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Introduction: Metabolic dysfunction-associated steatotic liver disease 
(MASLD) is a growing global health challenge, characterized by significant 
variability in progression and clinical outcomes. While the gut microbiome is 
increasingly recognized as a key factor in liver disease development, its role 
in disease progression and associated mechanisms remains unclear. This study 
systematically investigated the gut microbiota’s role in MASLD and liver cirrhosis 
progression, focusing on individual bacterial strains, microbial community 
dynamics, and functional characteristics across different enterotypes.

Methods: Publicly available next-generation sequencing(NGS) datasets from 
healthy individuals and patients with MASLD and cirrhosis were analyzed. 
Enterotype classification was performed using principal component analysis, 
with advanced bioinformatics tools, including Linear Discriminant Analysis 
Effect Size (LEfSe), eXtreme Gradient Boosting (XGBoost), and Deep Cross-
Fusion Networks for Genome-Scale Identification of Pathogens (DCiPatho), to 
identify differentially abundant microbes and potential pathogens. Microbial co-
occurrence networks and functional predictions via PICRUSt2 revealed distinct 
patterns across enterotypes.

Results and discussion: The Prevotella-dominated(ET-P) group exhibited 
a 33% higher cirrhosis rate than the Bacteroides-dominated(ET-B) group. 
Unique microbial signatures were identified: Escherichia albertii and Veillonella 
nakazawae were associated with cirrhosis in ET-B, while Prevotella copri was 
linked to MASLD. In ET-P, Prevotella hominis and Clostridium saudiense were 
significantly associated with cirrhosis. Functional analysis revealed reduced 
biosynthesis of fatty acids, proteins, and short-chain fatty acids (SCFAs), coupled 
with increased lipopolysaccharide(LPS) production and altered secondary 
bile acid metabolism in MASLD and cirrhosis patients. There were significant 
microbial and functional differences across enterotypes in MASLD and cirrhosis 
progression, providing critical insights for developing personalized microbiome-
targeted interventions to mitigate liver disease progression.
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Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD) 
is a complex metabolic liver disorder characterized by excessive fat 
accumulation in the liver. A 2024 study estimates the global prevalence 
of MASLD at approximately 32.4%, with notable variation across 
regions and between sexes—39.7% in men and 25.6% in women (Le 
et al., 2025). Projections suggest that by 2040, the prevalence could 
surpass 55%, highlighting the increasing public health burden and the 
pressing need for further epidemiological research on MASLD (Le 
et al., 2025). Individuals with MASLD are more likely to be obese, with 
additional comorbidities such as type 2 diabetes (T2DM), metabolic 
syndrome (MetS) and associated cardiovascular risk factors. MASLD 
is the early stage of a progressive condition, wherein fat accumulates 
in the liver cells, but there is minimal inflammation or liver damage. 
Most patients with MASLD may not experience significant symptoms 
or progressive liver damage. Some patients may progress to metabolic 
dysfunction-associated steatohepatitis (MASH) which can further 
progress to cirrhosis or hepatocellular carcinoma (Shao et al., 2022). 
Cirrhosis represents the end stage of chronic liver disease in which 
advanced liver fibrosis is seen. This can occur due to several liver 
diseases, including hepatitis and chronic alcohol consumption. 
Treatment of cirrhosis involves addressing the underlying cause and 
attempting to reverse liver fibrosis. However, no clear consensus exists 
on the most effective treatment for cirrhosis.

Emerging evidence reveals a complex relationship between 
MASLD and gut microbiota, with patients frequently exhibiting 
intestinal dysbiosis (Gudan et al., 2023). Gut microorganisms could 
potentially serve as early diagnostic markers and therapeutic targets 
for MASLD, MASH, and cirrhosis. The gut-liver axis represents a 
sophisticated bidirectional communication system wherein gut 
microbiota critically modulate liver health and disease progression 
(Tilg et  al., 2022). A multifaceted investigation is essential to 
comprehensively elucidate the role of the microbiome in MASLD, 
MASH, and cirrhosis. Distinct microbial community clusters, known 
as enterotypes, have been identified in the human gut (Frioux et al., 
2023). These enterotypes are characterized by the dominance of 
specific bacterial genera, such as Prevotella or Bacteroides, and are 
associated with unique functional profiles (Di Pierro, 2021). This 
approach encompasses three primary investigative perspectives: (1) 
Analysis of individual bacterial strains to identify the specific 
microorganisms that trigger liver pathogenesis, (2) Examination of 
community-wide ecological dysbiosis to understand intricate 
microbial composition shifts, and (3) Functional analysis based on 
enterotypes to understand how microbial community structures 
influence metabolic processes, inflammation, and liver damage (Zhao 
et al., 2023).

The gut microbiota functions as a dynamic ecosystem 
fundamental to maintaining immune system homeostasis, preventing 
autoimmunity, and defending against pathogenic invasion (Pickard 
et al., 2017). The liver and large intestines share an intimate connection 
through multiple functional and vascular associations, including the 
biliary tract, portal vein, systemic circulation, autonomous nervous 
system, and gut hormones (Brandl et al., 2017). Recent studies have 
documented progressive changes in gut microbial composition that 
correlate directly with liver disease severity, with gut microbiota 
dysbiosis disruptions becoming increasingly pronounced as cirrhosis 
advances (Yuan et al., 2024a; Yuan et al., 2024b).

