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Synechococcus elongatus PCC 7942 is a model organism for studying circadian 
regulation and bioproduction, where precise temporal control of metabolism 
significantly impacts photosynthetic efficiency and CO2-to-bioproduct conversion. 
Despite extensive research on core clock components, our understanding of the 
broader regulatory network orchestrating genome-wide metabolic transitions 
remains incomplete. We address this gap by applying machine learning tools 
and network analysis to investigate the transcriptional architecture governing 
circadian-controlled gene expression. While our approach showed moderate 
accuracy in predicting individual transcription factor-gene interactions - a common 
challenge with real expression data - network-level topological analysis successfully 
revealed the organizational principles of circadian regulation. Our analysis identified 
distinct regulatory modules coordinating day-night metabolic transitions, with 
photosynthesis and carbon/nitrogen metabolism controlled by day-phase regulators, 
while nighttime modules orchestrate glycogen mobilization and redox metabolism. 
Through network centrality analysis, we identified potentially significant but previously 
understudied transcriptional regulators: HimA as a putative DNA architecture regulator, 
and TetR and SrrB as potential coordinators of nighttime metabolism, working 
alongside established global regulators RpaA and RpaB. This work demonstrates 
how network-level analysis can extract biologically meaningful insights despite 
limitations in predicting direct regulatory interactions. The regulatory principles 
uncovered here advance our understanding of how cyanobacteria coordinate 
complex metabolic transitions and may inform metabolic engineering strategies 
for enhanced photosynthetic bioproduction from CO2.
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1 Introduction

The field of synthetic and systems biology faces a critical 
challenge: extracting meaningful biological knowledge about gene 
expression regulation from the overwhelming volume of 
RNA-sequencing and other omics data. This challenge is particularly 
acute in photosynthetic organisms, which must orchestrate complex 
metabolic transitions between day and night cycles through 
multilayered regulation. Understanding this temporal control is 
crucial for both fundamental biology and biotechnology 
applications. Synechococcus elongatus PCC 7942 (PCC 7942) serves 
as a key model organism for studying circadian regulation and a 
platform for sustainable bioproduction from CO2. During daytime, 
circadian-driven regulation upregulates photosynthesis and Calvin-
Benson cycle activities, channeling excess reducing power into 
glycogen storage, nitrate reduction, and bioproduct synthesis (Liu 
et al., 2012; Mullineaux, 2014; Hudson, 2023; Grund et al., 2019; 
Abramson et  al., 2016; Santos-Merino et  al., 2024). At night, 
circadian control rewires metabolism, upregulating glycogen 
breakdown and reducing equivalent generation through the 
oxidative pentose phosphate pathway (OxPPP) (Welkie et al., 2019; 
Shinde et al., 2020). The significance of these circadian regulatory 
mechanisms  - and the importance of understanding them  - is 
highlighted by their ability to modulate photosynthetic productivity 
up to threefold through coordinated control of carbon metabolism 
and competing cellular processes (Gilliam et al., 2025).

Gene Regulatory Networks (GRNs), particularly when integrated 
with genome-scale metabolic models (GSMs), have emerged as 
powerful tools for analyzing complex biological data and enabling 
refined control of cellular phenotypes (Lee and Kim, 2015; Ko et al., 
2020; Choi et  al., 2019; Yilmaz et  al., 2022). While established 
regulatory databases like RegulonDB (Huerta et al., 1998; Salgado 
et al., 2024; Tierrafría et al., 2022) and YEASTRACT+ (Abdulrehman 
et  al., 2011; Teixeira et  al., 2018; Teixeira et  al., 2023) showcase 
successful network mapping in E. coli and S. cerevisiae, developing 
similar understanding for photosynthetic organisms remains 
challenging due to their complex light-dependent metabolism and 
circadian control systems.

Briefly, the core circadian KaiABC clock regulates metabolic 
transitions through 24-h oscillations in KaiC phosphorylation (Ishiura 
et al., 1998; Xu et al., 2000). KaiC controls two histidine kinases - SasA 
(kinase) and CikA (phosphatase) – which regulate phosphorylation 
state of the master regulator RpaA (Gutu and O’Shea, 2013; Taniguchi 
et  al., 2010) driving genome-wide oscillations in gene expression 
(Markson et al., 2013; Puszynska and O'Shea, 2017). A second global 
regulator RpaB controls photosynthesis and oxidative stress (Vijayan 
et al., 2009; Nishiwaki et al., 2004; Markson et al., 2013) while also 
targeting promoters of RpaA, KaiB, and KaiC, thus linking to the core 
circadian clock (Hanaoka et  al., 2012; Piechura et  al., 2017). 
Additionally, several circadian-dependent sigma factors act as global 
co-regulators by directing RNA polymerase (Fleming, 2017; Fleming 
and O’Shea, 2018). Genome-wide DNA binding sites have been 
identified by ChIP-seq for key circadian regulators in PCC 7942, 
including RpaA and RpaB, and the sigma factors RpoD5, RpoD6, and 
SigF2 (Piechura et  al., 2017; Markson et  al., 2013; Fleming, 2017; 
Fleming and O’Shea, 2018). While the core clock components and 
several global regulators are well-characterized, a critical knowledge 
gap remains in how secondary regulatory elements link circadian 

oscillators to genome-wide metabolic transitions. Deciphering these 
regulatory components and their contribution to diurnal metabolic 
control is essential for both basic research and metabolic engineering 
of photosynthetic cell factories. However, mapping these regulatory 
networks in cyanobacteria presents unique challenges due to their 
complex light-dependent metabolism and multilayered circadian 
control systems.

Traditional approaches to mapping GRNs focus on predicting 
direct transcription factor-gene (TF-gene) interactions, but accurate 
prediction remains challenging despite algorithmic advances. The 
DREAM5 network inference challenge demonstrated that even 
top-performing methods like GENIE3 (Huynh-Thu et  al., 2010) 
achieve only modest accuracy on synthetic benchmark data with 
highest precision-recall (AUPR) of ~0.3 (Marbach et  al., 2012). 
Performance drops significantly with real gene expression data, 
particularly in complex organisms - prediction accuracy for TF-gene 
interactions in E. coli typically shows AUPR values of only 0.02–0.12 
(Marbach et al., 2012; Escorcia-Rodríguez et al., 2023). Integration of 
additional data types (protein-DNA interactions, gene functions, 
DNA topology-dependent accessibility) and advanced computational 
methods has yielded only incremental improvements (Iglesias-
Martinez et al., 2021; Häusler, 2024; Passemiers et al., 2022; Razaghi-
Moghadam and Nikoloski, 2020; Zhao et al., 2021; Escorcia-Rodríguez 
et al., 2023).

