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Tropical rainforests support critical biogeochemical cycles regulated by complex 

plant-soil microbial interactions but are threatened by global change. Much of 

the uniquely biodiverse and carbon rich forest on Borneo has been lost through 

extensive conversion to monoculture plantation, and a significant proportion of 

the remaining forest has been heavily modified by selective logging. Ecological 

restoration of tropical forest aims to return forests to a near pristine state, but 

restoration initiatives are hindered by limited understanding of the underpinning 

plant-soil feedbacks, and impacts on soil microbial communities are unresolved. 

We characterized soil properties and soil bacterial and fungal communities 

using amplicon sequencing across adjacent old-growth and selectively logged 

lowland dipterocarp forest in Borneo undergoing either natural regeneration 

or restoration by enrichment planting. While many soil properties were similar 

across forest types, we found contrasting responses of different soil microbial 

groups to active and passive restoration. Bacterial and fungal community 

composition were generally distinct in old-growth forest and more similar in 

logged forest. Bacterial alpha diversity and rate of spatial turnover appeared 

to recover toward old-growth forest with active restoration, while fungal 

alpha diversity showed slower signs of recovery. The composition and rate 

of spatial turnover in mycorrhizal communities was most different between 

old-growth and actively restored forest, possibly resulting from mycorrhizal 

associations of tree species planted during restoration. Surprisingly, old-growth 

forest shared fewer microbial taxa with actively restored forest than with 

naturally regenerating forest, suggesting current restoration practices (removal 

of lianas and understorey vegetation) may be selecting for different microbial 

communities. Taken together, our findings show that certain attributes of 

key soil microbial groups remain distinct from old-growth forest almost 

two decades after logging disturbance, and some may diverge with active 

restoration. Changes in enrichment planting practices to promote rehabilitation 

of belowground communities may be required for successful biodiversity 

conservation and recovery of vital ecosystem functions. 

KEYWORDS 

16S, ITS, ectomycorrhizal fungi, forest rehabilitation, liana cutting, climber cutting, 
liberation thinning, distance decay 

Frontiers in Microbiology 01 frontiersin.org 

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2025.1570294
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2025.1570294&domain=pdf&date_stamp=2025-08-22
mailto:samrob39@ceh.ac.uk
https://doi.org/10.3389/fmicb.2025.1570294
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1570294/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-16-1570294 August 22, 2025 Time: 12:55 # 2

Robinson et al. 10.3389/fmicb.2025.1570294 

1 Introduction 

Old-growth forests are rapidly being replaced by human-
modified secondary forest worldwide, with highest conversion rates 
in the tropics (Keenan et al., 2015), aecting the crucial role of 
tropical forests as global reservoirs of biodiversity and carbon (C) 
(Baccini et al., 2017; Myers et al., 2000; Pan et al., 2011; Powers and 
Jetz, 2019; Qie et al., 2017). The forests of Borneo are a hotspot 
of forest disturbance and loss, driven by timber extraction and 
conversion to oil palm plantation. A reduction of forest cover by 
more than 30% since the early 1970s means increasing pressure on 
the remaining forest to provide vital ecosystem services. However, 
almost half (16.8 Mha) of the remaining forest has been heavily 
modified through selective logging for the commercially valuable 
and canopy-dominant dipterocarp trees (Appanah and Turnbull, 
1998; Gaveau et al., 2014; Gaveau et al., 2016). Their targeted 
removal and creation of landings and skid trails aects forest 
structure, plant and soil microbial communities, ecosystem C 
cycling and C sequestration (Asner et al., 2018; Both et al., 2019; 
Ellis et al., 2016; Marsh et al., 2025; Riutta et al., 2018; Robinson 
et al., 2020; 2024). This practice reflects regional and global trends, 
as selective logging is widespread across Southeast Asia (Stibig 
et al., 2014) and the primary driver of tropical forest modification, 
aecting more than half of tropical forest worldwide (Potapov et al., 
2017; Potapov et al., 2008). 

