR), and
male reproductive system (mR), obtained through dissection, were
transferred separately into 2 mL centrifuge tubes each containing
1 ml of extract solution [TIANamp Genomic DNA Kit (TIANGEN,
Beijing, China)]. These tissues/samples were then homogenized.
Each tissue/sample type comprised three biological replicates, with
each replicate consisting of 30 guts or reproductive systems. All
samples were snap-frozen in liquid nitrogen, and subsequently
stored at−80◦C until DNA extraction.

2.2 DNA extraction and PCR
amplification

DNA was extracted from the above-mentioned frozen
homogenized samples using the TIANamp Genomic DNA
Kit (TIANGEN, Beijing, China), following the manufacturer’s
protocol. The integrity of the extracted DNA was verified by 1.5%
agarose gel electrophoresis, and its concentration was determined
by measuring the absorbance at 260 nm using a Nanodrop
spectrophotometer (Thermo Fisher Scientific, Madison, WI, USA).
For taxonomical profiling of bacteria, the universal primers,
forward 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and reverse
806R (5′-TACHVGGGTWTCTAAT-3′) (Johnson et al., 2019),
were used to amplify the V3–V4 hypervariable regions of the
bacterial 16S rDNA gene. Both the forward and reverse primers
were tagged with linker sequences, pad and Illumina adapter.
These primers were designed to incorporate an 8-nucleotide (nt)
barcode sequence to accommodate multiple samples. Polymerase
chain reaction (PCR) was performed in a total reaction volume
of 12.5 µL per sample. Each 12.5 µL reaction mixture comprised

0.5 µL of extracted DNA template, 0.25 µL of each forward and
reverse primer, 5 µL of 2×Hot Start PCR Master Mix (Invitrogen)
and 6.5 µL of ddH2O. The PCR cycling conditions were as follows:
initial denaturation at 95◦C for 5 min, followed by 30 amplification
cycles at 94◦C for 30 s, annealing 56◦C for 30 s, extension at 72◦C
for 60 s, and a final extension step at 72◦C for 10 min.

2.3 High-throughput sequencing and
bioinformatics analysis

The PCR amplification products were verified by 1.5% agarose
gel electrophoresis, purified using the AMPure XT beads kit
(Beckman Coulter, Beverly), CA, United States), and quantified
using the Library Quantification Kit for Illumina (Kapa, Woburn,
MA, United States). The length distribution of the DNA fragments
was analyzed using the Agilent 2100 Bioanalyzer (Agilent, Palo
Alto, CA, United States). The purified 16S amplicons from each
sample was pooled in equimolar amounts and subjected to
emulsion PCR to generate amplicon libraries (Andongma et al.,
2015). These libraries were paired-end sequenced (PE250) using the
Illumina MiSeq sequencer (Illumina, San Diego, CA, United States)
on the Illumina MiseqTM 2500 platform at Sangon Biotech
(Shanghai, China), following the standard protocols.

After sequencing all samples, the raw paired-end reads of
each sample replicate were merged using FLASH v3.3, with a
minimum overlap of 10 bp defined to obtain raw tags (Magoč
and Salzberg, 2011). Paired-end sequences were then trimmed
to remove mismatches in the barcode, more than two primer
mismatches, homopolymers shorter than 200 bp or longer than
8 bases, and chimera sequences. These were done using the
script Reads_Quality_Length_distribution.pl in Trimmomatic v3.0
(Bolger et al., 2014) and the UCHIME v4.2.4 (Edgar et al.,
2011). Quality-filtered and trimmed sequences were analyzed
using the quality control process of FastQC v0.11.5 (Brown
et al., 2017). Operational Taxonomic Unit (OTU) was generated
using an open-reference OTU-picking strategy, based on the
Usearch v5.2.0 algorithm with a 97% similarity cutoff level (Edgar,
2010). OTUs with low abundance (with a minimum combined
abundance threshold of 50) and OTUs belonging to host DNA
were removed. The remaining OTUs were identified using UPARSE
software v7.0.1001 (Edgar, 2013), and classified into various taxa
at the phylum, class, and genus levels against SILVA database
(Release138.1) using the RDP classifier v2.12 (Quast et al., 2013).
Full-length 16S rRNA sequences were analyzed using SnapGene
v4.3.6, and the resulting contigs for each tissue DNA sample were
then compared with a corresponding database from NCBI using
BLAST to identify bacterial species (Wang A. L. et al., 2014).
We counted the numbers of representative reads for each OTU
determined at 3% dissimilarity level at each taxonomic level, and
calculated the proportion of each group within samples.

