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Introduction: Pseudomonas aeruginosa (P. aeruginosa) represents a paradigm 
for studies on antibiotic resistance. Nevertheless, despite the considerable 
number of genome sequences that have been released in recent years, there is 
still a paucity of knowledge regarding the genomic determinants of the typical 
phenotypic traits associated with pulmonary infection.

Methods: The genomes of 40 strains of P. aeruginosa were sequenced over an 
8-year period (2007–2014), isolated from the sputum of a single patient with 
cystic fibrosis in Trentino, Italy. The same isolates were characterised for a panel 
of 14 phenotypes, including biofilm formation, antibiotic resistance, secretion 
of siderophores and virulence factors. The phylogenetic coherence of the 
measured phenotypes was determined in relation to the tree based on single-
nucleotide polymorphisms (SNPs). Subsequently, the semantic framework 
for comparative functional genomics (SAPP) was employed to investigate the 
depletion or enrichment of specific protein functional domains within the 
population in relation to the observed phenotypes.

Results: The majority of our findings regarding phenotypic adaptation over time 
were consistent with the population structure and followed the evolutionary 
pathways described in the literature. However, an exact relationship between the 
presence of genes and specific phenotypes could not be established. The SAPP 
approach enabled the identification of 189 protein domains that were significantly 
enriched in antibiotic-resistant strains, as well as 87 domains associated with other 
phenotypic adaptations. In some cases, the domains were commonly associated 
with antibiotic resistances, for example, outer membrane efflux pumps and 
porins. However, we also detected a number of domains with unknown function.

Discussion: Our findings provide a foundation for a more comprehensive 
understanding of the phenotypic adaptations occurring during microevolution 
in lung environments and facilitate the identification of new targets for the 
design of novel antimicrobial agents.
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1 Introduction

Antimicrobial resistance (AMR) constitutes a critical and 
escalating global health concern, fuelled by complex epidemiological 
dynamics. The spread of antibiotic-resistant microorganisms 
increasingly undermines the efficacy of current therapeutic regimens, 
posing a substantial threat to human health (O’Neill, 2016; Murray 
et al., 2022).

Pseudomonas aeruginosa (P. aeruginosa) has emerged as a model 
organism for the study of antimicrobial resistance (AMR; Oliver et al., 
2024), including low outer membrane permeability, constitutive 
expression of multidrug efflux systems, and the production of 
antibiotic-inactivating enzymes (Breidenstein et al., 2011; Elfadadny 
et al., 2024). In particular, Cystic Fibrosis (CF) patients, with chronic 
colonisation with P. aeruginosa, are exposed to increased morbidity 
and mortality (Bhagirath et al., 2016; Rossi et al., 2021; Cramer et al., 
2023); estimates suggest that 25–45% of adult CF patients are 
chronically infected with multidrug-resistant (MDR) P. aeruginosa 
strains within their airways (Lechtzin et al., 2006), a rate, however, that 
has been observed to be on the rise, since MDR P. aeruginosa strains 
are developing with increasing frequency and rates have tripled in the 
last two decades (Kothari et al., 2023). It is a matter of concern that CF 
strains of P. aeruginosa have already been found to be resistant to 
nearly all or all antibiotics in clinical use today. The microbiology of 
pulmonary infections in CF patients is often different from similar 
infections in healthy individuals (Folkesson et al., 2012).

Antibiotic resistance is often associated with other phenotypic 
adaptation such as biofilm formation and hypermutability. Biofilm 
formation plays a central role in chronic infections, providing a 
protective matrix that limits antibiotic diffusion and impairs host 
defences. Biofilm formation is regulated by the las and rhl quorum 
sensing system (Davies et  al., 1998; Vetrivel et  al., 2021). Within 
biofilms, P. aeruginosa cells are embedded in a self-produced 
extracellular matrix composed of polysaccharides, proteins, and 
extracellular DNA. This lifestyle leads to reduced metabolic activity 
and altered gene expression, resulting in increased tolerance to 
antimicrobial agents (Ciofu and Tolker-Nielsen, 2019; Reichhardt, 
2023). Furthermore, biofilm-growing bacteria quickly become MDR 
(Bjarnsholt et al., 2009; Metzger et al., 2022). Hypermutable strains, 
meanwhile, accelerate the accumulation of mutations that can enhance 
survival under selective pressure. The prevalence of hypermutable 
P. aeruginosa isolates has been documented approximately of 5–10% 
at onset/early colonisation in CF patients (Kenna et al., 2007; Mena 
et al., 2008).

Strategies to mitigate the emergence and dissemination of MDR 
pathogens include optimised antibiotic stewardship, improved 
diagnostic and surveillance frameworks, and the development of novel 
antimicrobial agents (Roca et al., 2015). Despite the urgent need for 
new antibiotics, the discovery pipeline remains constrained; since 
2000, only a limited number of newly approved antibiotics have 
introduced novel classes or mechanisms of action (Renwick et al., 
2016; Butler et al., 2024). Consequently, innovative approaches are 
required to identify new therapeutic targets.