Forest disturbance can significantly aect soil physicochemical 
properties, often reducing soil C pools (Don et al., 2011; Wei 
et al., 2014), altering nutrient availability and overall fertility (Daljit 
Singh et al., 2013; Paul et al., 2010). Changes in soil properties can 
impact on soil microbial communities (Jesus et al., 2009; Tripathi 
et al., 2012) by determining availability of eective resources and 
creation of dierent ecological niches (Zhang et al., 2018). Soil 
microbial diversity may increase with a certain level of disturbance 
(Ferrenberg et al., 2013; Galand et al., 2016; Wilkinson, 1999; Zhang 
et al., 2011), while changes in community structure and function 
may directly relate to disturbance intensity (Berga et al., 2012). Soil 
fungal communities, particularly mycorrhizae, have been shown 
to be highly sensitive to logging disturbance, likely as dipterocarp 
trees are an ectomycorrhizal-associating species (Kerfahi et al., 
2014; McGuire et al., 2015; Robinson et al., 2020; Robinson et al., 
2024). Logging eects on soil bacterial communities are less clear; 
two studies in Malaysian Borneo found no impact of logging on 
either local bacterial alpha (Shannon) diversity or beta diversity 
(i.e., spatial heterogeneity in bacterial communities, evaluated using 
dispersion of community dissimilarities) (Lee-Cruz et al., 2013; 
Tripathi et al., 2016), while other studies revealed shifts in bacterial 
community composition between intact forest and selective logging 
gaps (Robinson et al., 2024) and eects of logging on change in 
bacterial community composition down the soil profile (Tin et al., 
2018). This also highlights the importance of fine spatial resolution 
in assessment of soil bacterial communities which may vary at the 
meter- or even centimeter-scale (O’ Brien et al., 2016). Disturbance 
impacts on soil microbial communities may have consequences 
for biogeochemical cycling that is regulated by complex reciprocal 
feedbacks between plants and soil (Bever et al., 2010; Cortois et al., 
2016; van der Heijden et al., 2008; van der Putten et al., 2013; 
Wardle et al., 2004). For example, a reduction in cycling rates of 
certain key soil nutrients has been associated with selective logging 

canopy gaps, with soil heterotrophic respiration negatively related 
to disturbance intensity (Robinson et al., 2024). 

Although the preservation of primary forest is crucial for 
biodiversity conservation and the maintenance of ecosystem 
services (Gibson et al., 2011), natural and managed restoration of 
secondary tropical forest has great potential for the recovery of 
ecosystem functions including C storage (Chazdon, 2008; Melo 
et al., 2013; Pan et al., 2011; Philipson et al., 2020; Wright, 2010). 
Rehabilitation of disturbed tropical forest via planting programmes 
is now a widely used strategy to recover vegetation structure 
and diversity (Bonner et al., 2019; Celis and Jose, 2011; Shoo 
et al., 2016). Enrichment planting, the reintroduction of native tree 
species removed through human disturbance, has been adopted 
across Southeast Asia as a strategy to restore forest floristic 
composition toward that of old-growth forest (Axelsson et al., 2024; 
Banin et al., 2023; Perumal et al., 2016). This practice is often 
accompanied by liana and climber removal, liberation cutting and 
clearing of understorey vegetation along planting lines, to facilitate 
seedling establishment by reducing competition for resources. This 
approach is currently employed in large-scale restoration projects, 
for example over the 25,000 ha Ulu-Segama area in the Malaysian 
state of Sabah where forest degradation has been most extreme 
(Axelsson et al., 2024; Bartholomew et al., 2024; CIFOR-ICRAF, 
2024; Face the Future, 2025; Gaveau et al., 2014; Hayward et al., 
2021; Reynolds et al., 2011). However, success of tropical forest 
planting programmes is generally limited by lack of context-specific 
knowledge of the ecology of planted tree species, including plant-
soil interactions (e.g., Rodrigues et al., 2009). Most enrichment 
planting studies in Southeast Asian tropical forest have focused 
on tree survival, growth and productivity, with less consideration 
of soil biodiversity and functioning (Banin et al., 2023; Perumal 
et al., 2016; Veryard et al., 2023). Following replanting of clear-
felled forest, some studies observed increases in microbial biomass 
carbon (MBC) (Deng et al., 2010; Nurulita et al., 2016) and bacterial 
alpha diversity accompanied by bacterial community shifts that 
may indicate ecosystem recovery (Deng et al., 2010). The small 
number of studies undertaken in enrichment planted secondary 
Malaysian forest highlight increases in microbial biomass toward 
that of old-growth forest (Daisuke et al., 2013; Daljit Singh et al., 
2013; Perumal et al., 2016). However, microbial indicators can 
be system-specific and depend on type, intensity and duration of 
disturbance (Banning et al., 2011). Understanding of the capacity 
to restore soil microbial diversity, physicochemical properties 
and biogeochemical cycling in hyper-diverse tropical forest is 
broadly limited (Bonner et al., 2019), reflecting a general lack of 
understanding of the patterns of microbial responses to ecosystem 
restoration (Banning et al., 2011; Strickland et al., 2017). 