These consistently modest accuracies, even in well-studied 
organisms with extensive validation data, likely reflect inherent 
complexity of transcriptional regulation. However, while GRNs show 
limited accuracy in predicting individual TF-gene interactions, they 
successfully capture higher-order regulatory patterns  - network 
topology analysis reveals biologically meaningful gene modules, 
regulatory hierarchies, and functional communities that align with 
experimental observations (Sorrells and Johnson, 2015; Jothi et al., 
2009; Bhardwaj et al., 2010; Fang et al., 2017). This network-level 
understanding is particularly valuable for photosynthetic organisms 
where temporal coordination of metabolism directly impacts cellular 
productivity. Based on this utility of network analysis, we applied 
GENIE3 to investigate how circadian regulatory architecture 
orchestrates metabolic transitions and carbon allocation - knowledge 
essential for understanding and engineering efficient photosynthetic 
cell factories.

Through integration of machine learning with network 
topology analysis, we  demonstrate how biological insights can 
be extracted from high-throughput omics data. While individual 
regulatory predictions show limited accuracy, the network’s 
emergent properties  – topology, community structure, and 
centrality patterns – reveal biologically meaningful organization. 
Through analysis of network centrality metrics in the context of 
circadian expression patterns, we  identify distinct regulatory 
modules coordinating day/night metabolism and highlight 
previously uncharacterized regulators of metabolic transitions. 
Our findings demonstrate how network-level analysis can extract 
valuable insights despite uncertainty in direct TF-gene predictions, 
advancing both fundamental understanding of cyanobacterial 
regulation and providing a framework applicable to other 
organisms. Uncovering these regulatory mechanisms has direct 
implications for engineering metabolically efficient photosynthetic 
cell factories while contributing to our knowledge of circadian 
control in transition between day and night metabolism.
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2 Methods

This section details our systematic approach to inferring and 
analyzing transcriptional regulatory networks governing circadian-
regulated metabolic processes in S. elongatus PCC 7942.

2.1 Construction and quality control of 
multi-source gene expression dataset

Raw RNA-Seq data was acquired as of January 31, 2023, from 
three major repositories: the NCBI Sequence Read Archive (SRA) 
(Katz et al., 2022), Gene Expression Omnibus (GEO) (Barrett et al., 
2013), and Joint Genome Institute (JGI) (Nordberg et al., 2014). The 
reads were mapped against the following reference sequences: 
chromosome (NC_007604.1), pANL plasmid (NC_004073.2), and 
pANS plasmid (NC_004990.1).

Quality control was performed in multiple stages. Initial 
assessment using FastQC (Andrew, 2010) was followed by manual 
curation to select samples with sufficient experimental metadata. 
Low-quality samples were filtered using stringent criteria, including 
removal of samples with fewer than 100,000 total reads. The data was 
then log-transformed to TPM values, followed by evaluation of global 
correlation between replicates. Samples with correlation coefficients 
below 0.9 between replicates were removed. For time-series datasets 
without biological replicates, we applied sliding window correlation 
between adjacent timepoints.

The final curated dataset (named selongEXPRESS) consisted of 
330 samples with log-TPM transformed gene counts. Complete 
sample metadata, quality control metrics, normalized expression 
values, and gene annotation are provided in Supplementary Tables 
S1–S4.

2.2 Multi-method approach for gene 
regulatory network inference

We employed three complementary computational approaches to 
predict transcription factors (TFs) in PCC 7942: (i) Predicted 
Prokaryotic Transcription Factors (P2TF) database (Ortet et al., 2012), 
(ii) Encyclopedia of Well-Annotated DNA-binding Transcription 
Factors (ENTRAF) (Ledesma et al., 2022), and (iii) deep learning-
based DeepTFactor (Kim et  al., 2021). These pipelines combine 
knowledge from established transcriptional regulation databases 
[RegulonDB on E. coli (Salgado et al., 2024), on B. subtilis (Sierro et al., 
2008), UniProt (The UniProt Consortium, 2023), DNA-binding 
domain database (Wilson et  al., 2008)] with sequence-based 
prediction methods using hidden Markov models (Mistry et al., 2021) 
and convolutional neural networks (Kim et al., 2021). The complete 
list of predicted TF candidates is provided in Supplementary Table S5.

For quantifying TF-to-gene expression associations, we used the 
random forest-based ensemble algorithm GENIE3 (Huynh-Thu et al., 
2010). The algorithm was constrained by coupling the PCC 7942 gene 
expression matrix with the unified set of predicted DNA-binding TF 
candidates from all three prediction pipelines. The resulting GRN was 
represented as a matrix of 331,977 values corresponding to predicted 
regulatory interaction strengths between 123 predicted TF candidates 
and 2,700 genes.

To focus our analysis on TF-gene interactions with the highest 
biological significance, we  reduced the network to include only 
edges with the strongest predicted regulatory weights. The GRN size 
was optimized to 3,102 edges by selecting an edge cutoff that 
maximized the micro-average F1-score when evaluated against 
experimentally validated TF-gene interactions 
(Supplementary Table S6). The validation set comprised regulatory 
interactions for 24 previously characterized TFs with strong 
experimental evidence (detailed in section 3.1 and Figure 1). The 
F1-score was computed using Equations 1.1–1.3, with each TF 
evaluated as a binary classifier at each edge cutoff threshold. 
Specifically, TPni corresponds to the overlap between predictions and 
known interactions at edge cutoff i for TFn. FNni represents the 
number of known interactions missing from our predictions for TFn 
at the edge cutoff. FPn indicates the number of interactions predicted 
by our approach but not present in the set of experimentally 
validated regulatory interactions at the edge cutoff. After 
optimization, we removed 12 edges not connected to the primary 
connected component, resulting in a final network comprising 1,839 
nodes and 3,090 edges (Supplementary Table S7).
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2.3 Network topology and centrality 
analysis for identifying hierarchical 
organization of transcriptional regulators

GRN properties and node centrality metrics were calculated using 
Networkx (Hagberg et  al., 2008). Network connectivity was 
characterized through weakly connected components (WCC): subsets 
of nodes connected regardless of edge direction; strongly connected 
components (SCC): subsets connected when accounting for edge 
direction; network density (Equation 2); average TF out-degree 
(number of genes targeted by each TF); and average gene in-degree 
(number of TFs regulating each gene).

The following centrality metrics were used to assess transcription 
factor importance:

2.3.1 Network density: quantifying global 
connectivity

 ( )1
md

n n
=

−  
2

where n is the number of nodes and m is the number of edges.
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2.3.2 Degree centrality: measuring direct 
regulatory interactions

 ( )d v V=  3

where |V| is the number of neighbors directly connected to node 
v. For our GRN, DC represents the number of predicted TF-gene 
regulatory interactions for a specific TF (Newman, 2008).

2.3.3 Betweenness centrality: identifying 
information flow mediators

BC is based upon the concept of shortest pathways in a network 
and defines the fraction of shortest paths than a given node falls on 
between every pair of nodes, representing a measure of information 
flow through a given node (Freeman, 1977).
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where σ(s, t) is the total number of shortest paths between nodes 
s and t, and σ(s, t|v) is the number of those paths passing through 
node v. Based on the concept of shortest network pathways, this 
metric quantifies how frequently a node mediates information flow 
between other nodes in the network (Freeman, 1977).