MDR and other phenotypic adaptations can be  associated to 
common genetic determinants, which can be  tracked by whole 
genome sequencing (WGS). WGS has become an essential tool for 
understanding the microevolutionary trajectories and identifying new 
targets for the development of antimicrobial therapies (WHO, 2020; 

Bianconi et al., 2023). Bacterial WGS allows the query of complete 
genetic repertoire and the discovery of yet uncharacterised 
determinants (Köser et  al., 2014; Chan, 2016; Waddington et  al., 
2022). Nevertheless, knowledge on genome microevolution during 
persistent CF infection and the genomic features associated with the 
phenotypic adaptation in CF patient lung environment is incomplete; 
therefore, it is very likely that many of the genes involved are still to 
be identified. Genotype–phenotype mapping remains one of the most 
challenging issues in understanding bacterial microevolution and 
adaptation (Manrubia et al., 2021). Comparative genomics enables the 
identification of strain-specific adaptations, genomic islands, and 
horizontally acquired elements that contribute to virulence, 
persistence, and antimicrobial resistance. Functional domain analysis, 
on the other hand, focuses on conserved protein motifs (e.g., PFAM 
domains) that are often preserved across diverse genetic backgrounds. 
This approach analysis enables detection of conserved protein motifs 
across diverse genetic contexts, even in hypothetical or poorly 
annotated genes. This is crucial in P. aeruginosa, where phenotypic 
traits such as antibiotic resistance or biofilm formation often arise 
from complex, polygenic networks. By associating specific domains 
with phenotypic traits, we are able to gain insight into the functional 
architecture of adaptation, highlighting novel targets for 
therapeutic intervention.

Traditional target identification strategies, which rely on 
mutational analysis of individual genes, are often limited in scope and 
efficacy. On the other hand, advances in WGS approaches and 
computational biology offer the potential to revolutionise drug 
discovery strategies and approaches. Nevertheless, despite the 
increasing availability of genome sequences, the functional 
interpretation of genotypic variation in relation to phenotype 
remains limited.

In this study, we applied a semantic framework for comparative 
functional genomics to associate conserved protein domains with 
phenotypic traits in a longitudinal collection of clonal P. aeruginosa 
isolates from a CF patient, aiming to identify potential drivers of 
adaptation and resistance. Our innovative approach entails a shift in 
focus from gene counting to the quantification of protein domains 
within the genome, given that these domains are proportional to the 
number of protein-coding genes. This method addresses the 
challenges posed by uncharacterised or unannotated genes, as protein 
domains can be reliably identified through PFAM databases (Mistry 
et  al., 2021). The identification of multiple functional domains 
associated with each gene results in the generation of a greater number 
of features, thereby facilitating the inference of correlations with 
specific phenotypes. In contrast to traditional methods, which may fail 
to identify key targets, this comprehensive approach allows for the 
precise localisation of all potential targets within the bacterial genome, 
including those involved in the persistence and antibiotic resistance 
of P. aeruginosa, the roles of which remain unknown.

2 Methods

2.1 Bacterial strains

Over an eight-year period (2007–2014), 40 strains of P. aeruginosa 
were isolated from the sputum of a single male CF patient. The patient 
was treated at the Trentino Regional Support CF Centre and the 
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Operative Unit of Clinical Pathology (Rovereto Hospital, Trentino, 
Italy). The patient was 24 years of age at the commencement of 
sampling. The patient is heterozygous for the CFTR mutations ∆F508 
and G542X (Bianconi et al., 2016, 2019; Table 1).

2.2 Phenotypic characterisation

The siderophores secretion assay was performed using the protocol 
of Alexander and Zuberer (1991), in brief, we  prepared M9 media 
complemented with casamino acid solution, piperazine diethansulfonic 
acid (PIPES) and 1 mM FeCl3. The strains were inoculated in this medium 
and incubated overnight at 37°, siderophore secretion was detected as an 
orange halo around the colonies. Pyocyanin production levels were 
determined by measuring the ratio of the OD695 of the supernatant 
divided by the respective OD600 in king A medium (Bianconi et al., 2011). 
The pyoverdine secretion was assessed by visual assay after a single colony 
was inoculated in 10 mL of LB broth (LB, Oxoid), and incubated for at 
least 24 h at 37°C (Marvig et al., 2013). To detect LasR mutants, the 
isolates were inoculated on LBA for 24 h at 37°C. Agar plates were left on 
the bench at RT for 1 to 3 weeks; then the plates were stained with 0.1% 
crystal violet. A metallic sheen indicated LasR mutants. The ability to lyse 
erythrocytes was measured plating each strain onto a blood agar plates 
(Kidma) and incubating for 48 h at 37°C. Haemolysis was indicated by an 
halo around the colony (Hoboth et al., 2009). To measure the resistance 
to Amikacin, Cefepime, Ceftazidime, Ciprofloxacin, Colistin, Doripenem, 
Fosfomycin, Gentamycin, Imipenem, Levofloxacin, Meropenem, 
Piperacillin/Tazobactam, we used the Sensititre GRAM Negative Plate 
Format (Thermo Scientific, Waltham, MA, United States); the complete 
methos was previously published by the authors (Bianconi et al., 2019). 
The mutation rate was measured using the rifampicin assay (Oliver et al., 
2000), the biofilm production was assessed by the crystal violet staining 
assay with minor modifications (O’Toole, 2011). To measure swarming 
motility, single colonies were picked and inoculated on agar plates and 
incubated for 15 h at 37°C, after incubation the halo around the colony 
was measured (Bianconi et al., 2011). Protease production was evaluated 
using the skim milk assay, measuring the diameter of milk turbidity 
clearing surrounding each colony (Brown and Foster, 1970). For the 
phenotypes of pigmented colonies or mucoid phenotype we visually 
inspected on PIA (Pseudomonas Isolation Agar) plates. All assays were 
performed in triplicates.