In 2011, Arumugam et al. (2011) introduced the concept of 
enterotypes, categorizing the gut microbiome into three major 
types: Bacteroides-dominated (ET-B), Prevotella-dominated 
(ET-P), and Ruminococcus-dominated (ET-R). These enterotypes 
demonstrate remarkable stability and show minimal association 
with demographic factors, BMI, or lifestyle variations, including 
dietary patterns (Wu et al., 2021; Ren et al., 2023). Previous research 
has established notable associations between enterotypes and 
various disease phenotypes (Wu and Park, 2022; Park et al., 2023b; 
Wu et al., 2024). ET-B correlates with reduced microbial diversity 
and is linked to MASH, colorectal cancer, immunosenescence, and 
low-grade chronic inflammation (Xu et al., 2021; Park et al., 2023b). 
Conversely, ET-P has been associated with rheumatoid arthritis, 
T2DM, MASLD, and acquired immunodeficiency syndrome (Yuan 
et al., 2024b). Despite these insights, the precise mechanisms by 
which the gut microbiota contribute to MASLD and liver cirrhosis 
progression remain incompletely understood.

We aimed to systematically investigate the mechanisms by which 
the gut microbiota contributes to the development and progression 
from health to MASLD and cirrhosis, utilizing the comprehensive 
approach mentioned above that integrates strain-level analysis, 
community-wide ecological assessment, and functional enterotype 
characterization. This research offers potential for developing 
innovative diagnostic biomarkers and targeted therapeutic strategies, 
with the ultimate goal of providing personalized interventions that 
could improve patient outcomes and potentially halt or reverse the 
progression of metabolic liver disease by modulating the 
gut microbiota.

Methods

Search strategy

The primary objective was to systematically compare the gut 
microbiome composition across three distinct groups: healthy 
individuals, patients with MASLD, and those with liver cirrhosis. The 
systematic search and data extraction were conducted according to the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines.1 With this objective, a comprehensive literature 
search was conducted across multiple specialized databases, including 
those of the European Bioinformatics Institute (EMBL-EBI, https://
www.ebi.ac.uk/), the National Center for Biotechnology Information 
(NCBI, https://www.ncbi.nlm.nih.gov/), and the Gut Microbiota 
Repository (GMrepo, https://gmrepo.humangut.info/). The data 
collection included studies published up to August 2024. The search 
keywords included “non-alcoholic fatty liver disease” (NAFLD), “liver 
cirrhosis,” “gut microbiota,” “intestinal flora,” and their related 
synonyms, including emerging terminologies such as “metabolic 
associated fatty liver disease” (MAFLD) and “metabolic dysfunction-
associated steatotic liver disease” (MASLD). Both medical subject 
heading (MeSH) terms and free text were utilized to ensure 
comprehensive coverage.

1 https://www.prisma-statement.org/prisma-2020-statement
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Inclusion and exclusion criteria

Studies that followed specific diagnostic guidelines were included 
for the analysis as follows: The studies on MASLD were based on the 
“Multisociety Delphi Consensus Statement on New Fatty Liver 
Disease Nomenclature” (El-Kassas and Alswat, 2025), while the 
cirrhosis-related research complied with the “Evidence-based Clinical 
Practice Guidelines for Liver Cirrhosis 2020” (Yoshiji et al., 2021). All 
the selected studies were accorded Institutional Review Board 
approval and informed consent was obtained from the participants. 
To maintain research integrity and minimize potential confounding 
factors, we  implemented strict exclusion criteria. Studies were 
excluded if participants had co-morbid conditions such as viral 
hepatitis, hypertension, diabetes, or heart disease, or had taken 
antibiotics within the preceding 3 months. Furthermore, to ensure 
methodological consistency and comparability, we exclusively selected 
studies that utilized 16S rRNA gene amplicon sequencing as the 
primary investigative technique.

Downloading data and annotating species

Raw 16S rRNA sequencing data were obtained from the Sequence 
Read Archive (SRA) and converted into paired-end FASTQ format 
using the SRA Toolkit (v2.5.2). All datasets underwent a unified 
preprocessing pipeline implemented in the Quantitative Insights into 
Microbial Ecology Version 2 (QIIME2) platform (version 2021.2) for 
comprehensive 16S rRNA gene analysis. Quality control steps 
included removal of sequences with ambiguous bases, minimum 
Phred quality score >30, and a read depth threshold >10,000 reads per 
sample. Amplicon sequence variants (ASVs) were generated using the 

Divisive Amplicon Denoising Algorithm (DADA2) plugin with 
denoising, chimera removal (consensus method), and truncation 
lengths set at 240 bp (forward) and 200 bp (reverse) to ensure optimal 
quality. Taxonomic classification of ASVs was performed using a 
pre-trained naïve Bayes classifier, specifically comparing them against 
the Greengenes 13_8 database, focusing on the V4 region with a 99% 
similarity threshold. Only ASVs with a minimum frequency of 10 
across all samples were retained for downstream analysis to minimize 
the impact of sequencing artifacts.

Heterogeneity management and batch 
effect consideration

To account for potential heterogeneity across cohorts, 
we summarized each dataset’s characteristics—including sequencing 
platform, geographic origin, sample processing protocols, and 
diagnostic criteria—in Table 1. All datasets were processed through 
the same bioinformatic pipeline to minimize technical variability. 
Although formal batch correction tools such as ComBat or 
MMUPHin were not applied, we  employed several strategies to 
mitigate cross-cohort confounding: First, unified quality control and 
processing: All samples were subjected to consistent quality 
thresholds and denoising steps, reducing pipeline-specific biases. 
Second, subgroup and stratified analyses: We performed subgroup 
analyses based on disease state and dataset origin to assess 
reproducibility of microbial patterns. Third, biological integration via 
enterotyping: Enterotype clustering based on principal component 
analysis (PCA) was used to group samples by microbial composition 
rather than study origin, helping reduce artificial clustering driven by 
technical variation.

TABLE 1 The characteristics of each selected three-arm cohort from health and MASLD and cirrhosis.