2.3.4 Closeness centrality: assessing global 
influence range
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FIGURE 1

Assessment of transcription factor prediction and regulatory network accuracy reveals biologically consistent patterns despite moderate precision. 
(A) Venn diagram showing overlapping sets of transcription regulators identified by three computational prediction methods: [P2TF (Ortet et al., 2012), 
ENTRAF (Ledesma et al., 2022), and DeepTFactor (Kim et al., 2021)]. (B) Number of known regulatory interactions for a subset of characterized 
regulators based on literature and experimental studies that provided a validation framework for network predictions. (C) Optimization of network size 
to balance prediction accuracy with comprehensive regulatory coverage using F1-score metrics. (D) Evaluation of prediction accuracy for different 
types of transcriptional regulators grouped by evidence source, showing higher accuracy for well-characterized regulatory systems. (E) Network 
successfully captures the biological distribution of regulatory interactions, where most genes are controlled by few regulators. (F) Strong correlation 
between predicted and experimentally validated regulatory targets, grouped by evidence source, demonstrates biological relevance of network 
predictions.

https://doi.org/10.3389/fmicb.2025.1569559
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Johnson et al. 10.3389/fmicb.2025.1569559

Frontiers in Microbiology 05 frontiersin.org

where d(v, u) is the shortest-path distance between nodes u and v, 
and n-1 is the number of reachable nodes from node u. This metric 
quantifies how quickly a node can reach all other nodes in the network 
through shortest paths (Freeman, 1978).

2.3.5 Eigenvector centrality: evaluating 
connection quality

 Ax xλ=  6

where A is the adjacency matrix, λ is the largest eigenvalue, and x 
is the corresponding eigenvector. This metric quantifies node 
importance based on its connections to other influential nodes 
(Newman, 2008).

2.3.6 K-core: detecting densely connected 
regulatory modules

Identifies the largest subgraph where each node has at least k 
connections to other nodes within that subgraph. K-core values are 
calculated by iteratively removing vertices with fewer than k 
connections until all remaining vertices have at least k connections 
within the subgraph (Batagelj and Zaversnik, 2003). While not a direct 
centrality measure, k-core analysis has proven valuable for identifying 
protein complexes and functional modules in biological networks 
(Altaf-Ul-Amine et al., 2003; Kong et al., 2019).

2.3.7 Mann–Whitney U test for differentiating 
centrality values of global versus local 
transcription factors

To determine whether high-impact transcription factors showed 
significantly higher centrality measures compared to local 
transcription factors, we  employed the non-parametric Mann–
Whitney U test. This test was selected for its suitability with small 
sample sizes and robustness against non-normal distributions. The 
null hypothesis tested whether the centrality measures had the same 
distribution for both global and local TFs, with the alternative 
hypothesis that global TFs showed higher centrality values. Statistical 
significance was assessed at α = 0.05.

2.4 Analysis of regulatory modules 
coordinating day-night metabolic 
transitions

To understand regulatory mechanisms governing day-night 
metabolic transitions crucial for both fundamental science and 
biotechnology applications, we mapped circadian expression peaks 
from an RNA-seq dataset (Vijayan et al., 2009) onto our inferred gene 
regulatory network. This integration of temporal expression data with 
network topology allowed us to investigate how transcriptional 
regulation orchestrates diurnal metabolic shifts.

2.4.1 Hierarchical analysis of transcription factor 
target overlap

Transcription factor target overlap was characterized using 
unweighted pair group method with arithmetic mean (UPGMA) 
hierarchical clustering based on Jaccard distance. TF target gene sets 
were defined as the successors of each TF node using NetworkX 

(Hagberg et al., 2008). The Jaccard distance was computed for all 
pairwise sets of TF gene targets, with average-linkage used to define 
the hierarchical clusters of TF-TF-gene target overlap. Network 
modules under similar regulatory control were identified using 
Louvain community detection implemented in NetworkX, optimizing 
modularity within each community.

2.4.2 Identification of co-regulated gene 
communities governing metabolic transitions

Communities of genes under coordinated regulation were 
identified using the Louvain community detection algorithm in 
NetworkX. This approach optimized modularity to reveal groups of 
genes likely to be controlled by similar regulatory mechanisms.

2.4.3 Mapping regulatory communities to diurnal 
expression patterns

Only communities with more than 50% of genes attributed to a 
specific circadian phase (day or night) were considered for timing 
analysis, excluding non-circadian genes. The circular mean peak 
circadian time for each qualifying cluster was calculated using the 
circmean function from the scipy.stats module (Virtanen et al., 2020).

2.4.4 Functional analysis of regulatory modules 
orchestrating transitions between day and night 
metabolism

Enrichment analysis employed Fisher’s exact test (Equation 7) 
with false-discovery rate (FDR) correction using the Benjamini-
Hochberg procedure for Q-values:

 
( ) ( ) ( ) ( )! ! ! !

! ! ! ! !
a b c d a c b d

p
a b c d n

+ + + +
=

 
7

where a – a number of genes in a module overlapping with the 
functional gene set; b – a number of genes in the module not in the 
predicted gene sets; c – a number of genes in the background gene set 
not in the predicted module; d  – a background genes not in the 
predicted regulon or gene set.

Functional enrichments were determined using COG (Tatusov 
et al., 2001) and KEGG (Kanehisa and Goto, 2000) databases. COG 
enrichments were evaluated at q-value <0.05, while KEGG pathway 
enrichments used q-value <0.01.

3 Results

3.1 Network-level analysis reveals 
conserved architecture and overcomes 
limitations of direct TF-gene predictions

Before presenting our network analysis results, we highlight key 
assumptions underlying our approach. Our network construction 
combines multiple computational TF prediction methods to maximize 
coverage, with the GENIE3 random forest-based ensemble algorithm 
(Huynh-Thu et al., 2010) inferring regulatory relationships only based 
on gene expression dependencies and external specification of TFs. 
While we  evaluate predictions against experimentally validated 
interactions, we recognize the inherent limitations in direct TF-gene 
prediction accuracy. To extract biologically meaningful patterns 
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despite these limitations, we focus on network topology and centrality 
metrics, identifying significant regulatory elements based on their 
position in the network rather than relying solely on individual 
interaction predictions.

Gene regulatory network (GRN) reconstruction required 
integration of multiple computational approaches to address the 
complexity of transcriptional regulation in PCC 7942. We selected 
methods that complement each other’s strengths: sequence-based 
prediction of transcription factors, machine learning for pattern 
detection in large-scale expression data, and network topology 
analysis to reveal regulatory hierarchies.

