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Introduction: This study investigated the effects of dietary ε-polylysine (ε-PL) 
supplementation on the growth performance, antioxidant capacity, immune 
function and intestinal microbiota in growing male minks.

Methods: Ninety-six 12-week-old male minks were randomly divided into 
6 treatments (8 replicates per treatment and 2 minks per replicate). Minks were 
fed basal diets supplemented with 0 (control), 100, 200, 300, 400, or 500 mg/
kg ε-PL for 8 weeks.

Results: Compared with the control, 300–500 mg/kg ε-PL significantly 
increased the average daily gain (p < 0.05), and significantly decreased the feed-
to-gain ratio (p < 0.05) during the whole period and significantly enhanced the 
body weight at week 8 (p < 0.05), 300–400 mg/kg ε-PL significantly increased 
the fresh pelt weight (p  < 0.05). Compared with the control, 300 mg/kg ε-
PL significantly increased serum T-SOD activity and jejunal mucosal T-SOD 
and GSH-Px activities (p  < 0.05). Compared to the control, 200–400 mg/
kg ε-PL significantly increased serum IgA level (p < 0.05), 300–400 mg/kg ε-
PL significantly increased serum IgM level (p  < 0.05), 400–500 mg/kg ε-PL 
significantly increased serum IgG level (p < 0.05). Compared with the control, 
200–400 mg/kg ε-PL significantly increased jejunal mucosal IgA level (p < 0.05), 
100 mg/kg ε-PL significantly increased jejunal mucosal IgM level (p  < 0.05), 
100–400 mg/kg ε-PL significantly increased jejunal mucosal IgG level (p < 0.05). 
Compared with the control group, all ε-PL supplemented groups significantly 
decreased serum IL-2 and IL-8 levels compared to the control (p < 0.05). The 16S 
rRNA sequencing analysis revealed that compared to the control, 300 mg/kg ε-
PL significantly increased the relative abundance of Firmicutes and Clostridium_
sensu_stricto_1 (p < 0.05), and significantly decreased the relative abundance 
of Proteobacteria and Escherichia-Shigella in ileal mucosa (p < 0.05). Spearman 
correlation analysis indicated that the relative abundance of Escherichia-
Shigella was negatively correlated with the growth performance. The relative 
abundance of Clostridium_sensu_stricto_1 was positively correlated with the 
jejunal mucosal antioxidant indicators and immunoglobulin levels.

Discussion: In conclusion, dietary ε-PL supplementation can improve growth 
performance, antioxidant capacity, immune function, and gut microbial 
community in growing male minks, and the optimal dosage of ε-PL is 300 mg/kg.
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1 Introduction

The mink (Mustela vison) is a carnivorous mammal belonging to 
the Mustelidae family. Its fine and soft fur serves as premium raw 
material for making fur coats, hats, and other luxury products. Mink 
diets are wet-type feed primarily formulated with fresh or frozen 
ingredients including fish, fish by-products, eggs, and poultry 
by-products. The growing stage of minks occurs during the hot 
summer, when feed is prone to spoilage and deterioration, increasing 
the risk of diarrhea and other diseases. Furthermore, high 
temperatures also easily cause heat stress reactions in animals, leading 
to decreased antioxidant function, elevated inflammatory response, 
impaired intestinal health, and disruption of gut microbiota, which 
adversely affects overall health (Cao et al., 2021; Ortega and Szabó, 
2021). Given these risks, it is crucial to explore effective additives that 
can maintain feed quality and protect health of the minks. One 
promising candidate is ε-Polylysine (ε-PL), a natural antimicrobial 
peptide that offers multiple benefits for animal health and nutrition.

ε-PL is a polypeptide consisting of 25–35 lysine residues, produced 
by the fermentation of Streptomyces albus (Huang et al., 2025). It is 
known that ε-PL has broad-spectrum antimicrobial activity in neutral 
and slightly acidic conditions (Yoshida and Nagasawa, 2003). Since ε-PL 
is a positively charged peptide, it can readily bind to the sites with 
negative charges on the surface of bacterial and fungal cells, disrupt cell 
surface structures, interfere with cellular metabolism, and inhibit their 
growth and reproduction (Deng et al., 2020). ε-PL has been broadly 
used as an antiseptic and bacteriostatic agent in food and pharmaceutical 
fields (Alemán et al., 2016; Yue et al., 2022; Sun et al., 2019). In addition, 
ε-PL can be partially degraded into L-lysine, thereby supplementing 
essential amino acids for the organism (Hiraki et al., 2003). The use of 
ε-PL as a feed additive in the livestock industry has been reported in a 
limited number of studies. Recent studies have reported that dietary 
ε-PL supplementation improves egg-laying performance and immune 
function, reduces oxidative damage, increases intestinal microbiota 
diversity, and maintains intestinal health in laying hens (Wang et al., 
2024). Dietary supplementation of ε-PL affects nutrient and energy 
utilization and regulates the structure of gut microbiota structure in 
Ningxiang pigs (Zhang et  al., 2020a). Furthermore, dietary ε-PL 
addition increases jejunal villus height and reduces crypt depth in mice, 
improving the intestinal morphology (Zhang et al., 2022).