Study(ID) Health NAFLD CIR Year Instrument Gender(M/F) Age City, Country

PRJNA246121 32 53 0 2015 Illumina HiSeq 2000 32/53 45.00 ± 10.17 Beijing, China

PRJNA382861 25 31 0 2017 Illumina MiSeq 22/34 37.00 ± 6.33 Shanghai, China

PRJNA541489 23 24 0 2019 Illumina MiSeq 33/14 64.04 ± 7.30 Beijing, China

PRJNA518731 0 36 0 2020 Illumina MiSeq – – Auckland, New Zealand

PRJNA559052 0 86 0 2020 Illumina MiSeq 56/30 50.80 ± 12.60 Leuven, Belgium

PRJEB40538 0 91 0 2021 Illumina MiSeq 35/26 48.8 ± 9.36 Italy; Greece; Serbia

PRJNA860335 29 32 0 2022 – – – Beijing, China

PRJNA431746 8 0 88 2018 Illumina MiSeq – – Styria, Austria

PRJNA445763 20 0 36 2018 – – – Harbin, China

PRJNA449353 5 0 5 2019 – – – Nanjing, China

PRJNA471972 14 0 35 2020 Illumina HiSeq4000 11/38 64.74 ± 9.80 Rome, Italy

PRJNA748675 1 0 1 2022 – – – Taoyuan, Taiwan

PRJNA967488 0 0 21 2023 Illumina NovaSeq 8/13 57.14 ± 8.99 Chengdu, China

PRJEB41867 100 0 0 2020 Illumina HiSeq 48/52 24.1 ± 12.65 Graz, Austria

PRJNA736583 20 0 0 2022 Illumina MiSeq 10/10 53.2 ± 8.34 Naples, Italy

Asians 135 140 63

Europeans 142 213 123

Total 277 353 186
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Enterotype classification and diversity 
analysis

Bioinformatic and statistical analyses were performed in R 
(v4.1.3). Gut microbial community structures were classified into 
enterotypes using principal component analysis (PCA) implemented 
via the FactoMineR and Factoextra packages. The optimal number of 
clusters was determined based on an eigenvalue threshold (>1.5) and 
validated using clustering performance metrics including the 
Calinski–Harabasz index and silhouette scores. Additionally, 
PCA-based permutation tests (p-value < 0.01) were conducted to 
assess the statistical significance of the clustering patterns.

Microbial alpha diversity was calculated using the Chao1 and 
Simpson indices, reflecting species richness and community evenness. 
Group-wise differences in microbial composition (healthy, MASLD, 
and cirrhosis) were evaluated using partial least squares discriminant 
analysis (PLS-DA) via the metaX package (v2.0.0). All data 
visualizations were generated using ggplot2 (v3.3.3) to effectively 
illustrate microbial community structure and diversity.

Identification of microbial biomarkers

To identify core gut microbial signatures associated with liver 
disease progression, we implemented a multi-tiered filtering and 
machine learning framework. Initially, operational taxonomic units 
(OTUs) with relative abundance below 0.1% were excluded to 
reduce background noise. Differentially abundant taxa across 
disease stages were screened using Linear Discriminant Analysis 
Effect Size (LEfSe), incorporating Kruskal–Wallis testing followed 
by linear discriminant analysis.

Subsequently, we  employed the eXtreme Gradient Boosting 
(XGBoost) algorithm to build a predictive model for disease 
classification based on microbial features. To enhance model 
interpretability, we applied SHapley Additive exPlanations (SHAP) to 
calculate the average absolute SHAP values of each OTU at the species 
level, revealing their relative importance in the classification process. 
Importantly, 5-fold cross-validation was implemented during model 
training to assess performance stability and mitigate overfitting. 
However, due to the absence of an external dataset with harmonized 
metadata and sequencing protocols, independent cohort validation 
could not be conducted.

Construction of microbial co-occurrence 
networks and functional annotation

Microbial co-occurrence network construction was performed 
using FastSpar (version 0.0.10), calculating Spearman correlation 
coefficients (Sparcc) between microbial taxa to identify 
statistically significant correlations. The resulting network was 
visualized using Gephi (version 0.9.5), providing a comprehensive 
view of microbial interactions. Functional potential prediction of 
the gut microbiome was conducted using Phylogenetic 
Investigation of Communities by Reconstruction of Unobserved 
States (PICRUSt2), which maps 16S rRNA gene sequences to 
reference genomes in the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database. Functional profiles were standardized 

using Z-scores, with heatmaps generated through the 
pheatmap package.

To explore the intricate relationships between microbial 
biomarkers and biological functions, we  performed correlation 
analyses using the ggplot2 and linkET packages, complemented by 
Mantel testing to assess the correlations between matrices. 
Additionally, the deep cross-fusion networks for genome scale 
identification of pathogens (DCiPatho) method was employed to 
evaluate the potential pathogenic impact, by calculating the product 
of relative abundance and virulence score to quantify the influence 
of virulent microbes under varying conditions (Jiang G. et al., 2023).

Statistical analysis

All statistical analyses were performed using the SPSS software 
(version 13.0, SPSS Inc., Armonk, NY, United States). Unless otherwise 
specified, the differences among groups were assessed by one-way 
analysis of variance (ANOVA) followed by multiple comparisons 
among the liver disease states. Statistical significance was set at 
p < 0.05 after the Bonferroni correction.

