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Background: Hypertensive disorders of pregnancy (HDP) pose significant risks 
to both maternal and fetal health and have been associated with alterations 
in the maternal gut microbiota. However, the impact of HDP on neonatal 
microbiota remains poorly understood. This study aimed to characterize the gut 
microbiota of pregnant women with HDP and evaluate its potential influence on 
the meconium microbiota of their newborns.

Methods: A cohort of 67 pregnant women, including 36 diagnosed with HDP 
(HDP group) and 31 healthy, age-matched controls (HC group), along with their 
offspring, were recruited. Fecal samples collected during the third trimester and 
meconium samples from the newborns were subjected to microbial community 
profiling via 16S rRNA gene sequencing.

Results: Principal coordinate analysis (PCoA) based on Bray-Curtis distances 
revealed significant differences in microbial community composition between 
the HDP and HC groups in both maternal and neonatal samples. Subgroup 
analyses, stratified by HDP severity and medication use, further delineated 
distinct microbial profiles relative to controls. Notably, both maternal and 
neonatal microbiota in the HDP group exhibited increased abundances of 
Enterobacter, Klebsiella, and Sphingomonas, coupled with a reduction in 
Acidovorax, Azospirillum, Caulobacter, Flavobacterium, Magnetospirillum, 
and Rubrivivax compared to the HC group. Moreover, the P4-PWY pathway, 
which is involved in the biosynthesis of L-lysine, L-threonine, and L-methionine, 
was differentially represented in both maternal and neonatal microbiota in the 
HDP group. These parallel patterns suggest an intergenerational concordance 
associated with HDP.

Conclusion: This study demonstrates significant alterations in the microbial 
communities of both maternal fecal and neonatal meconium samples in the 
context of HDP. The findings highlight the importance of further research to 
elucidate the long-term health implications of HDP-associated microbiota 
shifts on offspring.
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Introduction

Hypertensive disorder of pregnancy (HDP) represent a 
prevalent and serious medical complication that significantly 
contributes to maternal morbidity and mortality (Ramos Filho 
and Antunes, 2020). HDP encompasses a spectrum of conditions, 
including gestational hypertension, preeclampsia/eclampsia, 
chronic hypertension, and chronic hypertension complicated with 
preeclampsia/eclampsia (Brown et al., 2018; Dines and Kattah, 
2020). The global incidence of HDP is rising, posing an increasing 
public health challenge (Garovic et  al., 2020). In China, HDP 
affects approximately 7.3% of all pregnancies (Li et  al., 2021). 
Beyond its immediate consequences, such as preterm delivery, low 
birth weight, and neonatal care unit admission (Abdelazim et al., 
2020), HDP has enduring impacts on both maternal and offspring 
health. These long-term effects include an increased risk of high 
blood pressure, coronary heart disease, impaired neonatal brain 
development, and systemic vascular dysfunction (Garovic et al., 
2020; Kanata et al., 2021). Elucidating the underlying mechanisms 
of HDP and its association with offspring health outcomes is 
essential for advancing clinical management and developing 
preventive strategies that benefit both mothers and their children.

Recent investigations have linked HDP with various maternal 
and placental factors, including inflammatory response, 
endothelial dysfunction, and alterations in the gut microbiota 
(Beckers and Sones, 2020; Yu et al., 2022). In particular, dysbiosis 
in the maternal gut microbiota has been reported in HDP cases, 
characterized by reduced microbial diversity, diminished short-
chain fatty acid-producing bacteria, and an enrichment of 
potentially pathogenic genera, such as Enterobacter and Klebsiella 
(Beckers and Sones, 2020; Chang et al., 2020). This dysbiosis is 
hypothesized to contribute to the onset and progression of HDP 
by disrupting maternal physiological homeostasis (Zhang et al., 
2015; Liu et al., 2017; Beckers and Sones, 2020).

The initial establishment of the infant gut microbiota, which 
plays a pivotal role in long-term health, is also influenced by 
maternal factors. Variables such as antibiotic exposure, delivery 
mode, and feeding practices significantly shape the neonatal 
microbial composition (Singh and Mittal, 2020). The maternal 
microbial reservoir, including the gut, oral, skin, and vaginal 
microbiota, critically contributes to the infant’s initial microbial 
colonization (Ferretti et al., 2018). For instance, the association 
between maternal conditions such as gestational diabetes and 
alterations in the meconium microbiota is well-documented 
(Gosalbes et al., 2013; Hu et al., 2013; Wang et al., 2018; Chen 
et al., 2021; Sililas et al., 2021). Neonates born to mothers with 
gestational diabetes exhibit reduced alpha diversity and notable 
shifts in the abundance of Firmicutes and Proteobacteria (Chen 
et al., 2021).