However, the effects of ε-PL on the growth, antioxidant and 
immune function, and gut microbiota in minks remains unclear. The 
aim of this study was to assess the effects of dietary ε-PL 
supplementation on growth performance, antioxidant capacity, 
immune function, and intestinal microbiota in growing male minks.

2 Materials and methods

2.1 Animals and experimental design

The experimental procedure was approved by the Animal Care 
and Use Committee of Qingdao Agricultural University (No. 

DKY20230526). A total of 96 red-eyed white male minks (aged 
12 weeks) with similar body weights were randomly divided into six 
groups, with 8 replicates (cages) per group and 2 minks per replicate. 
The minks were fed basal diets supplemented with 0 (control), 100, 
200, 300, 400, or 500 mg/kg ε-PL. The trial lasted for 8 weeks following 
a week of adaption. All minks were housed in standard metal cages (L 
75 cm × W 30 cm × H 45 cm) aligned in two parallel rows within a 
naturally ventilated shed structure. They were fed at 5:00 and 17:00 
every day with free access to water. Table 1 shows the composition and 
nutrient level of the basal diet. ε-PL was supplemented in the form of 
ε-polylysine hydrochloride (99% purity, Zhengzhou Bainafo 
Bioengineering, Zhengzhou, Shangdong, China). All minks had 
completed canine distemper and parvovirus vaccinations.

2.2 Growth performance measurement

Body weights of minks were measured at the start of the trial 
(week 0) and at the end of week 4 and week 8. The feed intake was 
monitored for 3 consecutive days each week. The average daily gain 
(ADG), average daily feed intake (ADFI), and the feed-to-gain ratio 
(F/G) were calculated. At the end of the trial, one mink was randomly 
chosen from each replicate, and the body length was measured from 
the tip of the nose to the base of the tail. After the minks were 
sacrificed by injecting air into the heart, the pelt was then removed 
and the fresh pelt weight was determined. The pelt length was 
measured as the distance from the nose tip to the tail base of the pelt.

TABLE 1 Composition and nutrient levels of basal diets (air-dry basis, %).

Items Weeks 0–4 Weeks 5–8

Sea fishes 13 8

Unhatched fertilized egg 32 32

Chicken head 20 20

Extruded corn 10 10

Monkfish head 14 18

Lepidotrigla 5 6

Lard 1 2

Soybean meal 2 2

Premixa 3 2

Total 100 100

Nutrient levels

ME (MJ/kg)b 15.98 17.04

Ether extractc 16.65 19.85

Crude proteinc 31.81 31.26

Calciumc 2.47 2.59

Phosphorusc 1.59 1.64
aThe premix contains the following nutrients (per kg of the diets): VA 9,000 IU, VC 40 mg, 
VE 20 mg, VK3 0.5 mg, VB1 5 mg, VB2 3 mg, VB6 2.5 mg, VB12 1 mg, VD3 2,000 IU, nicotinic 
acid 20 mg, pantothenic acid 6 mg, folic acid 0.5 mg, biotin 0.5 mg, Fe 30 mg, Zn 25 mg, Mn 
10 mg, Cu 5 mg, I 0.25 mg, and Se 0.2 mg.
bCalculated value.
cMeasured value.
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2.3 Sample collection

From each selected mink, 10 mL of blood was drawn from the 
heart and subjected to centrifugation at 3,000 r/min for 10 min at 4°C 
to separate the serum. The obtained serum was subsequently stored at 
−20°C. After slaughtering, the jejunum and ileum were resected, cut 
open, and rinsed with saline. The jejunal and ileal mucosa were 
collected, snap-frozen, and stored at −80°C.

2.4 Determination of antioxidant indicators, 
immunoglobulin (Ig) levels, and cytokine 
levels

The activities of total antioxidant capacity (T-AOC; a015-1-2), 
total superoxide dismutase (T-SOD; a001-1-2), and glutathione 
peroxidase (GSH-Px; a005-1-2), as well as the level of 
malondialdehyde (MDA; a003-1-2) in serum and jejunal mucosa 
were measured using the commercial assay kits (Nanjing Jianjian 
Bioengineering Research Institute, Nanjing, China). The levels of 
IgG (H106-1-2), IgA (H108-1-2), and IgM (H109-1-2) in serum 
and jejunal mucosa, as well as interleukin (IL)-1β (H002-1-2), IL-2 
(H003-1-2), IL-8 (H008-1-2), and IL-10 (H009-1-2) in serum, were 
measured using the corresponding enzyme-linked immunosorbent 
assay (ELISA) kits (Nanjing Jianjian Bioengineering Research 
Institute, Nanjing, China). Jejunal mucosa was homogenized in 
0.9% sodium chloride to prepare a 10% mucosal homogenate, 
which was centrifuged at 3000 rpm for 10 min at 4°C to collect the 
supernatant. Protein levels in jejunal mucosal homogenate were 
measured using BCA assay kits (CW0014S; Cwbio, Beijing, China). 
Jejunal antioxidant indicators and immunoglobulin levels were 
expressed as units per milligram of protein.