Results

Screening and included studies

The screening process is detailed in Figure 1. The studies were 
selected based on the new definition of fatty liver disease and met the 
diagnostic criteria for MASLD and liver cirrhosis in American 
Association for the Study of Liver Disease and European Association 
for the Study of the Liver. In these studies, MASLD was diagnosed 
using imaging or biopsy techniques, liver cirrhosis was diagnosed 
based on fibrosis scores calculated through blood tests, and liver 
stiffness was assessed by elastography or biopsy. A total of 42 studies 
were initially identified through preliminary screening, 29 of which 
were excluded for the following reasons: 6 studies involved other 
disease complications, 7 studies had participants under the age of 18, 
and 16 studies did not have gut microbiome data. Finally, 13 studies 
were included in the analysis (Study IDs: PRJNA246121, 
PRJNA382861, PRJNA541489, PRJNA518731, PRJNA559052, 
PRJEB40538, PRJNA860335, PRJNA431746, PRJNA445763, 
PRJNA449353, PRJNA471972, PRJNA748675, PRJNA967488), which 
involved 158 healthy volunteers, 353 MASLD patients, and 186 
cirrhosis patients. Subgroup analysis and enterotype-based clustering 
were used to reduce inter-cohort variability and assess microbial 
community structure independent of technical batch effects. Due to 
the small sample size of healthy participants from studies from 
Australia and Italy, two additional analyses (Study IDs: PRJEB41867, 
PRJNA736583) were included, contributing 120 healthy volunteers. 
The basic characteristics of the participants from the studies included 
in the analysis are summarized in Supplementary Table 1.

Subgroup analysis

After data cleaning, a total of 813 data points were annotated with 
species information. Participants were then categorized into two gut 
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microbiome clusters, ET-B and ET-P, based on the optimal clustering 
numbers (Supplementary Figures S1A,1B). In the enterotype analysis, 
principal component (PC) 1 and PC2 accounted for 47.38 and 21.17% 
of the gut microbiota variance respectively, representing a cumulative 
68.55% of total variance. The model demonstrated statistically 

significant associations for specific variables and inter-group 
differences (p = 0.001). Cluster quality assessment using the CH index 
revealed optimal separation at k = 2 clusters, achieving a CH index of 
242 that substantially exceeded values observed for other cluster 
numbers (Supplementary Figure S1A). This pattern indicated 

FIGURE 1

Flowchart of data selection and analysis for metabolic dysfunction-associated fatty liver disease (MASLD) and cirrhosis. ET-B, Bacteroides-dominated 
enterotype, ET-P, Prevotella-dominated enterotype. LEfSe, linear discriminant analysis effect size; OTUs, operational taxonomic units; Sparcc, 
Spearman correlation coefficients; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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well-defined separation between enterotypes with high within-cluster 
consistency. Based on the gut microbiome samples, the 275 healthy 
participants were grouped into 186 in the ET-B and 89 in ET-P. The 352 
MASLD participants included 250 in ET-B and 102 in the ET-P. The 
186 cirrhosis participants included 106  in ET-B and 80  in ET-P 
(Figure 2).

As shown in Figure 2, there was no significant difference in the 
relative risk of MASLD between ET-B and ET-P when compared to 
the healthy group (p = 0.36). However, the relative risk of cirrhosis in 
ET-P was significantly higher than in ET-B when compared to the 
MASLD group (p < 0.05). Specifically, the relative risk difference 
between ET-B and ET-P was higher by 14% in the MASLD group 
compared to the cirrhosis group and by 33% among the healthy group 
compared to the cirrhosis group. Additionally, when ethnic differences 
were compared, Caucasians had a 9 and 40% higher relative risk of 
MASLD and cirrhosis, respectively, than Asians compared to the 
healthy group, although this difference did not reach statistical 
significance (p = 0.17). There was no significant difference in the 
relative risk of cirrhosis between Caucasians and Asians when 
compared to the MASLD group.

α-diversity and primary bacteria in the 
healthy, MASLD, and cirrhosis groups 
according to enterotypes

The Chao1 index represents α-diversity based on observed rare 
species and estimated potential richness, independent of abundance 
distribution, while Simpson’s diversity index represents α-diversity, 
with a greater dependence on the weight of abundance distribution. 
As shown in Figures  3A,B, with respect to ET-B, there were no 
significant differences in the Chao1 and Simpson indices among the 
healthy, MASLD, and cirrhosis groups. However, with respect to ET-P, 
the Chao1 and Simpson indices were higher in the healthy participants 
than in the participants with cirrhosis (p < 0.05), indicating a loss of 
microbial richness and evenness, reflecting the ecological imbalance 
associated with cirrhosis in ET-P.

LEfSe was used to compare the microbiome features across the 
healthy, MASLD, and cirrhosis status in the two enterotypes, and the 

results are shown in Figures  3C–F. The microbiome taxa showed 
consistent trends of relative abundance across both enterotypes: 
Actinobacteria, Bacilli, and Betaproteobacteria were high in the healthy, 
cirrhosis, and MASLD groups, respectively. Inconsistencies in the two 
enterotypes included the following: The relative abundance of 
Bacteroidetes was higher in ET-B associated with cirrhosis and ET-P 
associated with MASLD; the relative abundance of Gammaproteobacteria 
was higher in ET-B associated with MASLD and ET-P associated with 
cirrhosis. Additionally, in ET-B associated with MASLD, the relative 
abundance of Proteobacteria and Clostridia was higher than the other 
bacteria in the group. In the ET-B among the healthy group, the relative 
abundance of Alphaproteobacteria was higher than other bacteria 
(Figures 3C,D). In ET-P associated with cirrhosis, Firmicutes had a 
higher relative abundance than other bacteria in the group (Figures 3E,F).

XGBoost was used to identify the stage-specific marker microbes 
at the species level as shown in Figures 3G,H. In ET-B, the relative 
abundance of Anaerobutyricum soehngenii, Pseudescherichia vulneris, 
and Lachnoclostridium pacaense was positively correlated with the 
healthy group, while Prevotella hominis and Dysosmobacter welbionis 
were positively correlated and Anaerobutyricum soehngenii negatively 
correlated with MASLD. Cirrhosis was positively correlated with 
Veillonella parvula, and negatively correlated with Blautia intestinalis 
and Bilophila wadsworthia (Figure 3G). In ET-P, the healthy group was 
positively correlated with Lachnoclostridium pacaense and negatively 
correlated with Veillonella parvula and Bacteroides fragilis (Figure 3H). 
Prevotella copri was positively correlated, while Bacteroides 
luhongzhouii and Clostridium saudiense were negatively correlated 
with MASLD. Veillonella atypica and Limosilactobacillus 
urinaemulieris had increased relative abundance, while the abundance 
of Gemmiger formicilis decreased in the cirrhosis group.