2.3 Genome sequencing, assembly and 
annotation

The complete methodology for genome sequencing, assembly, and 
annotation of the 40 P. aeruginosa isolates was previously described in 
Bianconi et al. (2019). Briefly, genomic DNA was extracted using the 
DNeasy Blood and Tissue Kit (Qiagen), libraries were prepared with 
the Nextera XT DNA Library Preparation Kit (Illumina), and 
sequencing was performed on the Illumina MiSeq platform. De novo 
assembly was carried out using SPAdes v3.1.0, refined with Bowtie2, 
and reordered with Mauve. Genome annotation was performed using 
Prokka v1.11. SNPs were identified using Snippy, and phylogenetic 
analysis was conducted with BEAST.

2.4 Sequence data can be retrieved from 
Genbank (BioProject PRJNA326244)

Subsequently, the reads were assembled using the A5 pipeline 
(Coil et al., 2015) and the resulting contigs were imported into the 
semantic annotation platform SAPP (Koehorst et al., 2018). Protein 

TABLE 1 Clonal strain collection with isolation date and sequence type.

Isolate name Isolation date Sequence type

TNCF_3
13/04/2007

390

TNCF_4M 390

TNCF_6
29/05/2007

390

TNCF_7M 390

TNCF_10
26/07/2007

390

TNCF_10M 390

TNCF_12 4/9/2007 390

TNCF_13
5/9/2007

390

TNCF_14 390

TNCF_16 24/09/2007 1864

TNCF_23
17/10/2007

390

TNCF_23M 390

TNCF_32
23/11/2007

390

TNCF_32M 390

TNCF_42
31/01/2008

390

TNCF_42M 390

TNCF_49M 5/9/2008 390

TNCF_68 2/8/2010 390

TNCF_69 22/03/2010 1863

TNCF_76 9/6/2010 390

TNCF_85 8/11/2010 1864

TNCF_88M 14/12/2010 1864

TNCF_101 30/06/2011 1864

TNCF_105 25/08/2011 390

TNCF_106 16/09/2011 390

TNCF_109 30/09/2011 390

TNCF_130 19/07/2012 390

TNCF_133
14/09/2012

390

TNCF_133_1 1864

TNCF_151
05/04/2013

390

TNCF_151M 1864

TNCF_154 29/04/2013 390

TNCF_155
06/05/2013

390

TNCF_155_1 1923

TNCF_165 23/09/2013 1923

TNCF_167
3/10/2013

390

TNCF_167_1 390

TNCF_174 24/04/2014 390

TNCF_175 23/06/2014 390

TNCF_176 11/8/2014 1923

The strains are available at the Microbial genomics laboratory of the University of Trento.
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annotation and domain identification was performed using Prodigal 
(Hyatt et al., 2010) and InterProScan (Blum et al., 2021), respectively. 
SNPs calling was done by mapping the raw reads on the genome of the 
reference strain PAO1 using the software Snippy (Seemann, 2015). 
The analysis pipeline is represented in Figure 1.

2.5 Detection of phylogenetic signal and 
molecular evolution analysis

The association of phenotypes (encoded as binary traits) with the 
phylogenetic tree was measured using the function phylo.d, from the 
R package caper (Fritz and Purvis, 2010). The phylogenetic signal was 
calculated using two null models: (i) phylogenetic randomness; and 
(ii) Brownian model.

2.6 Data cleaning

The domain matrix containing information on the domain count 
for each isolate had been cleaned removing uninformative samples 
and features. A filter based on the number of zeros was applied for 
each sample and domain. Percentiles were computed for each 
distribution; the cutoff for the samples was set to the 95th percentile. 
The cutoff for the features was set to the 80th percentile. Percentiles 
were chosen to remove as more uninformative features as possible 
while deleting as few samples as possible to avoid overfitting. Samples 
and features with near-zero variance were removed from the dataset 
using “nearZeroVar” from the caret library.

2.7 Visualisation techniques

After data cleaning, we proceeded to the exploratory analysis 
of the domain matrix. To check if there was a natural separation 
of the three classes between the samples PCA and t-SNE were 
used. T-SNE were performed using ‘Rtsne‘package 
(Roberts, 2010) with perplexity = 50, max iteration = 5,000, 
theta = 0, only two dimensions were computed, while PCA was 
computed using ‘prcomp‘function, present in the standard 
‘stats‘package in R, selecting only the first two components. NMF 
was used to cluster data in an unsupervised fashion setting k = 2 
and 100 iterations.

2.8 Feature selection using SAPP

In order to find the possible associations between the 
variations in domain abundance and the phenotypes/antibiotic 
resistance, we performed a statistical analysis using the Wilcoxon-
tests for each combination and filtered the results applying 
statistical parameters (p < 0.05, Z-score >0.1  in at least 
one strain).