2.5 Sequencing of the gut microbiota

Based on the results of growth performance, antioxidant capacity 
and immune function, 300 mg/kg ε-PL was identified as the optimal 
supplementation level. Therefore, minks fed 0 and 300 mg/kg ε-PL were 
selected for sequencing the gut microbiota. Briefly, total genomic DNA 
was extracted from the ileal mucosa of minks using a Mag-bind soil 
DNA kit (M5635-02; Omega Biotek, GA, USA), and the purity and 
concentration of DNA were measured. The V3-V4 variable region was 
amplified using PCR with the primers 341F (5’-CCTAY 
GGGRBGCASCAG-3′) and 806R (5’-GGACTACNNGGGTATC 
TAAT-3′). After isolation using 2% agarose gel electrophoresis, target 
fragments were cut from the gel, recovered using a Quant-iT PicoGreen 
dsDNA assay kit (P7589; Invitrogen, Carlsbad, CA, USA) and quantified 
on an FLx800 microplate reader (BioTek, USA). After construction using 
a TruSeq Nano DNA LT Library Prep kit (20,015,965; Illumina, USA), 
the library was analyzed using Agilent Bioanalyzer 2,100 and Promega 
QuantiFluor. After qualification, the library was sequenced using the 
NovaSeq  6,000 system. The 16S rRNA sequencing analysis was 
conducted at Applied Protein Technology (APTBIO, Shanghai, China). 
Sequences with more than 97% similarity were set as a taxonomic 
operating unit. Qiime2 was used to calculate the α and β diversity 
indices, and LEfSe was utilized to analyze the significant differences at 
each taxonomic level.

2.6 Statistical analysis

Data were analyzed using a one-way ANOVA procedure in SPSS 
25.0 software (SPSS Inc., Chicago, IL, USA). Differences between 
treatments were assessed by Duncan’s multiple-range tests. The effects of 
dietary ε-PL supplementation levels were evaluated using linear and 
quadratic polynomial contrasts. The sequencing data on the gut 
microbiota from the control and 300 mg/kg groups were subjected to an 
independent-sample t-test. Spearman’s correlation analysis was used to 
assess the correlation between gut microbiota and health-related 
indicators. Data are expressed as means and pooled SEM. Differences 
were considered statistically significant at p < 0.05.

3 Results

3.1 Effects of ε-PL on growth performance

As presented in Table 2, the body weight at week 4 increased in a 
linear manner (p < 0.05). Compared to the control, 200, 300, 400 and 
500 mg/kg ε-PL significantly increased the body weight at week 4 
(p < 0.05). The linear and quadratic effects on the body weight were 
observed at week 8 when ε-PL levels increased (p < 0.05). Compared to 
the control, 300, 400 and 500 mg/kg ε-PL significantly increased the 
body weight at week 8 (p < 0.05). Increasing levels of ε-PL linearly 
increased the ADG during weeks 0–4 and 5–8, and both linearly and 
quadratically increased the ADG during weeks 0–8 (p < 0.05). Compared 
to the control group, 300, 400, and 500 mg/kg ε-PL significantly 
increased the ADG during weeks 0–4 and 0–8 (p < 0.05). Additionally, 
300 and 400 mg/kg ε-PL significantly increased the ADG during weeks 
5–8 (p < 0.05). The F/G was significantly decreased in a linear and 
quadratic manner as ε-PL levels increased during weeks 0–4 and 5–8 
(p < 0.05). Moreover, ε-PL supplementation linearly decreased the F/G 
during weeks 0–8 (p < 0.05). Compared to the control, 200, 300, 400, and 
500 mg/kg ε-PL significantly decreased the F/G during weeks 0–4 
(p < 0.05). Furthermore, 300, 400, and 500 mg/kg ε-PL significantly 
reduced the F/G during weeks 5–8 and 0–8 (p < 0.05). Fresh pelt weight 
at week 8 increased linearly and quadratically as ε-PL levels increased 
(p < 0.05). Compared to the control, 300 and 400 mg/kg ε-PL 
significantly increased the fresh pelt weight at week 8 (p < 0.05). No 
significance was observed in the body length and fresh pelt length at 
week 8 (p > 0.05).

3.2 Effects of ε-PL on the antioxidant 
function of serum and jejunal mucosa

As shown in Table 3, increasing ε-PL levels quadratically enhanced 
serum T-AOC level (p < 0.05), and both linearly and quadratically 
elevated T-SOD activity (p < 0.05). Serum T-AOC level was significantly 
higher in the 200 and 300 mg/kg ε-PL groups than in the 500 mg/kg 
group (p < 0.05). Compared to the control, 300 mg/kg ε-PL significantly 
increased serum T-SOD activity (p < 0.05).