β-diversity and core bacteria in the healthy, 
MASLD, and cirrhosis groups according to 
enterotypes

The β-diversity of the gut microbiome determined by PLS-DA 
is represented according to ET-B and ET-P in Figures  4A,B, 
respectively. Blue circles, yellow triangles, and red squares 

FIGURE 2

Forest plot of relative risk differences for MASLD and cirrhosis according to enterotypes and ethnicity. CI, confidence interval; MASLD, metabolic 
dysfunction-associated fatty liver disease; ET-B, Bacteroides-dominated enterotype, ET-P, Prevotella-dominated enterotype.
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represent the healthy, MASLD, and cirrhosis samples, respectively. 
As observed in the figures, in ET-B, MASLD and cirrhosis were 
located on opposite sides of the healthy group, indicating that the 
microbial changes associated with MASLD and cirrhosis were 
distinct, suggestive of a trend diverging from healthy. On the other 
hand, in ET-P, the healthy, MASLD, and cirrhosis samples were 
arranged in a sequential pattern, suggesting that the microbial 
changes aligned with a continuous progression from healthy to 
MASLD to cirrhosis.

Furthermore, bacteria with similar relative abundance between 
the two disease states were categorized as part of an intermediate 
state. The intermediate states of the gut microbiome were defined as 
healthy−MASLD and healthy−cirrhosis in ET-B (Figure 4C) and as 
healthy−MASLD and MASLD−cirrhosis in ET-P (Figure 4D). The 
size and color of the circles represent the average relative abundance 

in different liver disease states. Green, yellow, and purple colors 
indicate the healthy, MASLD, and cirrhosis states, respectively. The 
overall gut microbiome of ET-B has a significant inhibitory effect 
on the cirrhosis-associated microbial community in the 
intermediate state of healthy-MASLD. However, the bacteria in the 
intermediates of healthy-MASLD included the ET-P microbiome 
associated with both MASLD and cirrhosis, indicating that the 
microbes in the intermediate states were more balanced in MASLD 
and cirrhosis.

The core microbiome in the healthy ET-B group primarily 
comprised Firmicutes (Faecalibacterium prausnitzii, 
Faecalibacterium longum), Ruminococcus (Ruminococcus callidus, 
Ruminococcus champanellensis), and Blautia (Blautia intestinalis, 
Blautia phocaeensis), as well as Actinobacteria (Bifidobacterium 
adolescentis) and Bacteroidetes (Bacteroides uniformis) (Figure 4C). 

FIGURE 3 (Continued)
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In the healthy−MASLD stage of the ET-B, the core microbiome 
included Clostridiales (Ruminococcus bromii, Intestinimonas 
massiliensis, Pseudoruminococcus massiliensis, Agathobaculum 
butyriciproducens, Lachnoclostridium pacaense), Actinobacteria 
(Bifidobacterium catenulatum), and Bacteroidales (Bacteroides 
humanifaecis, Phocaeicola plebeius), with additional contributions 

from Burkholderiales (Sutterella wadsworthensis) and 
Rhodospirillales (Rhodospirillum rubrum) (Figure  4C). In the 
MASLD stage of the ET-B, the core microbiome comprised 
Clostridiales (Ruminococcus bovis, Subdoligranulum variabile) and 
Bacteroidales (Prevotella herbatica, Prevotellamassilia timonensis, 
Phocaeicola sartorii) (Figure 4C). In the healthy−cirrhosis stage of 

FIGURE 3

α-diversity and key microbial analysis of the gut microbiome. (A,B). α-diversity measured by the Chao1 index and the Simpson index. (C,D) Evolutionary 
branching diagram and biomarker bar chart of ET-B’s Linear discriminant analysis effect size (LEfSe). (E,F) Evolutionary branching diagram and 
biomarker bar chart of ET-P’s Linear discriminant analysis effect size (LEfSe). The diagram shows taxonomic changes in the gut microbiome from the 
phylum to family levels. Red highlights taxa with higher relative abundance in the cirrhosis group, yellow indicates enrichment in the metabolic 
dysfunction-associated fatty liver disease (MASLD) group, and green represents taxa predominant in the healthy group. Only taxa with a linear 
discriminant analysis (LDA) score (Log 10) > 4 are displayed. (G,H) SHAP (SHapley Additive exPlanations) analysis of the ET-B and ET-P. ET-B, 
Bacteroides-dominated enterotype, ET-P, Prevotella-dominated enterotype.
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the ET-B, the core microbiota included Firmicutes 
(Faecalibacterium hattorii, Faecalibacterium prausnitzii, 
Faecalibacterium longum, Megasphaera elsdenii), Actinobacteria 
(Bifidobacterium bifidum), Bacteroidetes (Bacteroides caccae), and 
Pseudomonadales (Pseudomonas citronellolis) (Figure  4C). In 
cirrhosis of the ET-B, the core microbiota was enriched in 
Veillonella parvula, and Limosilactobacillus urinaemulieris, with a 
high abundance of Proteobacteria and Firmicutes (Ruminococcus 
spp.) (Figure 4C).