2.9 Statistical analysis of PFAM–phenotype 
associations

Let X be the matrix of PFAM family counts (families × strains) 
and Y the matrix of phenotypes (strains × phenotypes). For each 

FIGURE 1

Workflow of the bioinformatics analysis on the clonal strain collection.
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family i and phenotype j, we fit the linear model fit <− lm(X[i,] ~ Y[, 
j]) and extracted:

 1. β = coefficient of the phenotype term,
 2. 95% confidence interval for β via confint(fit, level = 0.95), and.
 3. raw p-value for the phenotype effect from anova(fit)[1, 

“Pr(>F)”].

To control the false discovery rate within each phenotype, raw 
p-values were adjusted using Benjamini–Hochberg 
[p.adjust(method = “fdr”)], and associations with FDR < 0.10 were 
deemed significant. Volcano plots (β̂ vs. –log₁₀FDR) were generated 
with ggplot2 to display effect magnitude against statistical strength.

3 Results

3.1 Phenotypic characterisation

Each isolate was subjected to testing for 14 distinct phenotypes that 
are typically lost or gained during the microevolution of P. aeruginosa in 
the airways of patients with cystic fibrosis. In order to identify positive and 
negative strains for pyocyanin secretion and biofilm formation, a cutoff 
value was fixed at 0.02 (OD695/OD600) and at 0.2 (OD550/OD600), 
respectively. The low boundaries were set at the results obtained for the 
strain PAO1, which served as the positive control. With regard to the 
coloured colony phenotype, it was possible to distinguish between higher 
(value of 2) and lower (value of 1) pigmentation. Two levels of siderophore 
secretion were established based on the presence of a more (value of 2) or 
less (value of 1) marked halo on the plates. The absence of the phenotype 
is indicated by the value 0. Multidrug-resistant isolates are indicated by 
the value 1, and intermediate resistant isolates are indicated by the value 
0.5. The number and percentage of isolates exhibiting a given phenotype 
were as follows: ability to lyse erythrocytes (82%); autolytic activity (70%); 
multidrug resistance (60%); hypermutability (57%); siderophore secretion 
(35%); pyocyanin secretion. The remaining phenotypes were as follows: 
biofilm production (13, 32.5%), pyoverdine secretion (12, 30%), 
pigmented colonies (12, 30%), mucoid phenotype (12, 30%), swarming 

motility (8, 20%), LasR mutants (6, 19.35%), and protease production (4, 
10%). Additionally, an in-silico O-antigen serotyping was conducted, 
which revealed that all the isolates belong to serotype O6. Spearman’s 
correlation coefficient was employed to ascertain the correlation between 
each phenotype and the time of isolation, as well as between each pair of 
phenotypes. In the majority of cases, the correlation coefficient rho was 
less than 0.5, indicating a weak correlation. However, MDR and 
hypermutable phenotypes exhibited a correlation value greater than 0.5, 
while siderophore secretion demonstrated a strong negative correlation 
with the time of isolation (rho = −0.7, Table 2).

Minimum Inhibitory Concentration (MIC) data for the 40 isolates 
were previously reported in Bianconi et al. (2019), including values for 
12 antibiotics across nine classes. These data are not replicated here to 
avoid redundancy.

3.2 Phylogenetic signal analysis

To verify if the presence of a phenotype was associated to the 
phylogenetic tree (constructed based on core genome SNPs) 
we performed an analysis of phylogenetic signal (Figure 2). Binary results 
of each phenotypic assay (encoded as 0 for absence and 1 for presence of 
the phenotype), were tested with the phylo.d function of R. Table 3 
reports the results of the analysis with the estimated D, relative to the 
phylogenetic signal, the p-value for D ≠ 1 and the p-value for D ≠ 0. 
Seven phenotypes (MDR, mucoid, swarming motility, pyocyanin, 
pyoverdine and protease secretion, and hypermutability) were distributed 
on the tree according to the Brownian model, indicating that these traits 
are significantly phylogenetically clumped and not randomly distributed 
as confirmed by the significant p-value (< 0.05) for D ≠ 1; autolysis and 
biofilm production traits are distributed according to a random model, 
which indicates an over dispersed distribution of these traits (the 
estimated D close to 1, typical of a random distribution of the characters 
across the phylogenetic tree), while for the remaining phenotypes the 
distribution model could not be  determined (Figure  2). For two 
phenotypes it was not possible to perform the phylogenetic signal 
analysis: the twitching motility trait had a single trait (negative for all 
isolates) and the LasR mutant trait was tested for only 31 isolates.

TABLE 2 Spearman’s correlation analysis for each phenotypic assay and time of isolations.

Phenotypic assay Rho p-value

MDR 0.562 0

Coloured colonies −0.274 0.088

Mucoidy −0.407 0.009

Swarming −0.272 0.09

Twitching / /

Haemolysis −0.288 0.072

Autolysis 0.028 0.862

Siderophore secretion −0.793 1.04E-09

Pyocyanine secretion −0.227 0.159

Pyoverdine secretion −0.442 0.004

Protease secretion −0.251 0.118

Biofilm 0.2024 0.211

LasR mutants 0.384 0.033

Hypermutability 0.5 0.001
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3.3 Genotypic characterisation

The genome sequences of the 40 strains were used to study the 
genotypic-phenotypic correlation of the isolates. Candidate genes 
were extrapolated from the virulence factors database VFDB.