Despite these advances, the potential impact of HDP on the 
neonatal gut microbiota remains insufficiently explored. This gap 
in knowledge limits our understanding of the interplay between 
maternal HDP and the development of the offspring’s gut 

microbiota. Based on these considerations, we hypothesize that 
maternal HDP alters the neonatal meconium microbiota, 
contributing to microbial dysbiosis with potential long-term 
health implications for the offspring. Therefore, this study aims to 
comprehensively characterize the meconium microbiota of 
neonates born to mothers with HDP and elucidate the relationship 
between maternal HDP and alterations in the neonatal gut 
microbiota, thereby providing novel insights into the mechanisms 
by which HDP may affect offspring health.

Materials and methods

Study subjects

The study protocol was approved by the Ethical Committee of 
Shenzhen Luohu Maternity and Child Health Hospital. Written 
informed consent was obtained from all participants, and for 
neonates, consent was provided by their parents or legal guardians. 
Between April to November 2020, pregnant women in their third 
trimester who planned to deliver at our hospital and agreed to 
provide fecal samples were recruited. Exclusion criteria included 
pregnancy complications (e.g., gestational diabetes, chronic 
hypertension, intrahepatic cholestasis of pregnancy, premature 
delivery, or premature rupture of membrane), multiple gestations, 
antibiotic treatment within 1 month prior to sample collection, a 
history of smoking or alcohol consumption during pregnancy, or 
probiotic supplementation. Neonates with significant congenital 
anomalies, neurological dysfunction, chromosomal abnormalities, 
or metabolic diseases were also excluded. A total of 67 singleton 
pregnant women with full-term births were included in the final 
analysis. Of these, 36 women diagnosed with hypertensive 
disorders of pregnancy (HDP) were assigned to the HDP group, 
which comprised 23 with preeclampsia (PE subgroup) and 13 with 
gestational hypertension (GH subgroup). The remaining 31 
normotensive women without complications served as the healthy 
control (HC) group. Diagnostic criteria for GH included a systolic 
blood pressure ≥ 140 mmHg and/or a diastolic blood pressure ≥ 
90 mmHg, whereas PE was defined as a systolic blood pressure ≥ 
140 mmHg and/or a diastolic blood pressure ≥ 90 mmHg in 
conjunction with proteinuria exceeding > 0.3 g/24 h after 
20 weeks of gestation. Clinical information were recorded and 
verified by trained clinicians following standard procedures.

Sample collection

Fecal samples from pregnant women were collected during the 
third trimester, approximately 3 days before labor, using sterile swabs 
under the guidance of trained nursing staff. Meconium samples from 
the neonates were obtained within the first hours after birth using 
sterile swabs by experienced nurses in the labor ward. Approximately 
200 mg of meconium was carefully collected directly from the interior 
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of soiled diapers to ensure representative sampling and minimize 
potential contamination from external components (Chen et  al., 
2021). All samples were immediately transferred into sterile tubes, 
stored at −80°C to preserve their integrity, and subsequently processed 
for further analysis.

DNA extraction and 16S rRNA sequencing

Genomic DNA was extracted from both fecal and meconium 
samples using the QIAamp Fast DNA Stool Mini kit, following 
the manufacturer’s protocol. The V4 hypervariable region of the 
16S rRNA gene was amplified by PCR using primers 515F and 
806R, which included unique barcodes for sample identification 
(Kozich et al., 2013). PCR amplification was performed with the 
Phusion High-Fidelity PCR Master Mix, and the amplified 
products were pooled in equimolar concentrations and purified 
using the Qiagen Gel Extraction kit. Sequencing libraries were 
prepared with the TruSeq DNA PCR-Free Sample Preparation kit, 
and their quality was assessed using a Qubit@2.0 Fluorometer 
and Agilent Bioanalyzer 2,100. Libraries were sequenced on an 
Illumina HiSeq  2,500 platform (V3 chemistry) at Novogene 
Bioinformatics Technology Co., Ltd., generating 250-bp 
paired-end reads.