To address these knowledge gaps, we surveyed soil microbial 
community attributes, soil physicochemical properties and forest 
structural characteristics across old-growth and selectively logged 
forest undergoing either passive natural regeneration or active 
restoration by enrichment planting. We tested the following 
specific hypotheses: 

1. Soil microbial communities (composition and diversity) will 
dier across forest types, with greater similarity between old-
growth and actively restored forest. 
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FIGURE 1 

Map of sampling sites in northern Malaysian Borneo (a) in the state of Sabah (b), located within old-growth forest (Danum Valley Conservation Area), 
and adjacent naturally regenerating and actively restored selectively-logged forest (INFAPRO forest rehabilitation project) (c). At each site, soil was 
collected following a geospatial sampling design (d), at increasing distances along three transects radiating out from one central point. Dotted lines 
illustrate example distances between sampling points of different transects (here between transects 1 and 3) used to calculate distance decay indices 
for evaluation of spatial turnover of soil microbial taxa, in addition to distances along each respective transect. 

2. Microbial biomass will increase with active restoration toward 
old-growth forest. 

3. Soil physicochemical properties, microclimate and forest 
structural characteristics will dier across forest types, 
corresponding to expected dierences in soil microbial 
community attributes. 

2 Materials and methods 

2.1 Study sites 

This study was conducted in the state of Sabah, northern 
Malaysian Borneo. The climate is moist tropical (annual 
precipitation 2,600–2,700 mm, average daily temperature 
27◦C) and generally non-seasonal, but may undergo irregular 
inter-annual dry periods averaging ∼1.4 months of the year 
(Kumagai and Porporato, 2012; Walsh and Newbery, 1999). 
Sampling was conducted in March 2018 at nine sites distributed 
across old-growth and naturally regenerating or actively restored 
selectively logged lowland dipterocarp rainforest (3 sampling 
sites in each) (Figure 1). Logged forest sites were situated within 
the Innoprise Face Foundation Rainforest Rehabilitation Project 
(INFAPRO) area (4.99◦N, 117.86◦E). This large-scale restoration 

initiative, in partnership with the Yayasan Sabah Foundation, aims 
to restore 25,000 ha within the Ulu-Segama forest management 
unit (Face the Future, 2025). All logged forest sites were situated 

within the same logging coupe that was selectively logged once 

in 1989. The actively restored forest has undergone rehabilitation 

by enrichment planting since 2000, with mixtures of dipterocarp 

species, non-dipterocarp canopy-forming species and various 
fruit tree species planted at 3 m intervals along 10 m spaced 

parallel transects. Planting lines were maintained by regular liana 

cutting and removal of competing understorey vegetation for the 

initial 3 years following enrichment planting (Bartholomew et al., 
2024; CIFOR-ICRAF, 2024; Hayward et al., 2021; Moura Costa, 
1996). Old-growth forest was located in the adjacent Danum 

Valley Conservation Area (DVCA) (4.95◦N, 117.79◦E), a 438 km2 

rainforest reserve that has undergone little or no anthropogenic 

disturbance having been legally protected from commercial 
timer operations since 1976 (Marsh and Greer, 1992). Recent 
extensive tree community surveys across the Ulu-Segama Forest 
Reserve (including the coupe sampled in this study) and adjacent 
DVCA have shown persistent shifts in tree species composition and 

reduced basal area 23–35 years after logging disturbance, regardless 
of restoration method (Hayward et al., 2021), with corresponding 

negative impacts on recruitment and diversity of tree seedlings 
(Bartholomew et al., 2024). 
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2.2 Sampling design for soil, 
microclimate and forest structural 
characteristics 

Nine sampling sites were distributed across a contiguous area 
of forest that had undergone contrasting logging disturbance and 
restoration. Three sampling sites were chosen in each of three forest 
types of old-growth, naturally regenerating and actively restored 
logged forest, situated between a minimum of 500 m and maximum 
of 5.7 km apart. At each site, a geospatial transect design was 
used for soil sampling and measurement of microclimate and 
forest structural characteristics. This comprised three transects 
radiating out from one center point positioned at 120◦ to one 
another, with the first transect oriented North (Figure 1d). Soil 
and microclimate sampling points were located at the center 
point, then at six points along each of the three transects at 
increasing distances of 10 cm, 30 cm, 90 cm, 2.7 m, 8.4 m 
and 24.3 m relative to the center. This resulted in nineteen soil 
samples per site, totaling 171 across all sites, which were analysed 
individually. Soil cores were collected at each sampling point a 
using a 3 cm diameter gouge auger to a depth of approximately 
10 cm for analysis of soil microbial community attributes and 
physicochemical analysis. The organic soil layer was collected by 
separating from underlying mineral soil and sealing in a Ziploc bag, 
and was then transported to a laboratory. Multiple cores were taken 
at each sampling point to ensure enough material for biological and 
physicochemical analyses due to the shallow organic layer depth. 
Samples were hand-homogenized and ∼10 g subsamples taken 
for analysis of soil microbial community attributes. These were 
frozen at −20◦C on the day of collection and transported on ice 
to the United Kingdom for analysis of soil microbial communities: 
5 g was transported to the United Kingdom Centre for Ecology 
and Hydrology, Wallingford for amplicon sequencing and 5 g to 
Lancaster University for phospholipid fatty acid (PLFA) analysis. 
The remaining soil was transported to the Sabah Forest Research 
Centre, Sepilok for physicochemical analysis. 