The jejunal mucosal T-SOD and GSH-Px activities showed a 
quadratic effect with increasing ε-PL levels (p < 0.05). The 
supplementation of 300 mg/kg ε-PL significantly increased the activities 
of T-SOD and GSH-Px in jejunal mucosa relative to the control 
(p < 0.05).
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3.3 Effects of ε-PL on serum and jejunal 
mucosal immunoglobulin levels

As listed in Table 4, increasing levels of ε-PL elevated serum 
levels of IgA, IgM, and IgG in a linear manner (p < 0.05). Compared 
to the control, 200, 300 and 400 mg/kg ε-PL significantly increased 
serum IgA level (p < 0.05). Compared with the control group, 300 
and 400 mg/kg ε-PL supplementation significantly increased 
serum IgM level (p < 0.05). Serum IgG level was significantly 

enhanced by 400 and 500 mg/kg ε-PL relative to the control 
(p < 0.05).

The IgA and IgG levels in jejunal mucosa increased quadratically 
with increasing ε-PL levels (p < 0.05). Compared to the control, 200, 
300 and 400 mg/kg ε-PL significantly increased jejunal mucosal IgA 
level (p < 0.05). Additionally, 100, 200, 300 and 400 mg/kg ε-PL 
significantly enhanced the IgG level in jejunal mucosa (p < 0.05). 
When compared with the control group, only 100 mg/kg ε-PL group 
significantly enhanced IgM level (p < 0.05).

TABLE 3 Effects of dietary ε-PL supplementation on the antioxidant activities in serum and jejunal mucosa of growing male minks (n = 8).

Items ε-PL levels (mg/kg) SEM p value

0 100 200 300 400 500 ANOVA Linear Quadratic

Serum

T-AOC (U/mL) 8.86ab 8.99ab 10.04a 9.91a 8.77ab 8.47b 0.178 0.034 0.444 0.006

T-SOD (U/mL) 253.69b 256.27b 269.68b 309.07a 290.76ab 272.90b 5.472 0.028 0.021 0.039

GSH-Px (U/mL) 1340.71 1339.89 1359.18 1428.31 1345.47 1287.72 16.684 0.295 0.598 0.067

MDA (nmol/mL) 13.99 13.77 14.00 12.58 13.15 12.35 0.297 0.435 0.066 0.821

Jejunal mucosa

T-AOC (U/mg prot) 2.27 2.48 2.41 2.43 2.18 2.09 0.071 0.562 0.245 0.179

T-SOD (U/mg prot) 79.31b 78.01b 82.41ab 89.81a 78.74b 75.82b 1.379 0.044 0.770 0.020

GSH-Px (U/mg prot) 29.01b 33.79ab 33.22ab 37.52a 30.68b 29.27b 0.852 0.033 0.825 0.004

MDA (nmol/mg prot) 1.62 1.52 1.94 1.46 1.72 1.80 0.082 0.572 0.541 0.899

T-AOC, total antioxidant capacity; T-SOD, total superoxide dismutase; GSH-Px, glutathione peroxidase; MDA, malondialdehyde. Means in the same row with different superscripts are 
significantly different (p < 0.05).

TABLE 2 Effects of dietary ε-PL supplementation on growth performance of growing male minks (n = 8).

Items ε-PL levels (mg/kg) SEM p value

0 100 200 300 400 500 ANOVA Linear Quadratic

Body weight (g)

Week 0 1284.38 1279.38 1267.5 1,290 1293.13 1283.13 6.211 0.894 0.666 0.810

Week 4 1678.00b 1762.00ab 1804.00a 1810.71a 1815.71a 1826.00a 14.326 0.025 0.002 0.086

Week 8 2041.86b 2210.00ab 2233.57ab 2402.86a 2377.86a 2308.57a 33.838 0.011 0.002 0.044

ADG (g)

Weeks 0–4 15.11c 16.07bc 17.18abc 19.02a 17.74ab 17.83ab 0.366 0.024 0.004 0.066

Weeks 5–8 14.46c 16.48bc 17.20abc 19.79ab 21.66a 17.92abc 0.658 0.020 0.005 0.074

Weeks 0–8 13.53b 16.77ab 16.74ab 19.76a 18.24a 17.79a 0.574 0.039 0.011 0.045

ADFI (g)

Weeks 0–4 261.28ab 267.04ab 254.15b 267.49ab 274.58a 264.71ab 2.010 0.042 0.165 0.966

Weeks 5–8 290.82 301.04 294.58 315.93 310.29 306.63 4.133 0.503 0.140 0.483

Weeks 0–8 275.95 276.69 275.46 288.8 289.22 282.7 3.291 0.698 0.226 0.696

F/G

Weeks 0–4 18.92a 17.27ab 15.16bc 13.85c 15.08bc 14.82bc 0.449 0.008 0.001 0.020

Weeks 5–8 21.03a 18.96ab 17.99abc 15.62c 14.76c 17.59bc 0.510 0.002 0.001 0.012

Weeks 0–8 20.31a 17.60ab 17.17ab 15.02b 16.50b 16.13b 0.476 0.027 0.005 0.051

Body length (cm) 46.50 47.88 47.63 47.25 46.50 46.25 0.266 0.385 0.296 0.096

Fresh pelt length (cm) 57.88 59.50 57.75 58.50 58.13 55.88 0.477 0.405 0.177 0.201