Bioinformatics and statistical analyses

Raw16S rRNA gene sequences were processed using QIIME2 
(Bolyen et al., 2019). Paired-end reads were assembled and denoised 
with the DADA2 algorithm (Callahan et  al., 2016). Taxonomic 
assignments were performed against the GreenGenes database using 
the Naïve Bayes classifier in QIIME2. Alpha and beta diversity metrics 
were calculated using QIIME2’s core diversity tools, and functional 
metabolic pathways were predicted using PICRUSt2.0 (Douglas 
et al., 2020).

Microbial community dissimilarities were evaluated through 
principal coordinate analysis (PCoA) based on Bray-Curtis 
distances, and statistical significance was assessed using 
permutational multivariate analysis of variance (PERMANOVA) 
implemented in the R package MicrobiotaProcess (Xu et al., 2023). 
Differentially abundant taxa were identified using LEfSe, with a 

linear discriminant analysis (LDA) score > 2.0 and p < 0.05 (Segata 
et al., 2011). Pathway differences between the HDP and HC groups 
were analyzed using STAMP with Bonferroni correction (Parks 
et al., 2014).

Clinical characteristics were summarized as means and standard 
deviations for continuous variables and proportions for categorical 
variables. Between-group differences were assessed using t-tests for 
continuous variables and chi-square tests for categorical variables. All 
statistical analyses were performed using R software (version 3.6.3), 
with significance set at p < 0.05.

Results

Characteristics of study participants

Figure 1 illustrates the recruitment and exclusion process. A total 
of 67 full-term neonate-mother pairs were included, comprising 36 
pairs in the HDP group, and 31 pairs in the HC group. All participants 
were Han Chinese residing in Shenzhen, China. Table 1 summarizes 
the sociodemographic and clinical characteristics. There were no 
significant differences between the HDP and HC groups in terms of 
gestational age, birth weight, birth length, neonatal gender, maternal 
age, or maternal pre-pregnancy BMI. Among the mothers in the HDP 
group, 14 received labetalol, two were treated with nicardipine, and 
one received nifedipine during pregnancy.

Comparison of neonatal meconium 
microbiota between the HDP and HC 
groups

Sequencing of neonatal meconium samples yielded a total of 
6,634,295 paired end reads, with an average of 96,128 per sample for 
the HDP group and 102,376 reads per sample for the HC group. And 
a total of 16,190 amplicon sequence variants were identified. 
Rarefaction analysis indicated that all samples reached an asymptote, 
suggesting that sufficient sequencing depth was achieved (data 
not shown).

Alpha diversity indices, including observed feature number, 
Pielou index, Chao1 index, Simpson index and Shannon index, were 
compared between the HDP and HC groups. While no significant 

FIGURE 1

Flowchart depicting the study population and design.
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differences were observed in the observed feature number, Chao1, 
Simpson and Shannon indices, the Pielou index was significantly 
lower in the HDP group compared to the HC group (p = 0.044; 
Figure 2a). Moreover, principal coordinate analysis based on Bray-
Curtis distances revealed a distinct separation between the HDP and 
HC groups (R2 = 0.149, p = 0.0001; Figure 2b).

At the phylum level, the predominant taxa in the neonatal 
meconium were Proteobacteria, Firmicutes, Bacteroidetes, and 
Actinobacteria (Figure  2c), with Firmicutes being significantly 
more abundant in the HDP group (LDA = 4.96, p  = 0.001). 
Notably, the combined relative abundances of Firmicutes and 
Proteobacteria exceeded 90% in both groups. At the genus level, 
the dominant taxa included Azospirillum, Enterococcus, Ralstonia, 
Streptococcus, Bacteroides, Staphylococcus, Lactobacillus, 
Sphingomonas, Acidovorax, Clostridium, Caulobacter, Rubrivivax, 
and Acinetobacter (Figure 2d). LEfSe analysis revealed significant 
differences in microbial composition between the groups. The 
HDP group showed higher relative abundances of Enterococcus, 
Sphingomonas, Enterobacter, Klebsiella, Gemmiger, Sutterella, 
Odoribacter, Megamonas, Comamonas, Elstera, Sarcina, 
Polynucleobacter, and Kocuria. In contrast, lower relative 
abundances in the HDP group were observed for Azospirillum, 
Acidovorax, Caulobacter, Rubrivivax, Staphylococcus, 
Flavobacterium, Magnetospirillum, Allobaculum, Burkholderia, 
Dechloromonas, Buchnera, Herbaspirillum, Novosphingobium, 
Nitrospira, Turicibacter, Bdellovibrio, Cetobacterium, 
Stenotrophomonas, Lysobacter, Propionicimonas, Ochrobactrum, 
Rummeliibacillus, and Paludibacter (Figure 2e).