The core microbiota of the healthy group in the ET-P gut type is 
primarily made up of Firmicutes, including Lachnospiraceae 
(Blautia luti, Dysosmobacter welbionis, Gemmiger formicilis), 
Ruminococcaceae (Intestinimonas massiliensis and Faecalibacterium 
duncaniae), and Lactobacillales (Lactobacillus johnsonii and 
Enterococcus hulanensis). The core microbiota during the healthy & 
MASLD stage includes Lachnospiraceae (Anaerostipes hadrus and 
Lachnoclostridium pacaense), Romboutsiaceae (Romboutsia 

timonensis and Romboutsia lituseburensis), and Lactobacillales 
(Ligilactobacillus apodemi, Limosilactobacillus urinaemulieris, and 
Enterococcus hirae). The core microbiota in the MASLD stage consists 
of Firmicutes (Anaerobutyricum soehngenii, Veillonella parvula, and 
Turicibacter bilis) and Bacteroidota (Prevotella copri). The MASLD & 
cirrhosis stage is characterized by Clostridiales (Ruminococcus bovis, 
Catonella massiliensis, Tidjanibacter massiliensis), Lactobacillales 
(Limosilactobacillus mucosae), Bacteroidales (Bacteroides fragilis, 
Bacteroides humanifaecis, Parabacteroides merdae, Alistipes finegoldii, 
and Massiliprevotella massiliensis), and some Proteobacteria (Sutterella 
faecalis, Sutterella massiliensis, Erwinia phyllosphaerae, and 
Succinivibrio dextrinosolvens). The cirrhosis stage is constituted by 
Clostridia (Blautia provencensis, Roseburia intestinalis, Clostridium 
saudiense, Veillonella atypica, Lactobacillus rogosae), Bacteroidales 
(Odoribacter splanchnicus, Prevotella hominis, Paraprevotella 
xylaniphila, and Phocaeicola faecalis), and Aeromonadales 
(Vescimonas coprocola).

FIGURE 4

β-diversity analysis and gut microbiome interaction networks of metabolic dysfunction-associated fatty liver disease (MASLD) and cirrhosis gut 
microbiome determined according to ET-B and ET-P. (A,B) β-diversity in ET-B and ET-P determined by partial least squares discriminant analysis 
(PLS-DA). (C,D) Network analysis of bacteria in ET-B and ET-P. Interaction networks of the gut microbiome. Node size indicates degree, while 
sector proportions represent the relative abundance in each group. Red, yellow, and green colors correspond to the cirrhosis, healthy, and 
metabolic dysfunction-associated fatty liver disease (MASLD) groups, respectively. ET-B, Bacteroides-dominated enterotype, ET-P, Prevotella-
dominated enterotype.
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Toxicity scores of the core gut microbiota 
in liver disease states according to 
enterotypes

In ET-B associated with MASLD, fewer toxic microbes were 
present in the gut microbiome compared to the healthy group. 
However, during the cirrhosis stage, toxin levels increased significantly 
(Figure  5A). Specifically, Faecalibacterium hattorii (toxicity score: 
1.28 ± 0.14) and Escherichia albertii (toxicity score: 1.24 ± 0.27) were 
positively associated with the progression of cirrhosis, while Veillonella 
nakazawae (toxicity score: 1.15 ± 0.23) continued to exacerbate the 
cirrhosis (Figure 5A). In contrast, the significant toxic bacterium in 
ET-P associated with MASLD was Prevotella copri (toxicity score: 
13.76 ± 0.38), while the core toxic bacteria in cirrhosis were Prevotella 
hominis (toxicity score: 1.71 ± 0.25) and Clostridium saudiense 
(toxicity score: 1.04 ± 0.32) (Figure 5B).

Metagenome function of gut bacteria by 
PICRUSt2 analysis

Figure 6A presents the predicted gut microbiome functions at 
different stages of the disease for the two gut types using 
PICRUSt2. The trends of the metagenome function of the gut 
bacteria across liver disease stages were similar in ET-B and 
ET-P. The ability to metabolize carbohydrates (map00500 and 
00051) was positively associated with cirrhosis but inversely 
associated with MASLD in both enterotypes. Activity in the 
metabolism of fatty acids (map01212), proteins (map00310 and 
map00250), caffeine (map00232), purines (map00546), and short-
chain fatty acid (SCFA)-related pathways (map000640) was 
inversely associated with MASLD and cirrhosis (Figure  6A). 
Additionally, endogenous antibiotics in the MASLD group 
(map00998) were positively associated, but were inversely 
associated with cirrhosis in both enterotypes. In contrast, some 
differences in metagenome function across the liver disease states 
between the enterotypes were observed: lipopolysaccharide (LPS) 
biosynthesis was positively associated with the cirrhosis stage in 
the ET-B and with the MASLD stage in the ET-P. Furthermore, the 
biosynthesis of secondary bile acids was significantly negatively 
correlated with the cirrhosis stage in the ET-B and with the 
MASLD stage in the ET-P (Figure 6A).

Figures  6B,C depict the interactions between differential 
bacterial species and metagenome functions. The thickness of the 
lines represents the strength of the interaction, with blue and red 
lines indicating inhibition and activation of the function by the 
microbe, respectively. The color and size of the rectangles represent 
the relationships between the microbiome functions with the same 
as those of the lines. We  defined microbes with three or more 
significant function connections (edges) as key functional microbes. 
In the ET-B microbiome, Parasutterella excrementihominis, Blautia 
intestinalis, Anaerobutyricum soehngenii, Guopingia tenuis, 
Dysosmobacter welbionis, Veillonella atypica, and Veillonella parvula 
were dominant in metagenome functions (edges ≥ 3) (Figure 6B). 
Notably, Anaerobutyricum soehngenii was positively correlated with 
fatty acid metabolism in the gut microbiome and negatively 
correlated with LPS biosynthesis in the ET-B. Prevotella hominis, 
Bilophila wadsworthia, Dysosmobacter welbionis, and Veillonella 

parvula jointly regulated bile acid metabolism in the ET-B 
(Figure 6B).