Six genes encoding flagellar proteins were deleted in all isolates: 
flgK, flgL, fliC, flaG, fliD and fliS. Other genes showed frameshift 

mutations or premature stop codon, however, no one of the 
alterations found seems to be associated with the loss of swarming 
motility phenotypes. Although flagellar proteins are not directly 
responsible for antimicrobial resistance, their deletion is often 
associated with a shift to non-motile phenotypes and increased 
biofilm formation. This transition enhances persistence and tolerance, 
indirectly contributing to reduced antibiotic susceptibility (Wei et al., 

FIGURE 2

Distribution of phenotypes according to population structure. Green cells indicate positive phenotypes; white cells indicate negative phenotypes; for 
MDR phenotype yellow cells indicates intermediate resistant isolates; for LasR mutants phenotype grey cells indicates isolates not tested. Arrows 
indicate phenotypes for which Phylo.d produced a significant output. Red arrows, phylogenetic signal according to Brownian model; blue arrows, 
random (negative) phylogenetic signal.

TABLE 3 Phylo.d analysis for each phenotypic assay.

Phenotypic assay Estimated D p-value (D ≠ 1) p-value (D ≠ 0)

MDR −0.419 0 0.881

Coloured colonies 0.581 0.069 0.057

Mucoidy −0.106 0 0.631

Swarming 0.225 0.024 0.339

Twitching / / /

Haemolysis 0.491 0.129 0.201

Autolysis 1.12 0.639 0

Siderophore secretion 0.692 0.208 0.076

Pyocyanine secretion −0.248 0 0.75

Pyoverdine secretion −0.347 0 0.81

Protease secretion −0.16 0.048 0.552

Biofilm 0.696 0.124 0.038

LasR mutants / / /

Hypermutability −0.539 0 0.925
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2025). We did not found pilA, pilB, pilC and pilQ genes, involved in 
type IV pili biosynthesis. Genes involved in the mismatch repair 
system, siderophore, phenazines biosynthesis, and quorum sensing 
did not present any mutation able to explain the presence or absence 
of the phenotype.

In our previous study (Bianconi et al., 2019), we analysed the 
mutations present in genes involved in antibiotic resistance, 
alginate production, and biofilm formation. Variations present in 
the MDR isolates but not in the susceptible ones were found in 
gyrB, parC and parE (involved in resistance to fluoroquinolones), 
pmrB (involved in resistance to polymyxin) and oprD (involved 
in the resistance to carbapenems).

3.4 Variations in functional domains

Hierarchical clustering was performed on the PFAM data matrix 
of the functional domains and visualised as a heatmap (Figure 3), in 
which the individual phenotypes of each genome/strain is represented 
in the bottom panels in the figure. We found a total of 2,791 domains, 
but most of them did not show variations with respect to the presence/
absence of the phenotype sought; therefore, from this analysis, it was 

not possible to observe the presence of PFAM domains pattern 
associated with the phenotypes tested. However, the clusters formed 
by the strains (the columns in Figure 3), were consistent with the 
patterns formed by the Z-scores. This group of strains featured 
common phenotypic patterns, namely susceptibility to antibiotics and 
secretion of pyocyanin and pyoverdine. Such phenotypes are typical 
of the isolates from acute infection. On the other hand, the group of 
MDR strains presented a number of domains which had larger 
absolute values of Z-score. We found a total of 276 domains with a 
statistically significant different abundance in strains with or without 
the phenotypes or antibiotic resistance class for specific antibiotics 
and, most notably, this analysis grouped different phenotypes by their 
association with the functional domains (Figure 4). This was clearer 
for the antibiotic resistance, which showed a distinct pattern of 
domain abundance in resistant strains (Figure 5). In fact, we were able 
to identify 87 domains associated with the phenotypes not connected 
to antibiotics and 189 functional domains that were significantly 
enriched in the resistant strains compared to the susceptible ones 
(Figures 4, 5, respectively, and Table 4). Several domains related to 
antibiotic resistance were found in dehydrogenases and oxidases 
enzymes, but we  also found enrichment in functional domains 
belonging to proteins commonly associated with antibiotic resistance, 

FIGURE 3

Hierarchical clustering/heatmap PFAM domains. Hierarchical clustering was performed on the PFAM data matrix Z-score of the functional domains 
(n = 2,791) and visualised as a heatmap (A). Individual phenotypes or antibiotics resistance class of each genome\strain are represented in the panel B.
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such as outer membrane proteins, outer membrane porins and efflux 
pumps; the same domains are shared with many hypothetical proteins 
with unknown function.