Comparison of maternal fecal microbial 
community between the HDP and HC 
groups

Sequencing of maternal fecal samples generated a total of 
6,135,597 paired end reads, with an average of 101,412 reads per 
sample in the HDP group and 80,153 reads per sample in the HC 
group. A total of 12,839 amplicon sequence variants were 
identified and rarefaction analysis confirmed that all samples 
reached an asymptote, indicating sufficient sequencing depth 
(data not shown).

No significant differences in alpha diversity metrics were observed 
between the HDP and HC groups (Figure 3a). However, PCoA based 
on Bray-Curtis distances demonstrated a significant separation 
between the two groups (R2 = 0.133, p = 0.0001; Figure 3b).

At the phylum level, the maternal fecal microbiota was 
predominantly composed of Firmicutes, Bacteroidetes, Proteobacteria, 
and Actinobacteria (Figure 3c), with Proteobacteria being significantly 
more abundant in the HDP group (LDA = 4.65, p = 0.0064). At the 
genus level, dominant taxa included Faecalibacterium, Bacteroides, 
Gemmiger, Bifidobacterium, Roseburia, Prevotella, Blautia, Oscillospira, 
Ralstonia, and Dialister (Figure 3d). LEfSe analysis further revealed 
significant differences in microbial composition between the groups. 
In the HDP group, genera such as Ralstonia, Parabacteroides, 
Sphingomonas, Sutterella, Bilophila, Enterococcus, Lactococcus, 
Acinetobacter, Odoribacter, Actinomyces, Klebsiella, Adlercreutzia, 
Enterobacter, Brevundimonas, SMB53, Turicibacter, Clostridium, 
Eggerthella, Comamonas, and Pseudomonas were significantly enriched, 
whereas Bulleidia, Magnetospirillum, Caulobacter, Cetobacterium, 
Acidovorax, Allobaculum, Flavobacterium, Mycoplasma, Buchnera, 
Rubrivivax, Lactobacillus, Azospirillum, Roseburia, and Gemmiger were 
significantly depleted (Figure 3e).

Notably, an intergenerational concordance was evident, as genera 
such as Enterococcus, Sphingomonas, Enterobacter, Klebsiella, 
Sutterella, Odoribacter, and Comamonas were significantly increased 
in both the maternal fecal and neonatal meconium microbiota of the 
HDP group, while Azospirillum, Acidovorax, Caulobacter, Rubrivivax, 
Flavobacterium, Magnetospirillum, Allobaculum, Buchnera, 
Turicibacter, and Cetobacterium were significantly decreased in 
both compartments.

Comparison of functionally predicted 
metabolic pathways between the HDP and 
HC groups

Functional annotation was performed using PICRUSt2.0 
against the MetaCyc database to assess the metabolic potential of 
the maternal fecal and neonatal meconium microbiota associated 
with HDP. In maternal fecal samples, 11 metabolic pathways 
exhibited significant differences between the HDP and HC groups 
(Figure 4a), while 22 metabolic pathways were significantly altered 

TABLE 1 Characteristics of the newborns of mothers with and without HDP.

HDP (n = 36) HC (n = 31) p-value

Maternal characteristics

Age at delivery, years 31.2 ± 5.0 29.7 ± 5.1 0.23

Pre-pregnancy BMI (kg/m2) 23.2 ± 4.1 21.6 ± 2.5 0.07

Medical treatment 17 0 <0.01*

Neonatal characteristics

Gestational age, weeks 38.9 ± 2.2 39.5 ± 0.9 0.14

Apgar score 10 10 1

Birth weight, g 3,250 ± 434 3,327 ± 326 0.43

Birth length, cm 50 ± 1.2 50.2 ± 0.8 0.55

Gender (male/female) 20/16 18/11 0.78

*Means significantly different.
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in the neonatal meconium microbiota (Figure 4b). Notably, the 
“superpathway of L-lysine, L-threonine and L-methionine 
biosynthesis I  (P4-PWY)” and “Kdo transfer to lipid IVA III 

(Chlamydia; PWY-6467)” pathways were significantly altered in 
both maternal and neonatal samples, suggesting shared functional 
impairments linked to HDP.