Fresh pelt weight (g) 620.00c 687.50c 725.00bc 845.00ab 884.17a 757.86abc 23.816 0.005 0.001 0.036

ADG, average daily gain; ADFI, average daily feed intake; F/G, the ratio of feed to gain. Means in the same row with different superscripts are significantly different (p < 0.05).
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3.4 Effects of ε-PL on serum levels of 
inflammatory cytokines

As presented in Table  5, serum levels of IL-2 and IL-8 
decreased linearly as ε-PL levels increased (p < 0.05). When 
compared to the control group, 100, 200, 300, 400 and 500 mg/kg 
ε-PL significantly decreased serum levels of IL-2 and IL-8 
(p < 0.05).

3.5 Effects of ε-PL on the composition of 
intestinal microbiota

3.5.1 Alpha diversity and beta diversity
Table 6 shows that 300 mg/kg ε-PL had no significant effects on 

the Ace, Chao1, Shannon, Simpson, and Coverage index compared 
to the control (p > 0.05). However, PCoA and NMDS analyses 
revealed that the structure of the intestinal microbiota of control 
minks could be clearly distinguished from that of minks fed with 
300 mg/kg ε-PL (Figures  1A,B), suggesting that dietary 
supplementation of 300 mg/kg ε-PL remarkably changed the 
intestinal microbiota in minks.

3.5.2 Relative abundance of bacterial taxa
The top 10 bacterial phyla with the largest abundances in the 

control and 300 mg/kg ε-PL groups were Firmicutes,  
Proteobacteria, Campilobacterota, Actinobacteriota, Fusobacteriota, 
Gemmatimonadota, Bacteria_p_uncultured, Bacteroidota, 
Deinococcota and Unassigned_p_uncultured (Figure 2A). The top 10 
bacterial genera in the control and 300 mg/kg ε-PL groups were 

Paeniclostridium, Lactococcus, Clostridium_sensu_stricto_1, 
Escherichia-Shigella, Campylobacter, Romboutsia, Candidatus_
Arthromitus, Staphylococcus, Lactobacillus, and Mycoplasma 
(Figure 2B). Compared to the control, 300 mg/kg ε-PL significantly 
increased the relative abundance of Firmicutes, Paeniclostridium and 
Clostridium_sensu_stricto_1 (p < 0.05) (Figures 2C,E,G) and reduced 
the relative abundance of Proteobacteria, Lactobacillus, and 
Escherichia-Shigella (p < 0.05) (Figures 2D,F,H).

3.5.3 LEfSe analysis of intestinal microbiota
LEfSe analysis showed that p_Proteobacteria, g_Vagococcus, f_

Streptococcaceae, f_Enterobacteriaceae, g_Escherichia_Shigella, etc. in 
the control group exhibited higher LDA scores than those in the 300 mg/
kg ε-PL group (Figure 3). Additionally, the bacteria enriched in the 
300 mg/kg ε-PL group were f_Peptostreptococcaceae, g_Candidatus_ 
Arthromitus, g_Clostridium_sensu_stricto_1, g_Luteococcus, etc.

TABLE 4 Effects of dietary ε-PL supplementation on the immunoglobulin levels in serum and jejunal mucosa of growing male minks (n = 8).

Items ε-PL levels (mg/kg) SEM p value

0 100 200 300 400 500 ANOVA Linear Quadratic

Serum

IgA (g/L) 0.25c 0.25c 0.26b 0.27ab 0.27a 0.26abc 0.002 0.016 0.017 0.085

IgM (g/L) 1.96b 1.94b 1.96b 2.18a 2.13a 2.10ab 0.026 0.005 0.002 0.473

IgG (g/L) 28.48c 28.18c 28.96bc 30.12abc 31.89a 30.97ab 0.371 0.011 0.001 0.908

Jejunal mucosa

IgA (μg/mgprot) 39.46b 45.76ab 52.33a 48.23a 46.60a 45.54ab 1.035 0.011 0.136 0.002

IgM (μg/mgprot) 372.23b 531.11a 440.65ab 450.78ab 450.51ab 448.75ab 13.494 0.017 0.529 0.106

IgG (mg/mgprot) 4.28c 5.30ab 5.31ab 5.61a 5.00ab 4.89bc 0.108 0.004 0.194 <0.001

IgA, immunoglobulin A; IgM, immunoglobulin M; IgG, immunoglobulin G. Means in the same row with different superscripts are significantly different (p < 0.05).

TABLE 5 Effects of dietary ε-PL supplementation on serum inflammatory cytokine levels in growing male minks (n = 8).