2.4 Diversity and function of bacterial
community

The OTU abundance statistics table for each sample
was obtained by comparing all tags against OTUs using the
USEARCH_global (Edgar, 2010). The alpha diversities of bacterial
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communities were calculated using Mothur v1.31.2 (Schloss et al.,
2009), based on both phylogenetic distances and non-phylogenetic
metrics, and beta diversities were estimated using QIIME v1.8.0
based on the weighted UniFrac distance metrics (Lozupone
and Knight, 2005; Caporaso et al., 2010). Principal co-ordinates
analyses (PCoA) were conducted using QIIME v1.8.0 to assess
the dissimilarities in bacterial community composition among
tissues. The homology relationships of bacterial 16S rRNA gene
sequences in the samples, when compared against sequences
held in the GenBank database, were identified using the BLAST
algorithm. The closest relatives, based on percent homology,
were used to report taxonomic affiliations at the phylum, genus,
and species levels (Altschul et al., 1990). LEfSe clustering and
Linear Discriminant Analysis (LDA) was performed using LEfSe
v1.1.0 to identify specific and dominant bacteria communities
(Segata et al., 2011). We employed the PICRUSt2 (Phylogenetic
Investigation of Communities by Reconstruction of Unobserved
States) algorithm to extrapolate the potential function of those
bacteria communities from different samples by comparing
them with reference sequences in the KEGG database (Langille
et al., 2013). During this process, we also assessed the abundance
of KEGG pathways by assigning sequences to specific KEGG
Orthology (KO) numbers, based on the 16S rRNA gene sequence
data of OTUs.

2.5 Data statistics

The Chao1, ACE, Shannon, and Simpson indices of bacterial
community in various tissues of B. dorsalis were calculated using
Mothur v1.31.2 (Schloss et al., 2009). The significance of the
diversity indices (means ± SE) among tissues were evaluated
using SPSS v19.0 (IBM, Armonk, NY, United States) through one-
way analysis of variance (ANOVA), followed by Tukey’s honest
significant difference (HSD) test (P < 0.05). PCoA patterns were
visualized using QIIME v1.8.0 (Gu F. et al., 2024), and circular
cladogram were created using R package v3.4.1 with default
parameters (Segata et al., 2011). Other related graphics were drawn
using GraphPad Prism v8.0.1 (Swift, 1997).

3 Results

3.1 General feature of 16S rRNA amplicon
sequence

Bacterial communities in the fG, mG, fR and mR of
B. dorsalis adults were quantified by high-throughput sequencing
targeting 16S rRNA gene. After removing pair-end mismatches,
homopolymers, and chimeric sequences, we obtained a total of
363,143 high-quality clean reads, with an average read length
of 420.50 bp, spanning the V3–V4 variable regions of the 16S
rDNA. These clean reads were distributed among the four types
of tissues as follows: fG (11.94%), mG (11.71%), fR (35.62%), and
mR (40.73%) (Table 1). All of these sequence data generated have

been deposited in the NCBI system1 under the accession number:
PRJNA1122372.

The 363,143 clear reads mentioned-above were binned to 3,382
OTUs at a 97% similarity threshold (Supplementary Table S1).
Among them, 941 OTUs were from fG, 1,396 OTUs from mG,
1,609 OTUs from fR, and 1,653 OTUs from mR. Obviously, the
number of OTUs in the reproductive system, especially in the male
reproductive system, was higher than those in the gut (F = 11.77;
df = 3, 8; P < 0.01) (Figure 1A). Venn diagram showed that the
number of specific OTUs in fR (583) and mR (726) was higher than
that in fG (147) and mG (475). There were 379 OTUs overlapped
between fG and mG, 609 OTUs overlapped between fR and mR, 608
OTUs overlapped between fG and fR, and 533 OTUs overlapped
between mG and mR. The four tissues/samples (fG, mG, fR, and
mR) had 200 shared OTUs (Figure 1B).