FIGURE 2

Comparison of neonatal meconium microbial communities between the HDP (HDP_N) and HC (HC_N) groups. (a) Comparisons of alpha diversity 
indices using two-tailed Student’s t-test. (b) PCoA plot illustrating differences in microbial community composition between groups, as assessed by 
PERMANOVA. (c) Relative abundances of the dominant phyla. (d) Relative abundances of the predominant genera. (e) Genera with significantly 
different relative abundances between the HDP_N and HC_N groups, identified using LEfSe software with an LDA score > 2.0 and p < 0.05.
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FIGURE 3

Comparison of maternal fecal microbial communities between the HDP (HDP_M) and HC (HDP_M) groups. (a) Comparisons of alpha diversity indices 
using t-tests. (b) PCoA plot illustrating the differences in microbial community composition between the two groups, as determined by PERMANOVA. 
(c) Relative abundances of the dominant phyla. (d) Relative abundances of the predominant genera. (e) Genera with significantly different relative 
abundances between the HDP_M and HC_M groups, as determined by LEfSe (LDA score > 2.0 and p < 0.05).
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Comparison of microbial community 
between the sub-HDP groups and HC 
group

Based on clinical data, the HDP group was subdivided into the 
gestational hypertension (GH, n = 13) and preeclampsia (PE, n = 23) 
subgroups. PCoA with PERMANOVA revealed that the maternal fecal 
microbial community of the PE and GH subgroups were clustered 
closely (R2 = 0.03, p = 0.54), as did their neonatal meconium 
microbiota (R2 = 0.02, p = 0.85). However, when comparing the PE, 
GH, and HC groups, significant differences in microbial composition 
were observed. The maternal fecal microbial community showed 
marked separation among these groups (R2 = 0.147, p = 0.0001; 
Figure 5a), with similar findings in the neonatal meconium microbiota 
(R2 = 0.159, p = 0.0001; Figure 5b). Furthermore, subgroup analysis 
based on medication use confirmed significant variation between the 

HDP and HC groups for both maternal microbiota (R2  = 0.145, 
p = 0.0001; Figure 5c) and neonatal microbiota (R2 = 0.161, p = 0.0001; 
Figure 5d). Notably, within the HDP group, no significant differences 
were observed in microbial composition between mothers treated 
with antihypertensive drugs (labetalol, nicardipine, or nifedipine) and 
those who were untreated (R2  = 0.022, p  = 0.646). These findings 
underscore the distinct microbial profiles associated with HDP 
compared to healthy controls.

Discussion

In this study, we investigated the neonatal meconium microbiota in 
relation to the maternal fecal microbial community among mothers 
with HDP using high throughput 16S rRNA sequencing. Our analysis 
revealed that the meconium microbiota was predominantly composed 

FIGURE 4

Differentially abundant metabolic pathways predicted by PICRUSt2 between the HDP and HC groups. (a) Differential metabolic pathways identified in 
the maternal gut microbiota between the HDP_M and HC_M groups with adjusted p value less than 0.01. (b) Differential metabolic pathways identified 
in the neonatal meconium microbiota between the HDP_N and HC_N groups with adjusted p value less than 0.01.
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of the phyla Proteobacteria and Firmicutes, consistent with previous 
reports (Bäckhed et al., 2015; Turunen et al., 2021). In contrast, the 
maternal fecal microbial community was mainly comprised of 
Firmicutes and Bacteroidetes, in agreement with earlier findings (Yu 
et al., 2022).

Principal coordinate analysis based on Bray-Curtis distances 
demonstrated a significant separation between the HDP and HC groups 
in the neonatal meconium microbiota. Moreover, we observed marked 
alterations in the maternal fecal microbial community of women with 
HDP, which corroborates previous studies (Gomez-Arango et al., 2016; 
Chang et  al., 2020). These differences persisted across subgroups 
stratified by disease severity and medication use during pregnancy. 
Specifically, genera such as Klebsiella, Enterobacter, and Sphingomonas 
were significantly enriched in both the maternal and neonatal 
microbiota of the HDP group, whereas Acidovorax, Azospirillum, 
Caulobacter, Flavobacterium, Magnetospirillum, and Rubrivivax were 
more abundant in the HC group. Notably, previous research has 
associated certain species of Klebsiella (You et al., 2020; Mukherjee et al., 
2023), Enterobacter (Ferry et al., 2020; Karambin and Zarkesh, 2011), 