Microclimate variables were measured on the day of soil 
sample collection. Soil temperature (approximate depth 0–10 cm) 
and understory air temperature at the soil surface (5–15 cm) 
were measured with using a thermistor (Salter, United Kingdom). 
Understory photosynthetically active radiation (PAR) was 
measured using a light meter (PP Systems, United States) with the 
sensor held just above the soil surface. 

Forest structure was evaluated by recording and measuring 
circumferences of all stems with diameter at breast height (DBH) 
>5 cm within a 2.5 m buer of all transects, for calculation of 
stem density and basal area. This DBH was chosen to capture finer-
scale variation in tree abundance. Stem density and basal area were 
calculated for each sampling location (n = 9). 

2.3 Soil physicochemical analysis 

pH in water was measured on fresh soils using a pH meter 
with a combination glass-calomel electrode (a ratio of 1:2.5 soil 
to deionized water) after shaking overnight at 100 rev min−1 on 
an orbital shaker and standing for 30 min (Landon, 1984). The 
remaining soils were air-dried at 40◦C to constant weight and 

passed through a 2 mm sieve for homogenization and removal 
of roots and stones. Subsamples for total C and N analysis were 
dried at 65◦C for 48 h and milled to a fine powder with a pestle 
and mortar. Total soil C and N contents were determined by dry 
combustion at 900◦C using an Elementar Vario Max CN analyser 
(Elementar Analysensysteme, Hanau, Germany). For soil total P, 
samples were digested using sulphuric acid-hydrogen peroxide 
(Allen, 1989). Inorganic P was extracted using a Bray No. 1 
extractant (Bray and Kurtz, 1945). P contents of extracts and digests 
were determined using the molybdenum-blue method (Anderson 
and Ingram, 1993), read at 880 nm on a spectrophotometer 
(HITACHI-UV-VIS, Japan). 

2.4 Soil phospholipid fatty acid (PLFA) 
analysis 

A subset of soil samples were analysed for PLFAs to provide 
indicators of total microbial biomass and relative abundances 
of bacteria and fungi across forest types. Due to the intensive 
extraction requirements, 36 of the 171 samples were analysed 
(four samples per sampling location). These corresponded in each 
site to the transect center point and 30 cm, 2.7 m and 24.3 m 
sampling points along the first transect arm. PLFAs were extracted 
from 1.8 g freeze dried soil after removal of coarse roots and 
stones using a modified Bligh and Dyer extraction method (White 
et al., 1979). Extracts were analysed using an Agilent 6890 Gas 
Chromatograph with Flame Ionization Detector (GC-FID; Agilent 
Technologies, Unites States) using an RTx-1 capillary column 
(60 m × 0.32 mm ID, 0.25 µm film thickness). PLFA peaks 
were identified using retention times calibrated against known 
standards. As indicators of Gram-positive bacterial biomass, the 
branched-chained fatty acids C15:0i, C15:0a, C16:0i, 7Me-C17:0, 
C17:0i and C17:0a were used (Haack et al., 1994; Lechevalier 
and Lechevalier, 1988; O’Leary and Wilkinson, 1988; Rinnan and 
Bååth, 2009; Whitaker et al., 2014; Zelles, 1999). For Gram-negative 
bacteria, the monounsaturated fatty acids C16:1ω7c, C16:1ω5, 
C18:1ω7c and cyclopropane fatty acids cyC17:0 and cyC19:0 were 
used (Rinnan and Bååth, 2009; Whitaker et al., 2014; Zelles, 1999). 
For fungi, the fatty acids C18:2ω6,9 and C18:1ω9 were used (Bååth 
and Anderson, 2003; de Deyn et al., 2011). Total bacterial biomass 
was calculated as the sum of Gram-positive and Gram-negative 
PLFAs and the fatty acid C15:0 (de Deyn et al., 2011). Fungal 
to bacterial ratio (F:B) was calculated as the proportion of total 
bacterial relative to total fungal PLFAs. Total microbial PLFAs were 
determined as the sum of all identified PLFAs, including those 
above and the additional fatty acids C14:0, C16:1, C16:0, C17:1ω8, 
C17:0br, C18:0br, C18:1ω5, C18:0 and C19:1. PLFA contents were 
expressed as µg g−1 dry soil. Four samples (two samples from old-
growth and two from naturally regenerating logged forest, all from 
dierent sites) were omitted from analysis due to extraction error, 
resulting in a total of 32 PLFA samples. 