In the ET-P, Bacteroides luhongzhouii, Clostridium saudiense, 
Prevotella copri, and Limosilactobacillus mucosae collectively 
influenced the gut microbiota’s nutrient metabolism and the 
biosynthesis of metabolic products (Figure 6C). Gemmiger formicilis, 
Lachnoclostridium pacaense, and Limosilactobacillus mucosae were 
negatively linked to fatty acid metabolism, while Prevotella copri, 
Bacteroides luhongzhouii, and Clostridium saudiense were positively 
associated with LPS biosynthesis. Furthermore, Veillonella atypica and 
Bacteroides luhongzhouii were positively associated with bile acid 
metabolism (Figure 6C).

Discussion

This study demonstrated that the incidence of cirrhosis in ET-P 
was 33% higher than in ET-B, and this increase was significant. This 
was potentially linked to the fact that the microbiota in ET-P 
associated with MASLD promoted the progression to cirrhosis, 
while the core microbiota in ET-B associated with cirrhosis was 
largely suppressed by other gut microbes. Furthermore, the study 
identified specific gut microorganisms associated with cirrhosis: 
Escherichia albertii and Veillonella nakazawae were linked to 
cirrhosis in ET-B, while Prevotella copri was associated with 
MASLD, and Prevotella hominis and Clostridium saudiense were 
linked to cirrhosis in ET-P. In the gut metagenome function of both 
MASLD and cirrhosis, fatty acid and protein metabolism, as well as 
SCFA biosynthesis capacity, were reduced. Meanwhile, LPS 
biosynthesis increased, and secondary bile acid metabolism was 
abnormal in both MASLD and cirrhosis.

Numerous studies have highlighted significant differences in the 
incidence of liver diseases among different populations. These 
disparities have been attributed to lifestyles, regional economic 
conditions, and age (Herren et al., 2022). This study was novel, as it 
suggested that these differences could be related to the gut microbiota, 
with the incidence varying depending on the gut microbiome type. 
ET-P is primarily characterized by a Prevotella-dominant 
microbiome, with genus Prevotella accounting for an average of 
33.9%, wherein Prevotella copri and Prevotella hominis are considered 
pathogenic strains linked to liver diseases, especially MASLD and 
cirrhosis. Prevotella are widely distributed in the oral cavity, 
gastrointestinal tract, and reproductive tract and are an important 
component of the gut microbiome. They ferment complex 
carbohydrates, such as cellulose, pectin, and polysaccharides. 
However, increasing evidence suggests that the excessive proliferation 
of Prevotella is associated with chronic inflammatory diseases and 
liver fibrosis (Sharma et  al., 2022). Studies have also shown that 
Prevotella’s protoporphyrin IX and/or protoheme may contribute to 
liver injury, and endogenous hydrogen sulfide can increase serum 
interleukin (IL)-6 levels in patients (Gaddam et al., 2017). Notably, 
Prevotella copri has been associated with obesity, increased fasting 
blood glucose, and elevated insulin levels (Gong et  al., 2024). Its 
mechanism appears to involve LPS biosynthesis and the 
overactivation of the immune system (De Filippis et  al., 2019). 
Meanwhile, Clostridium saudiense has been strongly linked to 
diabetes risk (Kwan et  al., 2022), with its mechanism involving 
secondary bile acids (Park et al., 2023a).
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In contrast, ET-B, characterized by a Bacteroides-dominant gut 
microbiome, with Bacteroides accounting for 31.2%, showed that 
Escherichia albertii was associated with MASLD, while Veillonella 
nakazawae was linked to liver cirrhosis based on the toxin scores. 
Escherichia albertii is the second most pathogenic species in the 
Escherichia genus after E. coli and is considered an emerging 
intestinal pathogen in humans and animals (Muchaamba et  al., 

2022). The only reported toxins in E. albertii strains are cytolethal 
distending toxin (CDT) and Shiga toxin (Stx) (Hinenoya et  al., 
2017). Studies have shown that E. albertii can invade HeLa, Caco-2, 
and T84 cells, reducing epithelial resistance by redistributing tight 
junction proteins such as claudin-1 and zonula occludens-1, thereby 
increasing cell permeability (Yamamoto et al., 2017). Additionally, 
Veillonella metabolizes lactate and releases acetate, which triggers 

FIGURE 5

Toxicity analysis of gut microbiome. (A,B) Relative abundance-corrected toxicity scores of gut microbiota in ET-B and ET-P ET-B, Bacteroides-
dominated enterotype, ET-P, Prevotella-dominated enterotype.
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gluconeogenesis and lipogenesis, leading to increased lipid storage 
in the liver and body tissues (Zhang and Huang, 2023). Veillonella 
has also been shown to play a role in small intestinal bacterial 
overgrowth (SIBO) (Zhan et al., 2022), a condition more common 
in overweight and obese individuals (Palmas et al., 2021). SIBO is 
associated with the increased expression of toll-like receptor-4 
(TLR4) and secretion of IL-8, which influence the inflammatory 
pathways involved in the pathogenesis of MASLD and cirrhosis 
(Ghosh and Jesudian, 2019).