Items ε-PL levels (mg/kg) SEM P value

0 100 200 300 400 500 ANOVA Linear Quadratic

IL-1β (pg/mL) 163.53 157.93 155.80 164.21 151.93 154.87 1.946 0.416 0.188 0.961

IL-2 (pg/mL) 274.43a 240.39b 233.88b 246.13b 239.90b 236.70b 3.849 0.043 0.021 0.062

IL-8 (pg/mL) 109.97a 89.20b 92.04b 98.46b 89.71b 92.05b 1.832 0.009 0.018 0.067

IL-10 (pg/mL) 54.27 50.94 51.78 54.60 49.60 50.37 0.721 0.231 0.154 0.855

IL-1β, interleukin-1β; IL-2, interleukin-2; IL-8, interleukin-8; IL-10, interleukin-10. Means in the same row with different superscripts are significantly different (p < 0.05).

TABLE 6 Effects of dietary ε-PL supplementation on the alpha diversity 
indices of intestinal microbiota in growing male minks (n = 8).

Indices ε-PL levels (mg/kg) SEM P value

0 300

Observed_species 113.13 85.13 19.767 0.498

Ace index 122.88 96.74 20.750 0.547

Chao1 index 119.16 93.54 20.472 0.550

Shannon index 3.30 2.80 0.302 0.432

Simpson index 0.81 0.68 0.041 0.092

Coverage index 0.9993 0.9992 <0.001 0.670
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FIGURE 1

Effects of ε-PL supplementation on the beta diversity of intestinal microbiota in growing minks (n = 8). (A) Principal coordinates analysis (PCoA) based 
on Bray-Curtis distance; (B) Non-metric multidimensional scaling (NMDS) based on Bray-Curtis distance. CON, minks fed a basal diet; ε-PL 300, minks 
fed a basal diet supplemented with 300 mg/kg of ε-PL.

3.5.4 Correlation analysis between the top 10 
genera and health-related indicators

As shown in Figure 4, the relative abundance of Escherichia-
Shigella was positively correlated with the F/G ratio and serum 
IL-2 level, but was negatively correlated with fresh pelt weight, 
serum T-SOD activity, jejunal mucosal GSH-Px activity, serum 
IgA and IgM levels, as well as jejunal mucosal IgG level. The 
relative abundance of Lactococcus was positively correlated with 
the F/G ratio but negatively correlated with body weight, ADG, 
ADFI, serum T-SOD activity and jejunal mucosal IgA, IgM, and 
IgG levels. The relative abundance of Lactobacillus displayed a 
positive correlation with jejunal mucosal T-SOD activity and IgG 
level. The relative abundance of Paeniclostridium was positively 
correlated with ADG and serum IgA level. The relative abundance 
of Clostridium_sensu_stricto_1 was positively correlated with 
jejunal mucosal T-AOC and GSH-Px activities, as well as IgA, 
IgM, and IgG levels. The relative abundance of Mycoplasma 
showed a positive correlation with serum T-SOD activity and 
MDA level, but a negative correlation with serum IgM level. The 
relative abundance of Staphylococcus was negatively correlated 
with jejunal mucosal T-SOD activity. The relative abundance of 
Campylobacter was positively correlated with jejunal mucosal 
T-SOD and GSH-Px activities but negatively correlated with 
body length.

4 Discussion

The growth stage is a critical period for minks, as their peak 
growth rate and daily weight gain directly determine adult body size. 

In this study, dietary supplementation with 300, 400 and 500 mg/kg 
ε-PL significantly increased ADG and final body weight and decreased 
F/G during the entire 8 weeks. ε-PL has a broad-spectrum inhibitory 
effect on the growth and reproduction of Gram-positive and Gram-
negative bacteria and molds (Li et al., 2014). ε-PL can inhibit the 
deterioration of wet feed in hot environments, which may explain the 
observed improvements in daily weight gain and feed intake in minks. 
In addition, ε-PL can be digested into lysine, a growth-promoting 
amino acid, which participates directly in protein synthesis and 
significant influences growth and development (Kiess et al., 2013). 
Similar to our results, Wang et al. (2022) reported that the dietary 
supplementation with antimicrobial peptides Gal-13 significantly 
increased ADG during the 7 to 42 days of age and final body weight 
at day 42 of age in broiler chickens. Zhang et al. (2021) showed that 
dietary supplementation with antimicrobial peptide plectasin 
remarkably increased ADG and ADFI, and reduced F/G in yellow-
feathered chickens during days 1 to 63 of age. Yoon et al. (2014) found 
that supplementation with antimicrobial peptides A3 and P5 in diets 
increased ADG and decreased F/G in weaned piglets during days 0 to 
28 of age.