To implement this strategy, we developed an integrated 
computational pipeline that analyzes publicly available RNA-sequencing 
data to map the transcriptional landscape of PCC 7942 (Figures 2A-F). 
Quality control of RNA-seq data (Figure  2B, Methods section 2.1) 
yielded 330 samples representing 208 unique expression states under 
diverse conditions (Supplementary Tables S3, S4). Three complementary 
methods [P2TF (Ortet et al., 2012), ENTRAF (Ledesma et al., 2022), 
and DeepTFactor (Kim et al., 2021)] were used to identify potential 
transcription factors (TFs). DeepTFactor’s CNN classifier predicted 
the highest number of TFs (89), while the HMM-based methods 
P2TF and ENTRAF identified 70 and 65 TFs respectively, with 
notably greater agreement between DeepTFactor and P2TF 
predictions than with ENTRAF. To maximize coverage of potential 
regulatory interactions, we used an inclusive approach combining 
predictions from all three methods, resulting in 123 total potential 
TFs for network edge predictions (Figure 2C, Methods section 2.2, 
Supplementary Table S5), though only 35 TFs were predicted by all 
three methods (Figure 1A).

The GENIE3 machine learning algorithm, selected for its 
performance in DREAM 4 and 5 network inference challenges 
(Greenfield et al., 2010; Marbach et al., 2012), was applied to predict 
regulatory interactions between TFs and protein-coding genes. 
Network predictions were evaluated against a subset of 497 
experimentally validated TF-gene interactions involving 24 TFs 
(Figures  1B, 2D; Supplementary Table S6). Most of these known 
regulatory connections came from ChIP-seq studies of global 
circadian regulators RpaA and RpaB, and sigma factors RpoD5, 
RpoD6, and SigF2 (Piechura et  al., 2017; Markson et  al., 2013; 
Fleming, 2017; Fleming and O’Shea, 2018), as well as from promoter 
validation (Kutsuna et al., 2007; Luque et al., 1994; Nakahira et al., 
2004; Yousef et al., 2003; Morby et al., 1993; Kato et al., 2008; Karp 
et al., 2019; Xu et al., 2004; Ishiura et al., 1998), and phylogenetically 
conserved regulons predicted through promoter homology (Luque 
et al., 1994).

Given PCC 7942’s largely unmapped regulatory landscape, 
we  approached validation as a multi-label classification task 
(Equations 1.1–1.3) (Pliakos and Vens, 2019; Ghamrawi and 
McCallum, 2005). The maximum micro-average F1-score of 0.11 was 
achieved at 3,102 edges (Figure 1C). Binary classification metrics for 
individual TF regulons grouped by evidence type are shown in 
Figure  1D. The network best captured regulons of IdiB 
(precision = 0.36, recall = 0.56) and NtcA (precision = 0.19, 
recall = 0.38). For global regulators involved into modulation of 
circadian cycle (RpaA, RpaB, RpoD5, RpoD6, and SigF2), average 
precision and recall were 0.23 ± 0.14 and 0.096 ± 0.06, respectively.

These accuracy metrics, while modest, reflect a common challenge 
in the field - for exceptionally well-studied organisms like E. coli, the 

FIGURE 2

Computational pipeline for discovering circadian regulatory networks. (A) Collection and processing of publicly available RNA-seq datasets 
representing diverse physiological states and environmental conditions. (B) Data quality control and comprehensive identification of putative 
transcription factors through multiple prediction approaches. (C) Construction of gene regulatory network using GENIE3 machine learning algorithm 
to detect potential regulatory interactions. (D) Validation and refinement of predicted regulatory connections against known interactions. 
(E) Integration of network analysis with gene expression patterns to reveal regulatory modules controlling day-night metabolic transitions. 
(F) Characterization of circadian subnetworks revealing high-centrality regulators and functionally enriched gene set modules.
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prediction of TF-gene interactions from expression data typically 
achieves lower or comparable performance (Marbach et al., 2012; 
Escorcia-Rodríguez et al., 2023). Notably, the integration of additional 
data types such as protein-DNA interactions and DNA topology-
dependent accessibility has yielded only modest improvements, with 
performance on real expression data remaining limited (Iglesias-
Martinez et al., 2021; Häusler, 2024; Passemiers et al., 2022; Razaghi-
Moghadam and Nikoloski, 2020; Zhao et al., 2021; Escorcia-Rodríguez 
et  al., 2023). The challenge lies in capturing complex regulatory 
mechanisms that often involve indirect effects, cooperative binding, 
and temporal dynamics. However, despite limited accuracy in 
predicting individual interactions, the network’s global structure can 
reveal biologically meaningful patterns of regulation. Indeed, our 
network successfully modeled the distribution of known regulatory 
interactions (Figures 1E,F). The final connected component contained 
3,090 edges analyzed as a directed graph (Supplementary Table S7). 
Network topology exhibited the sparsity characteristic of biological 
(Winterbach et al., 2013) and gene regulatory networks (Monteiro 
et al., 2020; Zorro-Aranda et al., 2022), with density of 9.1 × 10−4 
(Equation 2). TFs averaged 27.8 ± 33.9 target genes (median = 14), 
while genes averaged 1.68 ± 0.89 regulating TFs (median = 1.00). This 
topology provided the foundation for using network centrality metrics 
to evaluate TF biological significance. Initial comparison between 
known high-impact regulators (RpaA, RpaB, RpoD5, RpoD6, SigF2, 
and master nitrogen regulator NtcA) and TFs governing local 
responses revealed significant differences in their network centrality 
metrics, prompting deeper investigation of centrality as an indicator 
of regulatory importance.

3.2 Network centrality metrics differentiate 
established global regulatory elements 
with system-wide influence from local 
transcriptional regulators

In biological networks, centrality metrics serve as quantitative 
indicators of a node’s functional importance and influence (Freeman, 
1978; Freeman, 1977). For gene regulatory networks specifically, 
centrality measures have proven particularly valuable – highly central 
nodes often correspond to essential genes (del Rio et al., 2009; Park and 
Kim, 2009), members of key protein complexes (Kong et al., 2019), and 
regulators with global roles (Koschutzki and Schreiber, 2008; Naseri 
et al., 2021). We selected five complementary centrality metrics that 
capture different aspects of regulatory influence: degree centrality 
identifies regulators with many direct interactions, betweenness 
centrality highlights nodes that bridge different regulatory modules, 
closeness centrality reveals regulators that can rapidly influence the 
entire network, eigenvector centrality emphasizes connections to other 
influential regulators, and k-core detects regulators embedded in 
densely connected control modules (Equations 3-6).

We hypothesized that known global transcription factors would 
display higher centrality values compared to local response regulators. 
A one-sided Wilcoxon rank sum test confirmed this hypothesis across 
all metrics (p < 0.05; Table  1). Notably, eigenvector centrality and 
k-core proved most effective at distinguishing global from local 
regulators (p = 0.021 and 0.022 respectively), suggesting that 
influential transcription factors tend to form interconnected 
regulatory hubs rather than acting in isolation.