2.5 Molecular analysis of soil microbial 
communities and data pre-processing 

Molecular analyses and bioinformatics were conducted using 
all soil samples collected (n = 171; 57 per forest type) following 
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methods described by Robinson et al. (2024; 2020). DNA was 
extracted from 0.2 g soil using the PowerSoil R  DNA Isolation 
Kit and protocol (MoBio Laboratories). Amplicon libraries were 
constructed according to a dual indexing strategy with each 
primer consisting of the appropriate Illumina adapter, 8-nt index 
sequence, a 10-nt pad sequence, a 2-nt linker and the amplicon 
specific primer (Kozich et al., 2013). Bacteria were targeted using 
V3-V4 16S rRNA amplicon primers CCTACGGGAGGCAGCAG 
and GCTATTGGAGCTGGAATTAC (Kozich et al., 2019). For 
fungi, the ITS2 region was amplified using primers fITS7 
GTGARTCATCGAATCTTTG (Ihrmark et al., 2012) and ITS4 
TCCTCCGCTTATTGATATGC (White et al., 1990). Although the 
capability of detecting AM fungi using ITS primers is debated (Hart 
et al., 2015), recent studies have shown that patterns in diversity 
and community composition can be adequately identified within 
sample types such as soil (Berruti et al., 2017; Lekberg et al., 2018). 
Amplicons were generated using a high-fidelity DNA polymerase 
(Q5 Taq, New England Biolabs). After an initial denaturation at 
95◦C for 2 min, PCR conditions were as follows: Denaturation at 
95◦C for 15 s; annealing at 55◦C (bacteria) 52◦C (fungi); annealing 
times were 30 s with extension at 72◦C for 30 s; cycle numbers were 
25 for bacteria and fungi; a final extension of 10 min at 72◦C was 
included. Amplicon sizes were determined using an Agilent 2200 
TapeStation system, samples were normalized using SequalPrep 
Normalization Plate Kit (Thermo Fisher Scientific) and pooled. The 
pooled library was quantified using a Qubit dsDNA HS kit (Thermo 
Fisher Scientific) prior to sequencing with an Illumina MiSeq using 
V3 600 cycle reagents at a concentration of 8 pM with a 5% 
PhiX Illumina control library. Sequences were processed in R using 
DADA2 to quality filter, merge, de-noise and assign taxonomies 
(Callahan et al., 2016). Forward sequence reads were used for 16S 
(trimmed to 250 bases), while forward and reverse were used for 
ITS (trimmed to 225 and 160 bases, respectively). Filtering settings 
were maximum number of Ns (maxN) = 0, maximum number 
of expected errors (maxEE) = 1. Sequences were dereplicated and 
the DADA2 core sequence variant inference algorithm applied. 
mergePairs and remove BimeraDenovo functions were used at 
default settings to merge ITS forward and reverse reads and remove 
chimeric sequences. The amplicon sequence variants (ASVs) were 
subject to taxonomic assignment using assignTaxonomy with 
default bootstrapping (50) and the training database UNITE 
version 7.2 (Abarenkov et al., 2010). 

Fungal functional guild classifications were assigned to ASVs 
using the FUNGuild annotation tool (Nguyen et al., 2016). 
Only ASVs with unambiguous (non-multiple) classifications 
of “probable” or “highly-probable” confidence rankings were 
considered for analysis. These were used for calculating relative 
abundances of fungal guilds and sub-setting saprotrophic, 
mycorrhizal, ectomycorrhizal and pathogenic fungal datasets for 
assessment of diversity and community dissimilarity. 

Sequencing data were pre-processed and alpha diversity 
indices (ASV richness, Shannon index) and fungal guild relative 
abundances calculated in R (R Core Team, 2025) using the phyloseq 
package (McMurdie and Holmes, 2013). PCRs failed for three 
bacterial samples (two from dierent naturally regenerating logged 
forest sites, one from actively restored logged forest) as indicated 
by abnormally low read counts, and these samples were excluded 
from all subsequent analyses. Only ASVs assigned to the kingdoms 
of Bacteria or Fungi were retained for downstream analysis, and 
all singleton ASVs were removed. Sub-setting by fungal guilds was 

conducted on the full unrarefied dataset to maximize the number 
of ASV reads available for analysis of functional groups. Sample 
sequencing depth was normalized for each group by rarefying to 
the minimum read counts per sample for bacterial (3,778 reads), 
and total fungal (3,868), saprotrophic (472), mycorrhizal (20), 
ectomycorrhizal (6) and pathogenic (69) fungal groups. 