There is a close correlation between the antioxidant systems of 
the body and health, and excess free radicals can cause damage to 
tissues and cells, leading to an unstable internal environment (Singh 
et al., 2019). Various antioxidant molecules and enzymes affect the 
overall antioxidant activity of the organism, and T-AOC, T-SOD, and 
GSH-Px are important indicators of the organism’s ability to scavenge 
free radicals (Zhang et al., 2020b). Highly active SOD reduces free 
radical-induced damage and protects cells from oxidative stress, thus 
maintaining normal cell function and health status. GSH-Px can 
reduce endogenous hydrogen peroxide and hydroxyl radicals, thereby 
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reducing the levels of lipid peroxides and free radicals in the blood 
(Yoon et al., 2012). As a secondary metabolite of lipid oxidation, 
MDA is often used as an indicator of lipid peroxidation (Wu et al., 
2020). Deng et al. (2020) found that ε-PL can effectively scavenge free 
radicals and has robust antioxidant activity in in vitro tests. Liu et al. 
(2022) showed that dietary supplementation of immobilized 
antimicrobial peptides increased serum T-SOD and GSH-Px 
activities in weaned piglets. In this study, dietary supplementation 
with 300 mg/kg ε-PL significantly increased serum T-SOD activity 
and jejunal mucosal T-SOD and GSH-Px activities, indicating that 
ε-PL could effectively improve antioxidant function and reduce 
oxidative damage in growing minks.

Animal-sourced feeds, such as fish and offal, constitute the 
major part of mink diets, however, they are prone to harbor bacteria 
in high-temperature environments, which challenges the immune 
system of minks. Under antigenic stimulation, the immune 
systeminduces B lymphocytes to proliferate and differentiate into 
plasma cells, which produce immunoglobulins that are widely 
distributed in serum and tissue fluids (Ehrenstein and Notley, 2010). 
IgG is the main immunoglobulin involved in the humoral immune 
responses, with the ability to activate complement, neutralizing 
toxins, and regulating phagocytosis (Ulfman et al., 2018). IgM is the 
earliest immunoglobulin generated by the immune system during 
infections, playing a crucial role in innate immunity (Keyt et al., 

FIGURE 2

Effects of ε-PL supplementation on the relative abundance of bacterial taxa in ileal digesta of growing male minks (n = 8). (A) Top 10 phyla; (B) Top 10 
genera; (C,D) the differential bacteria between the two groups at the phylum level; (E–H) the differential bacteria between the two groups at the genus 
level. CON, minks fed a basal diet; ε-PL 300, minks fed a basal diet supplemented with 300 mg/kg of ε-PL.* p < 0.05.
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FIGURE 3

LEfSe analysis of the intestinal microbiota in growing male minks (n = 8). CON, minks fed a basal diet; ε-PL 300, minks fed a basal diet supplemented 
with 300 mg/kg of ε-PL.

FIGURE 4

Spearman correlation analysis between the top 10 genera and health-related parameters. The color intensity indicates the strength of the association 
(red represents a positive correlation, while blue represents a negative correlation). *p < 0.05, **p < 0.01, ***p < 0.001.

2020). IgA functions primarily in the mucosal defense system, such 
as in the respiratory and digestive systems, and prevents pathogenic 
microorganisms from adhering to mucosal membranes (Gao et al., 
2023). Liu et  al. (2022) demonstrated that adding immobilized 

antimicrobial peptides to the diet markedly elevated serum 
concentrations of IgG and IgM in weaned piglets. Yuan et al. (2015) 
observed that dietary supplementation with antimicrobial peptides 
increased the IgG, IgM and IgA levels in weaned piglets. In this 
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study, 300 and 400 mg/kg ε-PL increased serum IgA and IgM levels, 
and 200, 300 and 400 mg/kg ε-PL increased mucosal IgA and IgG 
levels, indicating that dietary ε-PL supplementation promotes the 
immune response in growing minks.

Inflammatory cytokines are secreted by immune cells involved in 
inflammatory responses, and they are mainly classified into 
pro-inflammatory cytokines and anti-inflammatory cytokines 
(Chauhan et al., 2021). IL-2 is a pro-inflammatory cytokine that can 
promote T cell growth, enhance the activity of natural killer cells, and 
induce the production of cytotoxic T lymphocytes (Lokau et al., 2023; 
Liao et al., 2021). As a chemokine, IL-8 mainly attracts and activates 
neutrophils, leading to local inflammatory responses in the body, thus 
exerting immune function (Baggiolini and Clark-Lewis, 1992). IL-1β 
is also a pro-inflammatory cytokine, which initiates inflammatory 
responses and promotes the clearance of pathogens during infections 
and injuries (Cheng et  al., 2019). IL-10 is an anti-inflammatory 
cytokine, which can inhibit inflammatory Th cells and 
immunopathological processes, thereby maintaining tissue 
homeostasis (Fang and Zhu, 2019). Feng et  al. (2020) found that 
intraperitoneal injection with antimicrobial peptide cathelicidin-BF 
reduced the diarrhea index and serum levels of IL-6 and IL-8 in piglets 
with post-weaning diarrhea. In addition, dietary supplementation 
with antimicrobial peptide Gal-13 significantly decreased the 
expression of IL-2 in the spleen of piglets (Wang et al., 2022). In this 
study, the results showed that ε-PL supplementation markedly 
reduced serum IL-2 and IL-8 levels, indicating that dietary 
supplementation with ε-PL could effectively reduce serum 
pro-inflammatory cytokine levels, thus alleviating the inflammatory 
responses in growing minks.