3.2 Diversity characteristics of bacterial
community

The Chao1, ACE, Shannon, and Simpson indices for the
bacterial community in fG, mG, fR, and mR, based on OTUs, were
estimated using the phylogenetic distances and non-phylogenetic
metrics. Both the Chao1 and ACE indices showed that the richness
of the bacterial community in fR was higher than those in fG
(Chao1: n = 3, p = 0.026; ACE: n = 3, p = 0.048) and mG (Chao1:
n = 3, p = 0.045; ACE: n = 3, p = 0.024). The Shannon (n = 3,
p = 0.226) and Simpson (n = 3, p = 0.307) indices suggested that
there were no significant differences in the taxonomic diversity
of the bacterial community among the fG, mG, fR and mR of
B. dorsalis (Table 2).

PCoA yielded two main axes, which represented 72.80% of
the total variation in bacterial community composition. In this
PCoA pattern, we observed a considerable dissimilarity in the
composition of bacterial community among fG, mG, fR, and mR,
and an obvious clustering of three biological replicates within each
specific tissue. By comparison, we also found that the composition
of bacterial community between fR and mR was similar, whereas
that between fG and mG was distant (Figure 2).

3.3 Identification of bacterial community

3.3.1 Bacterial phyla
We identified a total of 29 bacterial phyla, including

Pseudomonadota, Bacillota, Bacteroidota, Euryarchaeota,
Actinobacteria, Acidobacteria, Planctomycetes, Deinococcus-
Thermus, Chloroflexi, Gemmatimonadetes, Verrucomicrobia, and
others, in addition to some unknown taxa. The three bacterial
phyla Pseudomonadota, Bacillota, and Bacteroidota were highly
abundant in the fG, mG, fR, and mR of B. dorsalis. Among them,
Pseudomonadota was the most abundant phylum, with relative
abundances of 94.99% in fG, 86.85% in fR, 58.69% in mG, and
60.58% in mR. The abundances of Bacillota and Bacteroidota were
relatively high, particularly in mG (Bacillota: 34.43%; Bacteroidota:

1 http://www.ncbi.nlm.nih.gov/bioproject/
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TABLE 1 Statistical analysis of 16S rDNA amplicon sequence.

Samplesa Barcodeb Raw reads Mean length of
raw reads (nt)

Clean reads Mean length of
clean reads (nt)

fG1 CCTTCT 14,806 460.38 14,469 419.34

fG2 TTGTAG 17,610 466.79 17,269 426.67

fG3 AACTAT 11,932 464.21 11,617 426.12

mG1 AGGCGG 14,699 462.18 14,315 423.10

mG2 TCTATT 12,200 465.13 11,972 425.19

mG3 CTGACG 16,948 459.29 16,249 422.34

fR1 TATCTG 41,265 456.22 39,874 418.50

fR2 GTTGTT 46,625 462.72 45,530 422.91

fR3 CGTGGT 45,424 459.44 43,955 421.03

mR1 ACTGCG 60,636 438.69 53,827 412.44

mR2 TTAATT 49,440 457.38 46,209 417.50

mR3 GTATCT 53,250 438.97 47,857 410.81

aSample was named according to tissue types. bBarcodes represent the label used for distinguishing sequencing samples. fG, female gut; mG, male gut; fR, female reproductive system; mR,
male reproductive system.

FIGURE 1

Comparisons of bacterial community based on the OTUs in the fG, mG, fR, and mR of B. dorsalis. (A) OTU number in each tissue. (B) Venn diagram
shows those shared and specific OTUs among the four tissues. OTUs were defined based on 3% sequence divergence.

TABLE 2 Bacterial diversity indices estimated for the four tissues of B. dorsalis adults.