Analysis of centrality metrics across the network revealed 
distinct patterns. Known global regulators like RpaB showed 
consistently high centrality scores - ranking in the 92.8th percentile 
for k-core and 86th percentile for betweenness centrality. Similarly, 
sigma factors RpoD5 and SigF2 demonstrated elevated centrality 
metrics. In contrast, local transcriptional regulators like NtcB and 
IdiB showed markedly lower centrality scores, typically below the 
50th percentile, validating the utility of these metrics for 
identifying high-impact regulators.

3.3 Network topology identifies two 
distinct regulatory subnetworks localizing 
high centrality transcription factors and 
coordinating daytime and nighttime 
metabolic transitions

Having established that network centrality metrics successfully 
differentiate global from local regulators, we next investigated their 
organization across the circadian cycle, leveraging S. elongatus PCC 
7942’s well-characterized circadian rhythms. To understand this 
temporal organization, we  mapped nodes in our inferred gene 
regulatory network according to their peak expression timing during 
the circadian cycle. Visualization of transcription factor nodes scaled 
by k-core values (Figure 3A) revealed two major clusters associated 
with high centrality regulators - one corresponding to circadian day 
and another to circadian night. To define regulatory structure within 
these clusters, we applied the Louvain community detection algorithm 
(Methods 2.4), labeled communities by their resident transcription 
factors, and calculated the average peak circadian expression time for 
genes within each community (Figure 3B). Peak circadian expression 
was defined according to the results from Vijayan and co-authors 
(Vijayan et  al., 2009) (full circadian dependent gene sets in 
Supplementary Tables S8, S9).

The largest proportion of regulatory communities lacked clear 
circadian phase attribution (ambiguous). The most prominent 
ambiguous communities contained transcriptional regulators RebA 
and HrcA, with HrcA showing one of the highest network connectivity 
degrees and known involvement in heat stress response (Saito et al., 
2020). The next major group comprised communities with daytime 
peak expression. Early day transition was marked by communities 
containing BolA and AlaS regulators. Mid-day communities included 
global regulator RpaB, sigma factor RpoD4, and nitrogen metabolism 
regulators NtcA and PlmA. Late day communities contained 
transcriptional regulators HimA, Psr, and CysR.

Conversely, communities associated with the transition to night 
were linked to sigma factors SigF1 and RpoD6. Communities with 
peak expression during mid-circadian night corresponded to a single 
large community containing three regulators (RpoD5, SrrB, and TetR) 
and two putative enzymes (Gdh and PlsC2) predicted as potential 
transcription factors. This community contained nodes with the 
highest k-core values in the network. Other transcription factors 
identified in association with circadian night included SigF2 and 
RbcR, the latter noted as a repressor of Rubisco transcription in 
Synechocystis sp. PCC 6803 (Bolay et al., 2022).

To further characterize the functions associated with these clusters, 
subgraphs were partitioned by association with circadian day and 
night. Analysis of transcription factor target overlap revealed that 
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factors with highest degree of overlap also showed highest centrality 
metrics. Gene set enrichment (Equation 7) analysis against KEGG 
pathways showed that regulators clustered in the circadian night 
subgraph (RpaA, RpoD5, and SigF2) were enriched in genes involved 
in oxidative phosphorylation. In contrast, the circadian day cluster 
(RpaB, HimA, RpoD4, and NtcA) was enriched in genes associated 
with photosynthesis and nitrogen metabolism.

3.4 Circadian day metabolism reveals 
hierarchical networks where HimA 
emerges as a putative DNA architecture 
regulator working with RpaB and NtcA to 
coordinate carbon and nitrogen pathways

After identifying distinct day and night regulatory modules, 
we performed detailed analysis of the daytime regulatory network to 
understand how it coordinates photosynthesis, carbon fixation, and 

nitrogen metabolism. Aligning with its known role as a global 
regulator (Riediger et al., 2019), RpaB demonstrated exceptionally 
high centrality metrics within the inferred network (Figures 4B,C), 
ranking third in degree centrality among all predicted transcription 
factors. The RpaB node also exhibited high betweenness centrality and 
k-core values (92.8th and 86th percentiles respectively). Of RpaB’s 97 
known targets in the network, 23 were correctly predicted as direct 
regulatory edges, highlighted by solid edges in Figure 4D. Beyond 
direct targets, several communities were associated with known RpaB 
regulation, notably including 9 targets in the high centrality circadian 
night cluster and 11 targets in a community associated with OmpR 
family transcription factor SrrA (SYNPCC7942_RS12275) and 
RpoD3, both known to regulate high light response with RpaB (Seki 
et al., 2007).

The network community associated with RpaB was significantly 
enriched for genes involved in central carbon metabolism and energy 
production (Figure 4D). Specifically, enrichment analysis revealed 
associations with the Calvin-Benson cycle (map00710, 

TABLE 1 Network analysis reveals distinct centrality patterns between global metabolic coordinators and pathway-specific local regulators in S. 
elongatus PCC 7942.

Category TF Degree Betweenness 
(×10−6)

Closeness 
(×10−3)

Eigenvector 
(×10−6)

k-core

Cumulative 

Distribution

Mean 27.8 350 1.2 8,300 2.8

SD 34.0 880 1.1 30,000 1.1

Cumulative 

Distribution

25% 5 0.0 0.27 1.0 × 10−8 2

50% 14 12 1.1 1.9 × 10−3 3

75% 37.5 120 2.0 5.8 3

Previously 

characterized global 

sigma factors and 

transcriptional factors

RpaB 147 1,600 1.9 7.5 4

RpaA 12 0 0 9.1 × 10−10 2

RpoD5 52 210 3.1 150,000 6

RpoD6 3 17 2.3 3,000 2

NtcA 42 1,570 2.2 27 4

SigF2 35 2,600 3.6 77,000 5

Previously 

characterized local 

TFs

NtcB 3 0 0 9.1 × 10−10 1

IdiB 14 0 0 9.1 × 10−10 2

Fur 8 12 1.3 2.2 2

Rre1 8 0 0 9.1 × 10−10 2

SufR 8 2.0 0.54 9.6 × 10−4 3

CmpR 8 62 1.8 0.13 2

Zur 4 2.0 0.73 3.5 × 10−2 2

PerR 18 100 1.88 0.32 3

SphR 2 1.0 1.1 1.9 × 10−3 2

SmtB 5 0 0 9.1 × 10−10 2

Crp 10 65 2.2 38 4

KaiC 1 0 0.5 1.9 × 10−8 2

HrcA 185 1,700 2.4 89 4

GntR 5 8.0 1.1 5.0 × 10−2 2

Pex 58 3,900 4.0 20,000 4

NblR 0 0 1.5 1.0 1

HI vs. Local 1 p-value 0.038 0.046 0.035 0.021 0.022
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q-value = 5.87 × 10−3), F-type ATPase (map00190, 
q-value = 6.90 × 10−3), and components of the photosynthetic electron 
transport chain (map00195, q-value = 6.87 × 10−3). Predicted 
transcription factors sharing over 5% of gene targets with RpaB’s 

inferred regulon included HimA, NtcA, and AlaS (Figure 4A). These 
regulators similarly showed high network centrality, ranking in the 
top 90th percentile for betweenness centrality and k-core, with AlaS 
and HimA specifically showing high degree centrality (Figure 4C). 