We then split the domains into two groups: (i) the UP group 
composed of the domains more abundant in the strains associated 
with the presence of a phenotype and (ii) the DOWN group composed 
by the domains more abundant in the strains characterised by the 
absence of the phenotype. For each case, we plot the violin plots of 
each strain separately (not shown) or grouped together. Lastly, we test 
if the Z-score differences of the domain’ groups were statistically 
significant (Wilcoxon test or Kruskal-Wallis test for phenotypes and 
resistance/susceptibility, respectively). We  found a robust and 
significantly different abundance (enrichment or depletion) in 
domains related to several phenotypes and antibiotic resistance, most 
interesting among them; we found a significant differential abundance 
in domains associated with biofilm formation, mucoid phenotype and 
resistance to Carbapenems (Figures 6, 7). To ensure control of false 
positives and to convey both the magnitude and confidence of each 
association, we re-analysed all PFAM-phenotype pairs using linear 
regression. For each family×phenotype combination, we fit a linear 
model in R (lm), extracted the regression coefficient (β) and its 95% 

confidence interval, and obtained a raw p-value from the ANOVA 
table. We then applied the Benjamini–Hochberg procedure separately 
to each phenotype’s p-value vector (FDR < 0.10). Significant 
associations are those with per-phenotype FDR < 0.10. In particular 
we  obtain 41 and 53 differential domains for the two classes of 
phenotypes. To visualise both effect size and adjusted significance, 
we introduce a new volcano-plot panel (Figure 8), plotting β against –
log₁₀(FDR). Full results—β, confidence bounds, raw p, and FDR for 
every PFAM family and phenotype—are provided in 
Supplementary Table 1.

4 Discussion

Pseudomonas aeruginosa is the most common airway pathogen in 
CF patients (Gibson et al., 2003; Blanchard and Waters, 2019). Its 
extensive repertoire of regulatory genes facilitates adaptation to the CF 
lung environment through both genotypic and phenotypic 
modifications, resulting in a broad spectrum of morphotypes 
(Folkesson et al., 2012; Iwańska et al., 2023; Weimann et al., 2024). 
These adaptations include pathoadaptive mutations and horizontal 

FIGURE 4

Hierarchical clustering and heatmap of PFAM domains. Hierarchical clustering was performed on the PFAM data matrix Z-score and visualised as a 
heatmap (A). The panel B shows the heatmap of the differential mean Z-score of the domains between the subgroups (presence/absence) of each 
phenotype.
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gene acquisition, which contribute to the emergence of multidrug-
resistant (MDR) strains and complicate therapeutic management 
(Weimann et al., 2024).

A deeper understanding of the genotypic and phenotypic changes 
that P. aeruginosa undergoes during adaptation is fundamental to 
identify novel therapeutic approaches (Mayer-Hamblett et al., 2014; 
Sousa and Pereira, 2014; Camus et  al., 2021; Rossi et  al., 2021). 
Building on our previous findings (Bianconi et al., 2019), which found 
limited correlation between strain-specific mutations and phenotypic 
traits, we  adopted a novel bioinformatic approach to explore 
associations between broader genetic features and 
phenotypic adaptations.

In CF infections, P. aeruginosa progressively loses most of the 
virulence factors and acquires phenotypes able to confer antibiotic 
resistance over time (Winstanley et al., 2016). In our isolate collection, 
pigmentation, swarming motility, and siderophore production were 
predominantly observed in early and intermediate isolates. Alginate 
and pyoverdine production were largely confined to early isolates, 
while protease secretion was exclusive to early-stage strains. 
Conversely, MDR and hypermutable phenotypes were primarily 

associated with late-stage isolates, and LasR mutants were also more 
prevalent in the later stages of infection.

Phenotypic traits showed clear temporal patterns across the 
longitudinal isolates. Traits associated with acute infection—such as 
pigmentation, siderophore secretion, motility, and protease activity—
were predominantly found in early-stage isolates (Bianconi et  al., 
2019), conversely, traits linked to chronic adaptation, such as 
multidrug resistance and hypermutability, were more common in 
later-stage isolates. Spearman’s analysis performed to study the 
correlation of the phenotypes showed an expected strong correlation 
between hypermutability and MDR phenotypes (all the hypermutable 
isolates are also resistant to most of the antibiotics tested). A 
hypermutable phenotype leads to the accumulation of mutations that 
can confer antibiotic resistance to the bacterium, as well as an 
enhanced genetic adaptation to CF airway (Hogardt et  al., 2007; 
Feliziani et  al., 2014). Not surprisingly, pyoverdine (a pigmented 
siderophore involved in iron uptake) correlated positively with 
pyocyanin (which is also involved in the reduction of iron allowing its 
uptake; Cornelis and Dingemans, 2013). We  found a negative 
correlation between pyoverdine secretion and MDR and a positive 

FIGURE 5

Hierarchical clustering and heatmap of PFAM domains. Hierarchical clustering was performed on the PFAM data matrix Z-score and visualised as a 
heatmap (A). The panel B shows the heatmap of the differential mean Z-score of the domains between the subgroups (presence/absence) of each 
antibiotic resistance.
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correlation between biofilm formation and hypermutability, probably 
due to the adaptive evolution of P. aeruginosa leading to the typical 
phenotypes of strains from chronic infections (Marvig et al., 2013).

The analysis of the mutations in the genes recognised to 
be  involved in the phenotypes, included MDR, was partially 

performed in our previous study (Bianconi et  al., 2019). Here 
we  completed the analysis for all the phenotypes tested in this 
study. Briefly, different genes involved in bacterial motility were 
absent in our isolates, such as fliC, pilB and pilQ that are reported 
to be mutated in non-motile strains, with a premature stop codon 

TABLE 4 Functional domains with different abundance in resistant strains respect to susceptible ones.