Sample Chao1 ACE Shannon Simpson Coverage (%)

fG 650.28± 30.42 a 858.81± 29.45 a 3.02± 0.16 a 0.12± 0.02 a 98.99

mG 698.24± 89.20 a 775.48± 36.75 a 3.53± 0.37 a 0.09± 0.02 a 99.26

fR 1038.73± 22.00 b 1180.18± 78.21 b 3.74± 0.23 a 0.07± 0.02 a 98.53

mR 766.04± 177.73 ab 771.28± 184.30 ab 4.26± 0.61 a 0.06± 0.03 a 99.56

There are three replicates for each type of tissues. Values are means ± standard error (SE). Different letters (a or b) in the same column denote significant differences on diversity indices
among the four tissues of B. dorsalis.

3.91%) and mR (Bacillota: 20.34%; Bacteroidota: 5.48%). Notably,

high abundances of Euryarchaeota (4.05%), Actinobacteria

(3.79%), and Acidobacteria (1.92%) were observed only in mR

(Figure 3A).

3.3.2 Bacterial genera

We identified 48 genera with relatively high abundance,
including Enterobacter, Providencia, Kluyvera, Asticcacaulis,
Mesorhizobium, Vagococcus, Serratia, Morganella, Lactococcus,

Frontiers in Microbiology 05 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1567154
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-16-1567154 May 28, 2025 Time: 19:8 # 6

Li et al. 10.3389/fmicb.2025.1567154

FIGURE 2

Principal co-ordinates analysis (PCoA) illustrating differences in the taxonomic composition of bacterial communities among independent replicates
of four tissue samples (fG, mG, fR, and mR). Dissimilarity in bacterial community composition is based on the weighted UniFrac distance metrics.
Percentage of variation explained by each principle component is indicated on axis.

FIGURE 3

Taxonomic classification of bacterial communities associated with the different tissues of B. dorsalis adults. (A) Relative abundance of bacteria at
phylum level. (B) Relative abundance of top 49 bacteria at genus level. The term “other” includes all un-annotated bacterial communities.

Phenylobacterium, Ralstonia, Caulobacter, Escherichia, and
Sphingobacterium, and others. In fG, the five most abundant genera
were Enterobacter (21.77%), Providencia (16.06%), an unidentified
genus (13.71%), Morganella (7.91%), and Serratia (6.86%). In
mG, the five most abundant genera were Kluyvera (16.67%),
Vagococcus (15.82%), Enterobacter (14.98%), Lactococcus (10.02%),
and Mesorhizobium (6.22%). In fR, the five most abundant genera
were Providencia (15.30%), Enterobacter (11.83%), an unidentified
genus (11.39%), Asticcacaulis (7.28%), and Serratia (6.96%).
In mR, the five most abundant genera were an unidentified
genus (13.14%), Mesorhizobium (9.04%), Asticcacaulis (8.75%),
Enterobacter (4.26%), and Phenylobacterium (2.84%) (Figure 3B).
In addition, we did not detect Novosphingobium, Rhizobium,

and Gaiella in fG, Paenochrobactrum, Wohlfahrtiimonas, and
Lampropedia in mG, Comamonas, Prolixibacter, and Tissierella in
fR, and Gaiella, Bdellovibrio, and Parasegetibacter in mR.

3.3.3 Bacterial species
The top 10 bacterial species were Enterobacter ludwigii,

Enterococcus faecalis, Citrobacter freundii, Gibbsiella quercinecans,
Citrobacter murliniae, Klebsiella pneumoniae, Lactococcus lactis,
Citrobacter koseri, Gluconobacter oxydans, and Stenotrophomonas
maltophilia. Among them, Citrobacter murliniae was the most
abundant species in fG, with a relative abundance of 0.34%. In mG,
Enterococcus faecalis was the most abundant species, with a relative
abundance of 1.61%. Enterobacter ludwigii was the most abundant
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TABLE 3 Abundance of top 10 bacteria species in the fG, mG, fR, and mR of B. dorsalis.