FIGURE 3

Discovery of temporally organized regulatory networks controlling day-night metabolism in S. elongatus PCC 7942. (A) Temporal organization of the 
gene regulatory network across the circadian cycle reveals coordinated waves of gene expression. Genes (circles) and transcription factors (diamonds) 
are colored by their peak expression times, with TF node size indicating their regulatory influence through k-core centrality. (B) Network community 
analysis uncovers distinct regulatory modules controlling daytime photosynthesis and nighttime metabolism. Each community’s average expression 
timing (circular mean) reveals how groups of genes are temporally coordinated by their associated transcription factors to enable metabolic transitions.

FIGURE 4

High-centrality transcription factors orchestrate regulatory architecture of daytime carbon fixation and energy metabolism. (A) Organization of 
transcription factors into functional groups based on shared target genes reveals coordinated control of related metabolic processes. Colored clusters 
indicate TFs sharing >5% gene targets. (B) Network centrality analysis identifies TFs with system-wide influence on daytime metabolism. Regulators 
colored by membership in Louvain community. (C) Most influential regulators (top 90th percentile in centrality metrics) emerge as key coordinators of 
photosynthesis and carbon fixation. (D) Functional organization of daytime metabolic regulation showing how RpaB and other high-centrality TFs 
coordinate photosynthesis, carbon fixation, and energy generation. Node colors indicate metabolic functions; border colors show regulatory 
communities. Bold arrows highlight experimentally validated interactions captured by network analysis.
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The communities associated with these regulators showed distinct 
functional enrichments - nitrogen metabolism for NtcA (map00910: 
q-value = 3.04 × 10−4) and photosynthesis for HimA (map00195: 
q-value = 7.67 × 10−3). Although RpoD4 did not show notable 
centrality, its community was significantly enriched in photosynthesis-
related genes, including complexes PSI and PSII (map00195: 
q-value = 1.13 × 10−11) as well as antenna proteins (map00196: 
q-value = 6.74 × 10−11).

Together, the RpaB, HimA, and RpoD4 regulons encompass 
much of the photosynthesis chain and mechanisms associated with 
cyclic electron flow. Notably, HimA functions as a bacterial nucleoid 
protein with histone-DNA binding function (Interpro IPR000119) 
(The UniProt Consortium, 2023) and has been hypothesized to play 
a role in DNA supercoiling. Previous studies identified HimA as an 
RpaA target, showing 1.7-fold downregulation in RpaA deletion 
mutants (Markson et al., 2013). With HimA’s peak expression at 
circadian night (t = 16 h), and 41/46 circadian genes associated 
with photosynthesis being negatively correlated with supercoiling 
(Markson et al., 2013), our network analysis suggests HimA may act 
as a repressor of the photosynthesis chain through modification of 
DNA topology.

Finally, nitrogen metabolism was exclusively identified in the 
circadian day subgraph, where nitrate reduction serves as a major 
electron sink in PCC 7942 (Grund et al., 2019; Schumann et al., 
2023). All nitrogen-related enzymes were associated with NtcA 
except for the protein regulator PipX (Labella et al., 2016), which 
was associated with HimA. Through homology analysis with 
Synechocystis PCC6803, we identified two protein-level regulators 
of nitrogen metabolism, PirA and GifB (García-Domínguez et al., 
2000; Bolay et al., 2021), in the NtcA regulon as SYNPCC7942_
RS10455 and SYNPCC7942_RS12840, respectively. Functionally 
enriched gene sets for the circadian day subgraph are provided in 
Supplementary Table S10.

3.5 Circadian night metabolism is 
hierarchically controlled through RpaA’s 
indirect orchestration of principal 
high-centrality regulators TetR, SrrB, and 
RpoD5 forming single coordinated module

While daytime metabolism showed distributed control through 
multiple regulatory communities, our analysis revealed a surprisingly 
different organization of nighttime metabolism with implications for 
understanding temporal control of cellular resources. The network 
centrality metrics did not fully capture RpaA’s important regulatory 
role. Of RpaA’s 102 reported targets, 74 were represented in the 
predicted gene regulatory network. However, with only 12 predicted 
edges (5 correctly predicted, including circadian oscillator protein 
KaiB), RpaA ranked in lower percentiles for all centrality measures: 
degree (47.3%), k-core (27.5%), betweenness (15.3%), eigenvector 
(13.1%), and closeness (13.1%). Most known RpaA targets were 
instead captured in communities associated with its downstream 
transcription factors identified in ChIP-seq studies. Most notably, the 
gene set community associated with regulators TetR, SrrB, and RpoD5 
contained 20 known RpaA targets (Figure 5D), with additional targets 
appearing in communities of SigF2 (7 genes) and HimA (3 genes).

The gene regulatory network captured RpaA’s regulatory influence 
through its downstream regulators, including sigma factors RpoD5, 
SigF2, RpoD6, and transcription factors SrrB and TetR - all showing 
peak expression at night and high network centrality (Figures 5B,C). 
These regulators demonstrated substantial target overlap, with SrrB, 
TetR, and RpoD5 sharing 30% of gene targets (Figure  5A). SigF2 
ranked among the top nodes across all metrics (>95th percentile). 
RpoD5 showed similarly high values in closeness centrality (93.2%), 
eigenvector centrality (99.1%), and k-core (98.6%). While RpoD6 had 
only three regulatory edges, its connection to high-impact targets 
placed its eigenvector centrality in the 92.8th percentile. Transcription 

FIGURE 5

High-centrality transcription factors orchestrate regulatory architecture of nighttime energy generation and redox metabolism. (A) Organization of 
transcription factors into functional groups based on shared target genes reveals tightly coordinated control of nighttime processes. Colored clusters 
indicate TFs sharing >30% gene targets. (B) Network centrality analysis identifies TFs with system-wide influence on nighttime metabolism. Regulators 
colored by membership in Louvain community. (C) Most influential regulators (top 90th percentile in centrality metrics) emerge as key coordinators of 
glycogen mobilization and reducing power generation. (D) Functional organization of nighttime metabolic regulation showing how RpaA-controlled 
TFs coordinate energy generation and redox balance. Node colors indicate regulatory communities; red borders highlight experimentally validated 
RpaA targets. Enriched protein complexes and metabolic functions are labeled.
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factors SrrB and TetR demonstrated exceptionally high centrality 
values (>80th percentile across all metrics), with TetR showing the 
highest eigenvector centrality in the network and SrrB ranking fourth 
(97.3%).

Unlike the multiple gene set communities associated with peak 
expression during circadian day, only a single gene set community 
emerged during the transition to circadian night. This community 
appeared to be  tightly coregulated, evidenced by substantial 
transcription factor overlap (Figure 5A) and high centrality scores 
(Figure  5C), particularly in metrics indicating closeness to other 
central regulators. Gene set enrichment analysis revealed significant 
associations with energy production and conversion, and carbohydrate 
metabolism (Figure 5C). Specifically, genes in this community were 
enriched in KEGG pathways for oxidative phosphorylation 
(map00190, q-value = 4.5 × 10−4) and pentose phosphate pathway 
(map00030, q-value = 4.5 × 10−3).