2.6 Statistical analyses 

All statistical analyses were conducted in R (R Core Team, 
2025), and significance of all tests was considered at the 
p ≤ 0.05 level. To test the dierences in univariate soil microbial 
community attributes (alpha diversity metrics and fungal guild 
relative abundances) and soil, microclimate and forest structural 
characteristics between forest types, linear mixed eects regression 
models (LMMs) were constructed in the lme4 R package (Bates 
et al., 2015) with site ID included as a random intercept term 
to control for within-site pseudoreplication. Pairwise comparisons 
between forest types were conducted with the emmeans R package 
with Bonferroni correction (Lenth et al., 2019). Normality of model 
residuals were evaluated using Shapiro-Wilk tests and Q-Q plots, 
and variables were log-, square root- or exp- transformed where 
necessary to improve model fit. 

Soil microbial community data were Hellinger-transformed 
prior to analysis (Legendre and Borcard, 2018) to control for 
the eect of rare taxa and merged at the site level (n = 9) to 
control for spatial pseudoreplication. Soil microbial community 
compositions across forest types were visualized with PCoA 
using Bray-Curtis dissimilarities. Dierences in soil microbial 
community composition between forest types were tested with 
PERMANOVA in vegan (Oksanen et al., 2019) and homogeneity 
of multivariate dispersion between forest types was evaluated. All 
permutational tests were run with 9,999 permutations. Pairwise 
comparisons of soil microbial community dissimilarities between 
forest types could not be carried out due to the low number of 
true replicates, restricting the number of possible permutations 
for calculating significance level. UPGMA (unweighted pair-group 
method with mathematic average) hierarchical cluster analysis was 
performed using the hclust R function (R Core Team, 2025) to 
identify groups of more (dis)similar sites across forest types. 

We employed a distance-decay approach to assess the response 
of microbial beta diversity to forest management, a biogeographical 
method widely used to study spatial turnover in macro-organism 
communities that is now being applied to soil microbes due to 
advances in molecular techniques (Green et al., 2004; Martiny et al., 
2006; Morlon et al., 2008; Nekola and White, 1999). Distance-
decay relationships can be derived using geographic distances from 
centimeters to kilometers simultaneously (e.g., Barreto et al., 2014). 
This allowed us to evaluate microbial community turnover with 
environmental heterogeneity across scales not previously studied in 
old-growth and disturbed tropical forest, and to address unresolved 
disturbance eects on soil microbial diversity that may be spatially 
dependent. Pairwise Bray-Curtis community dissimilarities for soil 
microbial groups and corresponding geographic distances were 
calculated between the 19 sampling points in each sampling 
location. This provided a total of 171 pairs per location, with 
geographic distances ranging from 10 cm to 42.09 m. Linear 
regression was used to obtain the coeÿcient of the distance decay 
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FIGURE 2 

Relative abundances of bacterial (a) and fungal (b) phyla as percentages of total amplicon sequence variants (ASVs) across old-growth forest (OG), 
naturally regenerating logged forest (NR) and actively restored logged forest (AR) (n = 168 and n = 171 for bacterial and fungal phyla, respectively). 
Phyla with <1% relative abundance (rel. ab.) across all forest types are represented as one group. 

relationship (Y), i.e., rate of spatial turnover in soil microbial 
taxa, between log-transformed Bray-Curtis dissimilarities and 
log-transformed geographic distances for each location and soil 
microbial group (Barreto et al., 2014; Nekola and White, 1999). 
ANOVA with Tukey HSD post hoc tests were used to test dierences 
in Y-values between forest types (n = 9). 

Numbers of shared and distinct soil microbial ASVs between 
forest types were visualized with Venn diagrams using the RAM 
R package (Chen et al., 2018). Indicator analysis was conducted 
to identify specific soil microbial taxa uniquely associated with 
dierent forest types using the mulitpatt function in the indicspecies 
R package (de Cáceres and Legendre, 2009). This provided an 
index of association (Indicator Value) between forest type and soil 
microbial ASVs and p-values denoting significant indicator taxa. 

3 Results 

3.1 Soil microbial diversity, community 
composition and biomass across 
old-growth, naturally regenerating and 
actively restored logged forest 