Species Accession Bestmatch
Genbank%

Percentage (%)

fG mG fR mR

Enterobacter ludwigii NR042349.1 99.72 0.013 0.962 2.615 4.803

Enterococcus faecalis KF179518.1 99.86 0.162 1.610 2.377 0.581

Citrobacter freundii M59291.1 100.00 0.112 1.328 0.051 0.074

Gibbsiella quercinecans NR117526.1 97.54 – – 0.357 0.007

Citrobacter murliniae NR028688.1 99.72 0.342 0.039 0.171 0.194

Klebsiella pneumoniae NR037084.1 99.86 0.146 0.337 0.002 0.021

Lactococcus lactis M55156.1 99.86 0.004 0.004 0.294 0.142

Citrobacter koseri NR117751.1 99.93 0.211 0.0148 0.003 0.003

Gluconobacter oxydans AB003955.1 98.54 0.002 0.004 0.008 0.174

Stenotrophomonas
maltophilia

NR113648.1 98.72 0.050 0.008 0.113 0.004

Others – – 97.691 95.694 94.010 93.997

species in both fR and mR with relative abundances of 2.62 and
4.80%, respectively. Notably, Gibbsiella quercinecans was absent in
both fG and mG (Table 3).

3.3.4 Specific and dominant bacterial taxa
Specific bacterial taxa in the fG, mG, fR, and mR of B. dorsalis

were detected using LEfSe analysis. The circular cladogram
showed that fG harbored specific bacterial taxa, including the
class Gammaproteobacteria, the order Enterobacteriales, the
family Enterobacteriaceae, the genus Morganella; mG harbored
specific bacterial taxa, including the families Enterococcaceae,
Lactobacillaceae, and Streptococcaceae, the genera Vagococcus,
Lactobacillus, Lactococcus, Lactobacillales and Bacilli; fR harbored
specific bacterial taxa, including the family Burkholderiaceae, the
genera Blastomonas, Ralstonia and Providencia; mR harbored
specific bacterial taxa, including the order Sphingobacteriales,
the families Caulobacteraceae and Bradyrhizobiaceae, the genera
Sphingobacteriia, Asticcacaulis, Caulobacter, Caulobacterales,
Bradyrhizobium, and Luteimonas (Figure 4A).

The dominant bacterial taxa in the fG, mG, fR, and mR of
B. dorsalis were also determined based on the LDA score. The LDA
analysis showed that there were 5 bacterial taxa in fG, 9 in mG,
4 in fR, and 9 in mR, each with LDA scores > 4. Among them,
there were 3 dominant phyla (Bacillota, Gammaproteobacteria, and
Pseudomonadota), 1 dominant class (Bacilli), 2 dominant Orders
(Lactobacillales and Enterobacteriales), and 1 dominant family
(Enterobacteriaceae) in mG or fG, each with LDA scores > 5
(Figure 4B).

3.4 Function annotation of bacterial
community

KEGG pathway analysis showed that the bacterial communities
from the fG, mG, fR, and mR of B. dorsalis were annotated as
being associated with 6 primary pathways, as organismal systems,
metabolism, human diseases, genetic information processing,

environmental information processing, and cellular processes.
Among them, the metabolism pathway contained 12 subcategories,
the organismal systems pathway contained 7 subcategories, while
the cellular processes pathway, and environmental information
processing pathway each contained only 3 subcategories. In these
subcategories pathways, high-abundance bacterial communities
(with relative abundance > 20) were enriched in the 5
pathways (subcategories): membrane transport, carbohydrate
metabolism, amino acid metabolism, replication and repair, and
energy metabolism. Low-abundance bacterial taxa (with relative
abundance < 14) were mainly involved in the 3 pathways
(subcategories): cardiovascular diseases, circulatory system, and
excretory system (Figure 5).