The presence of a single, tightly coregulated, functionally 
coherent gene set associated with the transition to circadian night 
in PCC 7942 reflects a tightly regulated metabolic shift. This shift is 
primarily driven by the necessity to regenerate reducing power and 
ATP in the absence of photosynthesis and involves several key 
processes. Glycogen breakdown, catalyzed by GlgP and MalQ, fuels 
NADPH generation through the oxidative pentose phosphate 
pathway (enzymes zwf, opcA, and gnd). ATP synthesis is maintained 
through respiration-driven proton gradients associated with 
cytochromes CtaACDE and CcoNO. Alternative pathways for 
reducing power generation and Calvin-Benson cycle intermediate 
recycling are also identified in the cluster: PntAB for NADH to 
NADPH conversion; the phosphoketolase (Xfp) (SYNPCC7942_
RS10545) acetate kinase (AckA) pathway involved in ATP sensing 
and conversion of Calvin-Benson cycle intermediates (Lu et al., 
2023); glucose-1-dehydrogenase (Gdh) involved in direct glucose 
oxidation; and oxalate oxidation via oxalate decarboxylase (OxdC) 
and a predicted formate dehydrogenase (SYNPCC7942_RS12130) 
(Schwarz et al., 2011). Finally, NifJ and the HOX bidirectional NiFe 
dehydrogenase hoxEFUH were identified as potentially coupling 
ferredoxin oxidation to hydrogen reduction, as described in 
Synechocystis PCC 6803 under anaerobic dark conditions (Maus 
et al., 2016; Khanna and Lindblad, 2015). Interestingly, succinate 
dehydrogenase, the primary electron donator attributed to 
plastoquinone reduction (Liu et al., 2012; Lee et al., 2007), was not 
identified in the circadian night cluster. Functionally enriched gene 

sets for the circadian night subgraph are provided in 
Supplementary Table S11.

4 Discussion

4.1 Strengths of GRN inference: network 
topology analysis reveals potential key 
regulatory elements despite limited direct 
TF-gene prediction accuracy

Network analysis of gene regulation offers a powerful alternative 
to traditional approaches focused on individual interactions. Our 
study of circadian regulation in PCC 7942 demonstrates how 
network-level analysis can reveal biologically meaningful insights 
even when direct transcription factor-gene predictions show limited 
accuracy. By examining the emergent properties of the regulatory 
network  - its topology, community structure, and centrality 
patterns - we identified regulatory principles that align with and 
extend current knowledge of cyanobacterial metabolism. Through 
network centrality analysis, we discovered three high-confidence 
transcription factors (HimA, TetR, and SrrB) as promising 
candidates for experimental characterization. These factors show 
distinct patterns of circadian phase association and appear to 
coordinate key metabolic transitions between day and night, with 
direct implications for optimizing photosynthetic bioproduction. 
Table 2 summarizes key characteristics of these regulators, their 
temporal regulation, and predicted functions based on 
network analysis.

4.2 Challenges of GRN inference: current 
limitations in TF prediction and network 
construction highlight areas for 
methodological advancement

Our analysis revealed two major challenges in GRN inference. The 
first challenge involves the lack of consensus in transcription factor 
identification across different computational prediction methods. 
Despite using three complementary computational approaches (P2TF, 
ENTRAF, and DeepTFactor), we found substantial variation in TF 
predictions, highlighting the difficulty in definitively identifying 

TABLE 2 Previously uncharacterized transcription factors identified as key circadian regulators through network analysis based on their high centrality 
positions.

Circadian phase Name Gene ID Description Ref.

Day HimA SYNPCC7942_RS11420 Histone-like protein with putative role in DNA supercoiling. Peaked 

expression at night, high network centrality and connections to 

photosynthesis-related suggests role in repression of day-phase 

processes through DNA topology

Vijayan et al. (2009) and 

Markson et al. (2013)

Night SrrB SYNPCC7942_RS02830 Response regulator interacting with histidine kinase. Its high 

network centrality suggests unexplored broader regulatory influence 

over night-phase metabolism

Sierro et al. (2008)

Night TetR SYNPCC7942_RS03075 Regulator previously linked to Kai-dependent dark-induced genes. 

Network analysis suggests its broader regulatory role in nighttime 

metabolism

Welkie et al. (2019) and 

Colclough et al. (2019)
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transcriptional regulators. While some predicted TFs might have 
moonlighting functions beyond their known metabolic roles, their 
identification should be  interpreted cautiously and requires 
experimental validation (Supplementary Table S12). These challenges 
underscore the importance of integrating computational predictions 
with experimental data and the need for continued refinement of TF 
prediction methods in cyanobacteria (full list of predicted TFs in 
Supplementary Table S5).

The second, more significant challenge lies in accurately 
predicting direct TF-gene regulatory interactions. Despite achieving 
network-level insights that align with known biology, our ability to 
predict individual regulatory connections remains limited, with 
precision and recall values similar to those reported in other studies 
of bacterial networks. This moderate accuracy in predicting direct 
interactions likely stems from both the TF prediction uncertainties 
described above and the inherent complexity and hierarchical 
nature of transcriptional regulation, including effects of DNA 
topology, protein–protein interactions, and various post-
transcriptional mechanisms. The inclusion of potential false positive 
TFs in our inclusive approach may have contributed to spurious 
regulatory connection predictions, further reducing prediction 
accuracy. These additional regulatory layers, discussed further in 
section 4.4, suggest that future improvements in prediction 
accuracy may require integration of multiple data types beyond 
gene expression.

4.3 Elucidating regulation of day-night 
transitions: network analysis reveals 
complex coordination of carbon, nitrogen 
and redox metabolism with implications 
for bioproduction

Our network analysis reveals a sophisticated regulatory 
architecture that orchestrates metabolic transitions between day and 
night phases in S. elongatus PCC 7942. The significance of 
understanding this temporal control is highlighted by recent findings 
showing that circadian regulation can modulate heterologous product 
yields up to three-fold, when comparing cultures recently transitioned 
to constant light and having same CO₂ supply (Gilliam et al., 2025). 
By mapping regulatory networks, we uncovered potential key control 
points for carbon allocation, nitrogen assimilation, and redox balance 
across diurnal cycles  – insights that can be  directly applicable to 
metabolic engineering strategies.