In total, 37,379 bacterial ASVs (representing 44 identified 
phyla; 749 genera) and 21,298 fungal ASVs (12 phyla; 611 genera) 

were detected across all forest types (Figure 2 and Supplementary 
Figures 1, 2). In all soil microbial groups, a greater number of 
ASVs were only found in old-growth forest (14,000 bacterial, 7,695 
fungal ASVs) compared to naturally regenerating (9,479 bacterial, 
5,247 fungal) and actively restored logged forest (8,321 bacterial, 
5,323 fungal), and generally more ASVs were shared between old-
growth and naturally regenerating forest than between old-growth 
and actively restored forest (Supplementary Figure 3). Dierences 
in alpha diversity indices or rate of spatial turnover of taxa (or both) 
were detected between forest types for all microbial groups studied 
(Figure 3). Mean bacterial Shannon alpha diversity was significantly 
higher in naturally regenerating forest relative to old-growth, 
while actively restored forest was similar to both (Figure 3g and 
Tables 1, 2). Total fungal richness and Shannon alpha diversity were 
significantly higher in old-growth relative to naturally regenerating 
and actively restored forest, while total fungal Shannon alpha 
diversity was higher in actively restored relative to naturally 
regenerating forest (Figures 3b, h). Saprotrophic fungal richness 
and Shannon alpha diversity were significantly higher in old-
growth compared to both logged forest types (Figures 3c, i). 
Pathogenic fungal richness was higher in old-growth compared 
to naturally regenerating forest, while actively restored forest was 
similar to both (Figure 3f). Rates of spatial turnover of bacterial, 
total mycorrhizal fungal and ectomycorrhizal fungal taxa (distance 
decay index) diered by forest type. For bacteria, significantly 
lower Y-values (indicating slower spatial turnover) were found in 
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FIGURE 3 

Indices of soil microbial alpha diversity [richness as no. observed ASVs per 10 reads (a–f), and Shannon index (g–l)) and rate of spatial turnover of 
taxa (distance decay index; Y (m–r)] derived from amplicon sequence variants (ASVs) across old-growth forest (OG; black), naturally regenerating 
logged forest (NR; orange) and actively restored logged forest (AR; blue). Values are means ± 1 standard error. Lower case letters indicate statistically 
different or similar groups at the p < 0.05 level identified in post hoc tests after linear mixed model analysis. Sample numbers analysed were n = 168 
for bacterial richness and Shannon diversity, n = 171 for fungal richness, Shannon diversity and fungal guild relative abundances, and n = 9 for both 
bacterial and fungal distance decay indices. See Table 2 for a summary of statistical test results. 

naturally regenerating logged forest compared to old-growth and 
actively restored forest, which were similar (Figure 3m). Slower 
spatial turnover of both total mycorrhizal and ectomycorrhizal 
fungi was found in actively restored forest relative to old-growth 
forest. In naturally regenerating forest, spatial turnover of total 
mycorrhizal fungal taxa was similar to both other forest types, while 
spatial turnover of ectomycorrhizal fungal taxa was slower than 
old-growth and similar to actively restored forest (Figures 3p, q). 

Bray-Curtis community dissimilarities were significantly 
aected by forest type for all soil microbial groups, with the 
exception of ectomycorrhizal fungi, which was marginally non-
significant (Figure 4 and Table 3). Community dissimilarity 
dispersions were homogenous between all land-use types for 
all fungal groups (p > 0.05). UPGMA hierarchical clustering 
analysis (Supplementary Figure 4) identified communities in 

old-growth sites to be most dissimilar to logged forest sites across 
all microbial groups, with the exception of ectomycorrhizal fungi 
(bacteria: 86.52% dissimilarity; overall fungi: 89.84%; saprotrophic 
fungi: 87.46%; mycorrhizal fungi: 97.27%; pathogenic fungi: 
78.91%). For ectomycorrhizal fungi, the greatest dissimilarity was 
found between OG-1 and all other sites (98.44%), followed by 
dissimilarity between OG-2 and OG-3 sites and all others (97.59% 
dissimilarity). Logged forest sites were generally more similar, 
with naturally regenerating and actively restored sites clustering 
together for all soil microbial groups. 

Fungal guild relative abundances for total pathogens, plant 
pathogens, animal pathogens and lichens significantly diered 
by forest type (Figure 5 and Tables 1, 2). Total pathogenic 
and lichenized fungal relative abundances were significantly 
higher in old-growth relative to actively restored forest (naturally 
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TABLE 1 Soil microbial community attributes in old-growth forest, naturally regenerating logged forest and actively restored logged forest (means ± 1 
standard deviation). Superscript letters indicate statistically different or similar groups at the p < 0.05 level identified in post hoc tests after linear mixed 
model or Kruskal-Wallis analysis. Sample numbers analysed were n = 32 for Total PLFAs and Fungal: bacterial ratios, n = 168 for bacterial richness and 
Shannon diversity, n = 171 for fungal richness, Shannon diversity and fungal guild relative abundances, and n = 9 for both bacterial and fungal 
distance decay indices. 