The differences in the relative abundance of 35 pathways
(subcategories) enriched by bacterial communities were revealed.
The relative abundances of the 5 pathways associated with
cardiovascular diseases, circulatory system, excretory system,
membrane transport, and glycan biosynthesis and metabolism
exhibited greater variations among the four tissues of B. dorsalis.
Among them, the abundances of the 2 pathways related to
cardiovascular diseases and circulatory system were higher in the
reproductive system (fR: 12.62 and mR: 13.41 for cardiovascular
diseases; fR: 12.91 and mR: 13.79 for circulatory system), compared
to the gut (fG: 11.72 and mG: 11.64 for cardiovascular diseases; fG:
12.47 and mG: 12.42 for circulatory system). The abundances of
the other 3 pathways were all highest in fG, with values of 13.73
for excretory system, 22.87 for membrane transport, and 19.89
for glycan biosynthesis and metabolism among the four tissues.
In addition, the relative abundances of the remained 30 pathways
exhibited relatively minor variations among the four tissues of
B. dorsalis (Figure 5).

Several differences in the absolute abundance of KEGG
pathway related to the fG, mG, fR, and mR of B. dorsalis were
revealed. Among the 6 pathways depicted in Figure 6, the absolute
abundance of the pathway related to carbohydrate metabolism was
highest (> 2.8 × 106), while that related to biosynthesis of other
secondary metabolites was lowest (< 3.1 × 105). Among the fG,
mG, fR, and mR of B. dorsalis, the abundances of pathways related
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FIGURE 4

Diagram of specific and dominant bacterial taxa based on LEfSe analysis. (A) Circular cladogram starting from the innermost circle: phylum, class,
order, family and genus. Each node represents a taxa and the larger the node, the higher the abundance of that taxa. Yellow nodes represent those
bacterial taxa that there are no significant differences among different tissues. The other color nodes, such as red nodes, represent those bacterial
taxa that there are significant differences among different tissues. Names of specific bacterial taxa are showed in the legend on the left. (B) Bar chart
created based on the LDA score. Four colors (purple, blue, green and red) in this chart are used to distinguish those bacterial taxa in fG, mG, fR, and
mR, respectively. The larger the LDA score, the greater the difference, indicating that the abundance in this bacterial taxon is higher than those in
other bacterial taxa.

FIGURE 5

Function classification and annotation of bacterial communities from the fG, mG, fR, and mR of B. dorsalis based on KEGG pathway analysis.

to carbohydrate metabolism, enzyme families, glycan biosynthesis
and metabolism, as well as metabolism of cofactors and vitamins
were higher in fG compared to those in mR, and the abundances
of pathways related to metabolism of other amino acids, and
biosynthesis of other secondary metabolites were also higher in fG
compared to those in mG (Figure 6).

4 Discussion

Different insect tissues harbor tissue-specific bacterial
communities, as well as common or ubiquitous bacterial
communities (Santos et al., 2023). Several studies have explored
these bacterial communities in insect tissues, focusing on their

richness and diversity (Jones et al., 2011; Chen et al., 2017;
Kumar et al., 2023). The type and structure of bacteria present
in insect tissues are closely linked to the complex physiological
and biochemical characteristics of specific tissues (Collins and
Patterson, 2020; Naveed et al., 2024). The study conducted here
represents the most comprehensive exploration undertaken to-date
of the overlapping and specific bacteria communities in the gut
and reproductive system of B. dorsalis adults. Our results are
instrumental in understanding the intrinsic relationship between
the structure of bacterial communities and the function of tissues
associated with these bacteria.

The removal of pair-end mismatches, homopolymers, and
chimeric sequences ensured the quality of 16S rRNA gene sequence
we obtained, which was beneficial for identifying the common
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FIGURE 6

Comparisons of KEGG pathway absolute abundance among the fG, mG, fR, and mR of B. dorsalis. Values are means ± standard error (SE). Different
letters (a or b) above the different column denote significant differences on KEGG pathway abundance.

and specific bacterial taxa and analyzing the functional pathway
of bacteria enrichment. Meanwhile, over 30,000 clean reads per
biological replicate were generated, providing sufficient RNA-seq
data for analyzing the richness and diversity of bacterial taxa based
on OTUs within B. dorsalis tissues. The higher numbers of clean
reads and OTUs in fR and mR than in fG and mG (Table 1; Figure 1)
indicated a greater diverse of bacterial taxa in the reproductive
system of B. dorsalis.