The gut microbiota is crucial for intestinal homeostasis and has an 
important impact on the host’s nutrient absorption and immune 
system (Ignacio et al., 2016). Alpha diversity is used to assess the 
richness and diversity of microbial communities in the gut. In this 
study, dietary supplementation with ε-PL had no significant effect on 
the alpha diversity of the gut microbiota in growing minks, which is 
similar to the results reported in laying hens (Wang et al., 2024). Beta 
diversity measures the differences in microbial communities between 
samples. In this study, PCoA and NMDS analyses showed an obvious 
separation in beta diversity between the control and 300 mg/kg ε-PL 
groups, suggesting that dietary ε-PL supplementation could alter the 
structure of the ileal microbiota.

In this study, 300 mg/kg ε-PL increased the relative abundance 
of Firmicutes and Clostridium_sensu_stricto_1 and decreased the 
relative abundance of Proteobacteria and Escherichia-Shigella. 
Firmicutes are one of the most abundant bacterial phyla in the gut, 
which promotes cellulose catabolism and glucose metabolism to 
provide energy for the body (Xue et  al., 2016). As members of 
Firmicutes, Clostridium spp. exert the probiotic effects by producing 
butyric acid, strengthening the intestinal barrier and regulating 
intestinal immunity (Guo et al., 2020). Shin et al. (2015) showed that 
proteobacteria include various pathogens, such as Vibrio cholerae, 
Salmonella, Escherichia coli, and Helicobacter pylori, and they are 
usually benign at low abundances but may become pathogenic when 
the intestinal environment changes dramatically. Escherichia-Shigella 
can colonize the intestine and secrete toxins, causing metabolic 
disorders in the intestinal epithelial cells, which damage the 
intestinal mucosal architecture and contributes to immune 
dysfunction in the gut (Dubreuil et al., 2016). In this study, LEfSe 

analysis showed that Proteobacteria and Escherichia-Shigella were 
enriched in the intestinal tracts of control minks, while Candidatus_
Arthromitus was enriched in minks fed 300 mg/kg ε-PL. Candidatus_
Arthromitus can regulate T cell differentiation and stimulate IgA 
secretion, enhancing resistance to foreign pathogenic bacteria 
(Ohashi et  al., 2010), which may explain why dietary ε-PL 
supplementation increased immunoglobulin levels and enhanced 
immunity in growing minks. Zhang et  al. (2020a) reported that 
dietary ε-PL supplementation remarkably increased the abundance 
of the phylum Firmicutes in the ileum of Ningxiang pigs. Cao et al. 
(2024) reported that dietary supplementation with antimicrobial 
peptide microcin J25 dramatically increased the relative abundance 
of Firmicutes and reduced the relative abundance of Proteobacteria 
and Enterobacteriaceae in pigeon squabs. In addition, dietary 
supplementation of antimicrobial peptide Microcin C7 reduced the 
number of Escherichia coli in the cecum of broiler chickens (Dai 
et  al., 2022). Therefore, our results suggest that dietary ε-PL 
supplementation may improve the growth of potential beneficial 
bacteria and inhibit the growth of potential pathogenic bacteria in 
growing minks.

The results of Spearman correlation analysis showed that the 
relative abundance of Escherichia-Shigella was positively correlated 
with the F/G ratio and negatively correlated with the fresh pelt 
weight. Similarly, a negative correlation between Escherichia-Shigella 
and growth performance was also observed in a study of ammonia 
exposure in broiler chickens (Han et al., 2021). In this study, the 
improved growth performance in minks of the 300 mg/kg ε-PL group 
may be attributed to the lower abundance of Escherichia-Shigella 
compared with the control group. Our results showed that the relative 
abundance of Clostridium_sensu_stricto_1 was positively correlated 
with the jejunal mucosal antioxidant indicators and immunoglobulin 
levels, which indicated that the enhanced antioxidant and immune 
function of ε-PL may be  associated with the increased relative 
abundance of Clostridium_sensu_stricto_1. Consistent with the 
results of this study, some feed additives, such as zinc oxide (Xiao 
et al., 2023) and Enterococcus faecium (Zhang et al., 2025), have also 
been found to increase the relative abundance of Clostridium_sensu_
stricto_1 after administration. Generally, the top 10 genera in the 
ileum have been found to be  mainly associated with growth 
performance, antioxidant enzyme activities and immunoglobulin 
levels, which further confirms that microorganisms can affect the 
health of the body.

5 Conclusion

Dietary supplementation of ε-PL enhanced growth performance, 
boosted antioxidant capacity, and strengthened immune functions, 
and improved the composition of intestinal microbiota in male minks 
during the breeding period. A dose of 300 mg/kg ε-PL in the diet was 
recommended for male minks.
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