An important finding of this study was that gut microbes 
promote liver inflammation through LPS in MASLD and cirrhosis. 
Interestingly, this study found significant differences between the two 
enterotypes, with increased LPS levels in the cirrhosis stage of ET-B 
and the MASLD stage of ET-P. LPS released from the dead gram-
negative bacteria cell walls is recognized by dendritic cells or activated 
via Treg cells, triggering the adaptive immune system (Alpizar et al., 
2017). This process activates TLRs, leading to nuclear factor-κB 
(NF-κB) signaling and the activation of NOD-like receptors (NLR) 
through pathogen-associated molecular patterns (PAMPs) (Cario, 
2020). As a result, inflammatory cytokines and chemokines are 
transported through the mesenteric venous system to the portal vein 
and ultimately to the liver (Brandl et  al., 2017). In the liver, the 
Kupffer cells become activated, and the associated inflammatory 

factors further damage the intestinal mucosa. Elevated endotoxins 
and pro-inflammatory cytokines stimulate the activation and 
proliferation of hepatic stellate cells, leading to the secretion of the 
extracellular matrix and the promotion of liver fibrosis, which 
facilitates the progression of cirrhosis (Lee et al., 2017). Additionally, 
the decreased phagocytic capacity of the Kupffer cells, combined with 
hemodynamic changes in cirrhosis, disrupts intestinal secretion, 
absorption, barrier function, and circulation, ultimately resulting in 
further gut barrier damage (Nesci et al., 2024). This also leads to 
metabolic disturbances. Cirrhotic patients exhibit significantly 
elevated tumor necrosis factor (TNF)-α secretion, which affects tight 
junction (TJ) integrity (Jiang X. S. et al., 2023). In the decompensated 
phase of cirrhosis, activated intestinal macrophages secrete 
TJ-modulating factors like nitric oxide (NO) and IL-6, contributing 
to the disruption of the intestinal epithelial barrier. This damage to 
the gut barrier further impairs the repair of the liver structure and 
function, creating a vicious cycle between the gut and the liver 
(Rodrigues et  al., 2024). Therefore, gut microbiota might 
be differently involved in the mechanism of progression of MASLD 
and cirrhosis.

Another important finding of the present study was the abnormal 
increase in secondary bile acid biosynthesis in liver disease, 
specifically in ET-B during the cirrhosis stage and in ET-P during the 

FIGURE 6

Functional analysis of gut microbiota. (A) Differences in nutrient metabolism. Data were standardized using Z-scores. (B,C) Network analysis of the 
correlation between gut microbiota and functions of ET-B and ET-P.
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MASLD stage. This differential pattern may be  linked to the 
involvement of Bacteroides, which play a key role in secondary bile 
acid biosynthesis (Yu et al., 2021). Due to a vicious cycle between the 
liver and gut, some studies have found that secondary bile acids 
suppress the expression of membrane-bound chemokine (C-X-C 
motif) ligand 16 (CXCL16) in liver sinusoidal endothelial cells and 
reducing the number of natural killer T cells, which contributes to 
liver cancer development (Jia, 2019). In a mouse model of MASH, 
supplementation with deoxycholic acid (DCA) enhanced farnesoid 
X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) 
signaling, improving glucose tolerance and insulin resistance, and 
reducing liver steatosis (Oseini and Sanyal, 2017). Ursodeoxycholic 
acid (UDCA) has been shown to regulate the protein kinase B/
mammalian target of rapamycin/sterol regulatory element-binding 
protein-1 (AKT/mTOR/SREBP-1) signaling pathway, reducing lipid 
accumulation in MASLD cell models induced by oleic acid (Chen 
et  al., 2018). This may help decrease hepatic lipid accumulation, 
improve liver function, and prevent the progression and exacerbation 
of liver diseases.

Although this study implemented rigorous data management 
protocols and robust analytical techniques, several limitations must 
be acknowledged. First, dietary patterns—a known determinant of 
gut microbiota—could not be uniformly assessed across cohorts, 
representing a potential confounding factor. Geographic variability 
also constrains generalizability, as regional and ethnic differences 
influence microbiome composition. Medication usage, especially 
antibiotics and proton pump inhibitors, was not consistently 
recorded and may have impacted microbiota profiles. Second, while 
we employed 5-fold cross-validation within the XGBoost modeling 
framework to reduce overfitting and ensure model robustness, the 
absence of an independent external dataset limits the generalizability 
of our findings. Without external or cross-cohort validation, the 
predictive model’s performance across diverse populations remains 
uncertain and should be interpreted with caution. Third, the cross-
sectional design precludes causal inference or temporal mapping of 
microbiota changes during disease progression. Although batch 
effects were addressed through uniform preprocessing and 
subgroup analysis, cohort-specific biases may persist. Fourth, 
MASLD and MASH stages were not distinctly analyzed, as most 
included studies grouped them under a single disease category, 
potentially obscuring stage-specific microbial signatures. Finally, 
our use of PICRUSt2 for functional prediction, though widely 
accepted, offers only inferred, not directly measured, functional 
profiles based on 16S rRNA data. Given the reliance on reference 
genomes, predictive limitations are especially relevant in disease 
contexts where novel or poorly characterized taxa may play 
significant roles. Thus, pathway inferences such as LPS biosynthesis 
and bile acid metabolism should be interpreted with caution. Future 
studies should integrate multi-omics approaches—such as 
metagenomics, metatranscriptomics, and metabolomics—to 
validate functional predictions with greater biological resolution in 
longitudinal designs.

In summary, our systematic investigation of gut microbiome 
characteristics in MASLD and cirrhosis provided critical insights into 
the intricate interactions between microbial communities and the 
progression of liver disease. The findings revealed that enterotype-
specific microbial signatures substantially modulate the disease 
trajectory, demonstrating the critical role of gut microbiota in the 

pathogenesis of MASLD and cirrhosis. Key discoveries included 
significant variations in microbial composition across different 
enterotypes, identification of distinct bacterial strains associated with 
MASLD and cirrhosis progression, and metabolic functional analyses 
uncovering altered metabolic pathways in MASLD and cirrhosis. 
These findings offer promising opportunities for developing 
enterotype-specific diagnostic biomarkers and precision medicine 
approaches, potentially enabling early detection of disease, risk 
stratification, and targeted therapeutic interventions. Future research 
should prioritize validating the identified microbial markers in 
prospective clinical studies, elucidating the causal mechanisms 
linking specific bacterial strains to liver disease progression, 
developing microbiome-based personalized therapeutic strategies, 
and exploring probiotic or prebiotic interventions tailored to 
specific enterotypes.
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