and Sphingomonas (Mutlu et al., 2011; Bayram et al., 2013; Ranjan et al., 
2016) with neonatal infection. Furthermore, a decrease in Azospirillum 
has been linked to helminth infections in preschool-aged children 
(Osakunor et al., 2020), while genera such as Acidovorax, Caulobacter, 
Flavobacterium, and Magnetospirillum have been detected in the gut 
microbiota (Simon et al., 2021; Dornelles et al., 2022; Xu et al., 2022). 
Increased abundance of Enterobacter and Klebsiella have also been 
reported in individuals with PE (Beckers and Sones, 2020; Chang et al., 
2020). Both genera are known to secrete lipopolysaccharides, potent 
activators of the immune system that can elicit strong inflammatory 
responses (Holt et al., 2020). Such immune activation may contribute to 
an elevated risk of preterm labor and other complications. Although 
these microbial alterations may adversely affect neonatal health and 
development, the specific roles of these taxa in neonates born to 
mothers with HDP require further investigation.

Additionally, previous work by de Agüero MG et al. identified a 
high abundance of Lactobacillus spp. in the placental microbiota of 
healthy term deliveries (Gomez De Agüero et al., 2016), suggesting a 
beneficial role for Lactobacillus in pregnancy outcomes (Olaniyi et al., 

FIGURE 5

Comparison of gut microbial communities among HDP subgroups (GH, PE) and HC group. (a) PCoA plot showing differences in maternal fecal 
microbial communities among the GH_M, PE_M and HC_M groups. (b) PCoA plot showing differences in neonatal meconium microbial communities 
among the GH_N, PE_N and HC_N groups. (c) PCoA plot illustrating differences in maternal fecal microbial communities among mothers receiving 
drug treatment (Drug_M), those not receiving drug treatment (N_Drug_M), and HC (HC_M) groups. (d) PCoA plot illustrating differences in neonatal 
meconium microbial communities among neonates born to mothers receiving drug treatment (Drug_N), those not receiving drug treatment (N_
Drug_N), and HC (HC_N) groups.
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2020). Consistent with these observations, our study found a 
significantly lower level of Lactobacillus in the maternal fecal microbial 
community of the HDP group compared to controls. Furthermore, 
Roseburia, an abundant genera associated with several diseases such as 
obesity, type 2 diabetes, nervous system conditions and allergies 
(Tamanai-Shacoori et al., 2017), was significantly reduced in the HDP 
group. Roseburia is a key producer of short-chain fatty acids, particularly 
butyrate, which is crucial for maintaining colonic motility, immunity 
function and anti-inflammatory responses (Tamanai-Shacoori et al., 
2017; Yan et  al., 2017; Calderón-Pérez et  al., 2020). These findings 
suggest that reduced colonization by lactic acid and short-chain fatty 
acids producing bacteria may contribute to adverse pregnancy 
outcomes. However, larger prospective studies are needed to confirm 
this hypothesis.

Moreover, functional prediction analysis revealed that the 
abundance of the P4-PWY (superpathway of L-lysine, L-threonine and 
L-methionine biosynthesis I) was significantly lower in both the 
neonatal and maternal microbiota of the HDP group compared to the 
HC group. Considering the essential roles of L-lysine in protein 
synthesis and neonatal growth (van der Schoor et al., 2004), as well as 
the importance of maternal methionine supply for offspring 
development (Alharthi et al., 2018; Elolimy et al., 2019), these alterations 
in key metabolic pathways may have significant implications for 
neonatal health.

Despite these important insights, several limitations warrant 
consideration. The relatively small sample size and recruitment from a 
single geographic area may limit the generalizability of the findings. 
Additionally, the absence of long-term clinical follow-up data restricts 
our ability to assess the direct impact of gut microbial alterations on 
neonatal health outcomes. Future studies employing metagenomic 
sequencing, longitudinal follow-up, and animal models are necessary to 
elucidate the mechanistic links between HDP-related microbial 
dysbiosis and neonatal development. Such efforts will enhance the 
robustness and applicability of these findings and pave the way for more 
insightful research in this critical area.

In conclusion, our study demonstrates significant alterations in 
both the neonatal meconium microbiota and maternal fecal microbial 
community in the context of hypertensive disorders of pregnancy. These 
findings advance our understanding of the impact of HDP on neonatal 
gut microbiota. Further research is necessary to explore the potential 
implications of these microbial alterations on neonatal health outcomes 
and to develop strategies for modulating the gut microbiota in this 
vulnerable population.
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