PHP 
domain

Aminoglycosides Carbapenems Cephalosporines Fluoroquinolones Phosphonic 
acids

Penicillins

PF00005 0.2083 0.1768 0.2083 0.2267 0.2707 0.2083

PF00009 0.375 0.1818 0.375 0.4267 0.3191 0.375

PF00083 0.5208 0.4293 0.5208 0.52 0.5271 0.5208

PF00115 0.25 0.298 0.25 0.2267 0.1795 0.25

PF00171 0.7083 0.7727 0.7083 0.68 0.6296 0.7083

PF00180 0.6458 0.6162 0.6458 0.5067 0.4387 0.6458

PF00230 0.25 0.2727 0.25 0.1333 0.1083 0.25

PF00501 1.1667 1.1212 1.1667 1.1467 0.6667 1.1667

PF00586 0.7708 0.7778 0.7708 0.6133 0.5071 0.7708

PF00873 0.75 0.8434 0.75 0 0.396 0.75

PF00989 0.4375 0.3636 0.4375 0.4267 0.4103 0.4375

PF01311 0.375 0.1313 0.375 0.1333 0.4046 0.375

PF02321 0.1857 0.0909 0.1857 0.24 0.359 0.1857

PF02353 0.3333 0.3636 0.3333 0.2133 0.2963 0.3333

PF02738 0.2708 0.2576 0.2708 0.28 0.3048 0.2708

PF02834 1 0.8889 1 0.96 0.661 1

PF04966 0.4792 0.5101 0.4792 0.4667 0.3333 0.4792

PF05161 0.25 0.2727 0.25 0.1333 0.1083 0.25

PF05638 0.6458 0.7172 0.6458 0.5067 0.5027 0.6458

PF08240 0.2292 0.1869 0.2292 0.2533 0.3105 0.2292

PF10106 0.5208 0.5556 0.5208 0.4 0.3704 0.5208

FIGURE 6

Violin plots of Biofilm formation. Violin plots of the Z-score of the domains associated, positive (A) or negative (B), with biofilm formation capacity, 
grouped by presence/absence categories. The colour represents the different categories. Data are described by boxplot and Z-score mean (black 
circle).

https://doi.org/10.3389/fmicb.2025.1569118
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Bianconi et al. 10.3389/fmicb.2025.1569118

Frontiers in Microbiology 11 frontiersin.org

or frameshift mutations. No one of these mutations is able to 
explain the motile or non-motile phenotype of our P. aeruginosa 
population. The same situation is shown for genes involved in the 
production of virulence factors; for instance, none of the 40 isolates 
presented the specific mutations found in the mismatch repair 
genes leading to a hypermutable phenotype. We confirmed our 
previous findings, in line with other studies (Pommerenke et al., 
2010; Klockgether et al., 2013; Jeukens et al., 2014; Rojas et al., 

2022), even if we found several gene deletions, frameshift mutations 
and SNPs, however, under no circumstance, it was possible to 
determine a precise correlation between genotype and phenotype 
of the isolates. It is important to note that a specific phenotype is 
often the result of the interaction between multiple gene products 
(Jochumsen et al., 2016). Consequently, establishing a correlation 
between phenotype and genotype by analysing single-gene 
mutations can be  challenging. Additionally, it is possible that 

FIGURE 7

Violin plots of Imipenem resistance. Violin plots of the Z-score of the domains associated, positive (A) or negative (B), with Imipenem resistance, 
grouped by presence/absence categories. The colour represents the different categories. Data are described by boxplot and Z-score mean (black 
circle).

FIGURE 8

Volcano plots of PFAM–phenotype associations. Each point represents one PFAM family tested against a single phenotype (panel A) or resistance to an 
antibiotic (panel B). The x-axis shows the estimated effect size (β, from linear regression of PFAM abundance on phenotype), and the y-axis shows –
log₁₀(FDR), where FDR is the Benjamini–Hochberg–adjusted p-value for that phenotype (capped at 10 for display). The horizontal dashed line marks 
the significance threshold (FDR = 0.10, −log₁₀(FDR) = 1). Points coloured yellow are significant with β > 0 (“Up”), light blue are significant with β < 0 
(“Down”), and grey are non-significant.
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mutations in genes not directly associated with the phenotype or 
yet to be  characterised may also contribute to the presence or 
absence of the phenotype.

Our results support several key conclusions: (i) virulence 
factors associated with acute infection are progressively lost, while 
traits characteristic of chronic colonisation are acquired; (ii) the 
microevolutionary patterns observed in our longitudinal 
collection are consistent with established evolutionary trajectories; 
and (iii) although signatures of pathoadaptive mutations were 
detected, their direct association with phenotypic traits 
remains elusive.

Despite the study being limited to a single patient, the longitudinal 
design provides a high-resolution perspective on within-host 
evolution in a stable genetic background, minimising inter-host 
variability. This approach has proven valuable in previous work 
(Bianconi et al., 2019) and is supported by recent studies (Thöming 
and Häussler, 2022; Martínez-Gallardo et al., 2024), which highlight 
the clinical relevance of within-host evolutionary trajectories in 
P. aeruginosa.