During subjective day, the network demonstrates coordinated 
control of photosynthetic and carbon fixation machinery through 
global regulator RpaB and potential co-regulators HimA and RpoD4 
(Figure  4D). These regulators activate components beneficial for 
bioproduction, including PSII and phycobilisome complexes (psb, 
cpc), ATP synthesis machinery, and carbon fixation pathways (gap2, 
prk, eno, fbpI, pgk). The same regulators control electron transport 
chain components, including genes encoding Cyt c6 and Cyt c553, 
and NADH dehydrogenase genes. However, coordinated action of 
RpaB and RpoD4 could also activate competing sinks for carbon and 
reducing power (Gilliam et al., 2025), including glycogen biosynthesis 
(through activation of glucose-1-phosphate adenylyltransferase, glgC). 
An additional competing sink for reducing power is nitrate reduction, 
regulated by NtcA.

During subjective night, our analysis reveals activation of an 
intricate regulatory program that mobilizes stored carbon while 
maintaining cellular redox balance. As demonstrated in our recent 
study (Gilliam et al., 2025), enhancing product yield might be more 
effectively achieved through glycogen as an intermediate product, 
rather than disrupting its synthesis, which can result in severe 
metabolic imbalances, reduced efficiency of light capture and carbon 
fixation, and elevated sensitivity to stresses (Guerra et  al., 2013; 
Cantrell et al., 2023; Hickman et al., 2013; Miao et al., 2003; Gründel 
et al., 2012). Our network analysis identified a complex regulatory 
network rewiring carbon and redox machinery, including enzymes 
related to glycogen degradation (GlgP, MalQ), oxidative pentose 
phosphate pathway (zwf, opcA, gnd) generating NADPH, and 
respiratory electron transport chain cytochromes (CytC and Cyt aa3). 
The network also identifies activation of alternative pathways for 
reducing power generation, including the HOX bidirectional NiFe 
hydrogenase (complex encoded by hoxEFUH) and glucose-1-
dehydrogenase (Gdh).

In the network of regulators activating night metabolism, our 
analysis identified HimA, TetR, and SrrB as high-centrality 
transcription factors and potential key orchestrators. These regulators 
show extensive connections to both carbon metabolism and redox 
balance pathways, suggesting they may play central roles in 
coordinating the metabolic state transitions that enable nighttime 
productivity. This improved understanding of the regulatory networks 
governing day-night metabolic transitions may provide valuable 
insights for metabolic engineering strategies aimed at enhancing 
temporal control of bioproduction in cyanobacterial systems. Future 
studies can build upon this regulatory framework to develop more 
sophisticated approaches for temporal optimization of metabolic 
pathways and resource allocation.

4.4 Future perspectives: integration of 
multi-omics data and advanced 
computational approaches will enhance 
understanding of cellular regulation

Our study demonstrates both the potential and current limitations 
of machine learning-based GRN inference in elucidating the 
regulatory landscape of S. elongatus PCC 7942. While our network-
level analysis successfully revealed biologically meaningful patterns, 
several key challenges remain to be addressed. These include accurate 
prediction of direct regulatory interactions, identification of true 
transcription factors, and capturing complex regulatory mechanisms 
beyond transcriptional control. We envision three complementary 
approaches to address these challenges.

4.4.1 Integration of multi-omics data
A critical next step is the integration of transcriptomics with 

proteomics, metabolomics, and epigenomics data to provide a more 
comprehensive view of cellular regulation. Multiple regulatory 
mechanisms are known in cyanobacteria, including DNA topological 
compaction (Vijayan et  al., 2009; Woelfle et  al., 2007), DNA 
methylation (Gärtner et  al., 2019), non-coding RNA regulation 
(Brenes-Álvarez et  al., 2021), ribosome allocation (Karlsen et  al., 
2018), ribonuclease mRNA degradation (Hoffmann et al., 2021), and 
protein phosphorylation and cysteine modification (Cheng et  al., 
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2024; Jimbo et al., 2018; Horiuchi et al., 2010; Nakamura and Hihara, 
2006; Cheung et al., 2024). As new methods for measuring global cell 
activity continue to develop, integrating these multiple regulatory 
signals (Argelaguet et al., 2018) may provide additional constraints for 
network predictions.

4.4.2 Advanced computational approaches
Novel ML and AI architectures show promise for integrating 

multiple data types into systems models. Successful approaches 
include independent components analysis (ICA) (Patel et  al., 
2023), graph neural networks (GNN) (Cao and Gao, 2022), multi-
omics factor analysis (MOFA) (Argelaguet et al., 2018), and multi-
omics analysis based on physics-informed machine learning 
(Johnson et al., 2024). These methods offer ways to leverage diverse 
data types while accounting for their distinct characteristics 
and relationships.

4.4.3 Integration with metabolic models
Combining transcriptional systems models with metabolic 

models could provide a more comprehensive understanding of 
cellular behavior (Chen et al., 2024; Domenzain et al., 2022; Shin 
et  al., 2024). This integration would bridge the gap between 
regulatory networks and metabolic fluxes, potentially improving 
our ability to predict and engineer cellular phenotypes. Such 
integrated models could enhance our understanding of how 
regulatory changes impact metabolic outcomes, particularly 
important for biotechnology applications.

These future directions aim to address current limitations while 
expanding the utility of GRN inference in understanding and 
manipulating cyanobacterial metabolism. Success in these areas could 
significantly advance both fundamental knowledge and 
biotechnology applications.

5 Conclusion

This study addresses a fundamental challenge in systems biology: 
extracting actionable insights from complex gene expression datasets 
despite limitations in predicting individual regulatory interactions. By 
integrating machine learning with network topology analysis, 
we demonstrate how network-level features can reveal biologically 
meaningful patterns even when gene regulatory network shows 
moderate accuracy in predicting individual TF-gene interactions - a 
common challenge in the field. Through analysis of network centrality 
metrics and community structure rather than individual edge 
predictions, we identified three previously understudied transcription 
factors with potentially significant regulatory roles: HimA as a putative 
DNA architecture regulator orchestrating photosynthetic gene 
expression through topological control, and TetR and SrrB as key 
coordinators of nighttime metabolism.

The network analysis revealed distinct regulatory modules 
associated with circadian day and night phases, elucidating how global 
and local transcriptional regulators work in concert to coordinate 
complex metabolic transitions. During the day phase, we  found 
hierarchical regulation of photosynthesis and carbon fixation through 
RpaB, HimA, and RpoD4, while nighttime metabolism showed tight 
coordination through a single regulatory module centered around 
RpaA’s indirect control through TetR, SrrB, and RpoD5. Understanding 

this temporal organization of metabolism is particularly relevant for 
biotechnology applications, where coordinated control of carbon 
fixation and energy generation directly impacts photosynthetic 
bioproduction efficiency.

Our findings demonstrate that network-level analysis can 
reveal biologically meaningful insights even when direct regulatory 
interaction predictions are limited. This approach has broad 
implications beyond cyanobacterial research, offering a framework 
for analyzing complex regulatory networks in photosynthetic and 
heterotrophic organisms where experimental validation of 
individual interactions remains challenging. The methodologies 
presented here can advance our understanding of metabolic 
regulation across diverse microbial systems, potentially facilitating 
the development of more sophisticated metabolic engineering 
strategies for enhanced carbon fixation and 
sustainable bioproduction.
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