Our study demonstrated that the richness indices of bacterial
taxa in the reproductive system, particularly in the female
reproductive system, were higher than those in the gut of B. dorsalis
(Table 2). This finding is credible, because the environment of
reproductive system is relatively stable, which provides more
suitable living condition for its bacterial communities (Huang et al.,
2010). Moreover, B. dorsalis adults were starved for 12 h before
sampling, which eliminated a large number of bacteria via feces,
particularly those retained in their guts (Andongma et al., 2015).
The Venn diagram illustrated that the reproductive systems of
B. dorsalis harbored a greater number of specific bacterial taxa
compared to their guts. Our explanation is that the physiological
and biochemical processes of the reproductive system are more
diverse and complex, necessitating the participation of a greater
variety of bacteria communities (Ben-Yosef et al., 2008). A study
by Wang A. L. et al. (2014) also confirmed that the reproductive
system of B. minax, a tephritid species closely related genetically to
B. dorsalis, harbored more diverse and specific bacterial taxa than
its gut.

We found that the bacterial community in different tissues
of B. dorsalis was dominated by Pseudomonadota, followed by
Bacillota and Bacteroidota. Other studies have also reported
an abundance of Pseudomonadota in various insects, including
B. minax (Wang A. L. et al., 2014), Kerria lacca (Kerr)
(Kandasamy et al., 2022), and Z. cucurbitae (Lakshmi et al.,
2023). On the contrary, bacterial communities associated with
certain insects, such as Apis mellifera L. (Mohr and Tebbe,
2006) and Coptotermes formosanus Shiraki (Xiang et al., 2012), are
more commonly dominated by Bacillota and Bacteroidota. Within
the Pseudomonadota, members of the Enterobacteriaceae family
constitute the majority of the bacterial community, which is also
predominant in the guts of C. capitata (Marchini et al., 2002)
and Drosophila immigrans (Berlin) (Jones et al., 2013). The wide
distribution of Enterobacteriaceae suggested its important role in
insect tissues. A study by Gu J. et al. (2024) revealed that some
bacterial species within Enterobacteriaceae promoted the growth
and development of B. dorsalis larvae through the vitamin B6
biosynthesis pathway. Furthermore, researches have shown that
Enterobacteriaceae within insects may indirectly contribute to host
adaptation, energy metabolism, and food digestion (Martinez et al.,
2019; Wang et al., 2020; Zou et al., 2020).

The genera Enterobacter, Kluyvera, Asticcacaulis,
Mesorhizobium, and Serratia were commonly found in the
gut and reproductive system of B. dorsalis. Research has confirmed
their widespread presence in the tissues of other insects, such as
C. capitata (Behar et al., 2008), P. papatasi (Maleki-Ravasan et al.,
2014), and Bombyx mori (Chen et al., 2018). These genera may play
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important roles in specific insect tissues. For instance, Enterobacter
in the gut of Helicoverpa armigera (Hübner) is associated with the
digestion and absorption of cellulosic food materials (Priya et al.,
2012).

LEfSe analysis showed that the different tissues of B. dorsalis
harbored their specific bacterial communities. Our study
demonstrated that the gut of female B. dorsalis contained four
specific bacterial taxa, namely, the class Gammaproteobacteria,
the order Enterobacteriales, the family Enterobacteriaceae, and the
genus Morganella. The guts of other fly species, such as C. capitata
(Marchini et al., 2002) and D. immigrans (Jones et al., 2013) also
harbored some members of Gammaproteobacteria. Furthermore,
an increase in the abundance of Gammaproteobacteria in
S. gregaria may enhance its immune defense against intestinal
pathogens (Dillon et al., 2010). We also found that female adults of
B. dorsalis harbored abundant members of the genus Providencia,
whereas it had not been observed in male adults. A study by
Roque-Romero et al. (2020) confirmed the presence of Providencia
in female Anastrepha obliqua (Macquart) as well. Furthermore,
male A. obliqua that were fed with food containing Providencia
rettgeri became more attractive to female adults of the same species,
suggesting that Providencia may be associated with the courtship
and mating behavior of female insects. Unfortunately, the roles
of many tissue-specific bacterial communities in insects remain
poorly understood. A possible reason is that the abundance of
these bacteria in insect tissues is low and often overlooked.