To further explore the possible association between genetic 
features and phenotypes, we used SAPP, a bioinformatics tool for 
comparative functional genomics (Koehorst et  al., 2018), to 
examine how specific protein functional domains were enriched or 
depleted across the strain population. The screening of protein 
domains rather than full-length proteins overcomes the limits due 
to the high number of hypothetical proteins with unknown 
function and poorly annotated proteins due to wrong homology 
inference (Richardson and Watson, 2013; Vincent, 2024). 
Furthermore, using the protein domains adds a new level of 
genomic exploration, allowing a more accurate annotation of 
proteins and feasibly discovering new functions of known proteins 
(Lobb et al., 2020). We acknowledge that SAPP detects domain-
level variation but does not capture amino acid substitutions 
within conserved domains. Since even single mutations can 
drastically alter domain function, this limitation may result in an 
incomplete characterisation of functional diversity. Bacteria living 
within biofilms are isolated and able to survive even high-dose 
antibiotic treatments, and therapeutic strategies targeting the 
mechanisms underlying biofilm-associated antibiotic resistance are 
currently under development (Ciofu and Tolker-Nielsen, 2019). It 
is therefore crucial to understand the differences in functional 
domains related to the biofilm formation. Our domain-based 
analysis revealed that specific protein domains, such as PAS 
domain PF00989, were significantly associated with biofilm 
formation. PAS domains are known to mediate environmental 
sensing and have been implicated in biofilm regulation in 
other bacteria.

Another domain, namely PF08448, which was underrepresented 
in the biofilm producing strain is also annotated as a PAS fold domain, 
involved in signalling and binding to gaseous compounds (Hefti et al., 
2004; Yu et al., 2023). To our knowledge, the involvement of those two 
domains in biofilm formation has not been directly investigated in 
other studies although their presence is reported in functional studies 
on the regulation of biofilm formation in P. aeruginosa and 
Xanthomonas campestris (Mikkelsen et al., 2013; Hsiao et al., 2011).

We also identified domains related to CdrA adhesins, which 
contribute to the structural integrity of the biofilm matrix 
(Reichhardt, 2023).

The variations in protein functional domains between 
susceptible and resistant strains revealed a highly significant 
association between the enrichment or depletion of specific 
domains (some of them with uncharacterised functions) and the 
associated phenotypic traits.

We were able to single out 87 domains related to phenotypic 
adaptation not connected to antibiotic resistance and 189 functional 
domains that were significantly enriched in the antibiotic-resistant 
strains compared to the susceptible ones; we  found domains 
commonly associated with antibiotic resistances, which were 
significantly enriched or depleted in the resistant strains. For 
examples domains associated with outer membrane efflux pumps 
and porins, as well as a number of domains with a still unknown 
function. It is well known that efflux pumps are crucial for bacterial 
resistance to several antibiotics and they are attractive targets for 
antibacterial drugs (Lamut et al., 2019; e.g., broad-spectrum efflux 
pumps inhibitors have been shown to potentiate of the action 
fluoroquinolones, levofloxacin; Mahmood H. et al., 2016); on the 
other hand porins deficiency (either by loss of expression of porin-
encoding genes or mutations) has been described as a leading 
mechanism to the emergence of Carbapenem-resistant P. aeruginosa 
(Nordmann and Poirel, 2019; Dulanto Chiang and Dekker, 2024). 
Our data suggests that the domains with an unknown function may 
also be associated with antibiotic resistance mechanisms, although 
the description of the molecular basis of these mechanisms is still 
challenging. Consequently, further in-depth study and 
characterisation of these domains could lead to the identification of 
new targets for the development of molecules with antimicrobial 
functions or adjuvants to antibiotics already used in clinical practice.

Our findings are further supported by recent comparative 
genomic studies. Sahayarayan et al. (2024) identified resistance-
associated genes in P. aeruginosa, including those involved in 
β-lactam resistance, efflux regulation, and outer membrane 
permeability, which align with our observation of enriched 
domains related to efflux pumps and porins. Similarly, Ahmed 
(2022) demonstrated that multidrug-resistant strains harbour a 
broader spectrum of resistance genes, with a direct correlation 
between gene count and phenotypic resistance. This is consistent 
with our domain-based analysis, where MDR isolates exhibited a 
higher abundance of domains linked to aminoglycoside resistance, 
β-lactamase activity, and efflux transport.

In our collection of clonal isolates there are significant differences 
in the functional domains abundance in the MDR isolates with respect 
to the susceptible ones. However, it has not yet been possible to 
determine which specific feature is the most suitable for the design of 
new molecules active against the associated phenotype. This was out 
the focus of this study, but it will be the focus of subsequent studies.

In conclusion, our integrative approach combining phenotypic 
profiling with domain-level comparative genomics revealed consistent 
associations between conserved functional domains and clinically 
relevant traits such as biofilm formation and multidrug resistance. 
While gene-centric approaches catalogue known resistance 
determinants, our domain-level analysis captures the functional 
architecture underlying these genes, including those in hypothetical 
or poorly annotated proteins. Together, these studies reinforce the 
multifactorial nature of resistance in P. aeruginosa and validate the 
utility of domain-based comparative genomics in identifying 
conserved molecular features relevant to pathogenesis.
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While the results are promising, further analyses are needed to 
validate these findings. Future research could benefit from applying 
more advanced techniques, such as Support Vector Machines or Deep 
Neural Networks, to larger datasets to uncover additional 
druggable targets.
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