The top 10 bacterial species, including Enterobacter ludwigii,
Enterococcus faecalis, Citrobacter freundii, Lactococcus lactis and
others, were identified by the BLAST algorithm. These species
are common in many insect tissues, and their functions have also
been revealed in some insect species (Priyadarsini et al., 2020).
For example, Romero et al. (2006) demonstrated that Citrobacter
freundii can stimulate oviposition in Stomoxys calcitrans L. (a fly
species), and contribute to the development and reproduction
of this fly species. Cheng et al. (2017) revealed that C. freundii
may degrade trichlorphon (an organophosphate insecticide) into
dimethyl phosphite and chloral hydrate, thereby enhancing the
resistance of B. dorsalis to trichlorphon. Gwokyalya et al. (2023)
found that L. lactis may improve the parasitic performance of
parasitoids (Fopius arisanus and Diachasmimorpha longicaudata)
against B. dorsalis, underscoring the critical role of bacterial
symbionts in controlling this pest.

KEGG pathway analysis showed that the function of bacterial
communities from the gut and reproductive system of B. dorsalis
were mainly enriched in metabolism pathways, particularly those
associated with carbohydrate metabolism, amino acid metabolism,
and energy metabolism. This finding indicated that the majority
of bacteria communities in the gut and the reproductive system
of B. dorsalis are involved in the production, transformation, and
utilization of food nutrients, thereby supporting their growth,
development, and reproduction (Huang et al., 2017). Similar
phenomena have also been demonstrated in other insect species,
such as Bombyx mori L. and Plutella xylostella L. (Chen et al.,
2017). By checking each of the 35 pathways annotated, we found
that the abundances of the 2 pathways related to cardiovascular
diseases and circulatory system were higher in the reproductive
system compared to the gut. This phenomenon may be related
to the reproduction of offspring in B. dorsalis. Among them,
the function of the cardiovascular diseases pathway was likely

to prevent genetically related disorders occurring in offspring,
whereas that of the circulatory system pathway supported the
production of robust offspring (Chen et al., 2024; Jama et al., 2024).
The abundances of the 3 pathways associated with excretory system,
membrane transport, and glycan biosynthesis and metabolism were
all highest in the female gut (fG) of B. dorsalis among its four
tissues. Clearly, the functions of these pathways are intricately
tied to the absorption, utilization, and excretion of nutrients in
B. dorsalis via its gut (Hu et al., 2011). Consequently, one plausible
explanation for the high abundance in fG was that female B. dorsalis
required a larger amount of food consumption to cope with more
intense reproductive activity (Huang et al., 2017).

In summary, our research conducted here revealed the
overlapping and specific bacterial communities between the gut
and reproductive system of female and male B. dorsalis. Our study
demonstrated that the reproductive system harbored more diverse
and specific bacterial communities compared to the gut, whereas
the female gut exhibited a higher abundance of function pathways
than other tissues. Future studies should focus on revealing the
roles of specific bacteria genera/species and identifying whether
these bacteria could serve as targets for controlling B. dorsalis.

5 Conclusion

This study characterized the overlapping and specific bacterial
communities in the gut and reproductive system of female and
male B. dorsalis. Compared with guts, reproductive systems
have more diverse and specific bacterial taxa based on OTUs.
In bacterial communities, Enterobacter, Kluyvera, Asticcacaulis
and Mesorhizobium were common, while Gammaproteobacteria,
Vagococcus, Providencia and Sphingobacteriia exhibited tissue
specificity. High-abundance bacterial communities were enriched
in these function pathways of membrane transport, carbohydrate
metabolism, amino acid metabolism, replication and repair,
and energy metabolism. The abundance of pathway related
to carbohydrate metabolism was highest in the gut of female
adults, compared with other pathways. Our research demonstrated
that the bacterial communities vary across different tissues of
B. dorsalis, providing clues that elucidate the intrinsic relationship
between these bacterial communities and the function of bacteria-
associated tissues.
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