Parameter Soil microbial group Forest type 

Old-growth Naturally 
regenerating 

Actively restored 

Total PLFAs (µg g−1 dry soil) Total microbial 51.27 ± 21.85 52.85 ± 17.58 59.13 ± 14.91 

Bacterial 26.56 ± 11.88 27.05 ± 8.90 30.19 ± 7.55 

Fungal 2.50 ± 0.64 3.42 ± 1.25 3.51 ± 1.11 

Fungal: bacterial ratio - 0.11 ± 0.04 0.13 ± 0.04 0.12 ± 0.02 

Richness (no. observed ASVs 10 reads−1) Bacteria 1.72 ± 0.43 1.80 ± 0.58 1.69 ± 0.49 

Total fungi 0.94 ± 0.18a 0.75 ± 0.17b 0.80 ± 0.14b 

Saprotrophic fungi 1.46 ± 0.37a 1.04 ± 0.29b 0.93 ± 0.23b 

Mycorrhizal fungi 2.39 ± 1.29 2.63 ± 1.29 3.14 ± 1.36 

Ectomycorrhizal fungi 4.59 ± 1.97 4.12 ± 1.73 5.20 ± 2.02 

Pathogenic fungi 2.17 ± 0.54a 1.54 ± 0.58b 1.67 ± 0.42ab 

Shannon alpha diversity index Bacteria 5.41 ± 0.45b 5.88 ± 0.38a 5.79 ± 0.33ab 

Total fungi 4.62 ± 0.36a 4.10 ± 0.45c 4.31 ± 0.37b 

Saprotrophic fungi 3.30 ± 0.57a 2.84 ± 0.56b 2.63 ± 0.63b 

Mycorrhizal fungi 1.13 ± 0.54 1.24 ± 0.57 1.39 ± 0.58 

Ectomycorrhizal fungi 0.82 ± 0.49 0.72 ± 0.44 0.94 ± 0.47 

Pathogenic fungi 2.16 ± 0.37 1.63 ± 0.61 1.91 ± 0.41 

Distance decay index (rate of spatial 
turnover of taxa) 

Bacteria 0.033 ± 0.002a 0.012 ± 0.003b 0.027 ± 0.003a 

Total fungi 0.053 ± 0.004 0.049 ± 0.013 0.052 ± 0.003 

Saprotrophic fungi 0.037 ± 0.008 0.053 ± 0.014 0.056 ± 0.018 

Mycorrhizal fungi 0.194 ± 0.026a 0.099 ± 0.076ab 0.069 ± 0.023b 

Ectomycorrhizal fungi 0.222 ± 0.049a 0.087 ± 0.065b 0.060 ± 0.004b 

Pathogenic fungi 0.078 ± 0.050 0.028 ± 0.026 0.057 ± 0.017 

Fungal guild relative abundance 

(% total fungal ASV reads) 
Saprotrophic fungi 44.73 ± 16.13 54.05 ± 24.82 42.72 ± 21.30 

Total mycorrhizal fungi 30.96 ± 18.21 31.70 ± 25.59 47.24 ± 24.97 

EcM fungi 30.21 ± 18.39 29.95 ± 26.62 45.98 ± 25.58 

AM fungi 0.66 ± 1.28 1.63 ± 2.41 1.11 ± 1.12 

Ericoid mycorrhizal fungi 0.09 ± 0.41 0.10 ± 0.19 0.14 ± 0.31 

Orchid mycorrhizal fungi 0.00 ± 0.01 0.01 ± 0.10 0.00 ± 0.02 

Total pathogenic fungi 17.22 ± 8.17a 11.51 ± 6.89a 7.27 ± 4.18b 

Plant pathogenic fungi 10.93 ± 6.06a 4.56 ± 5.06b 4.21 ± 3.42b 

Animal pathogenic fungi 6.29 ± 4.71ab 6.95 ± 4.84a 3.06 ± 2.55b 

Parasitic fungi 5.68 ± 3.59 2.37 ± 2.87 2.59 ± 3.62 

Endophytic fungi 0.22 ± 0.50 0.47 ± 1.13 0.14 ± 0.59 

Lichenised fungi 1.45 ± 1.23a 0.17 ± 0.28ab 0.05 ± 0.10b 

Epiphytic fungi 0.14 ± 0.81 0.05 ± 0.23 0.04 ± 0.15 

regenerating forest was similar to both old-growth and actively 

restored forest types for both fungal guilds), while plant 

pathogenic fungal relative abundance was significantly higher 

in old-growth relative to both logged forest types. Animal 

pathogenic fungal relative abundance was higher in naturally 

regenerating forest relative to actively restored forest (old-

growth was similar to both logged forest types). PLFA analysis 

indicated no dierences in total microbial, fungal or bacterial 

biomass or F:B between forest types (p > 0.05 in overall and 

pairwise tests). 
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TABLE 2 Linear model or Kruskal-Wallis* test statistics for significant differences in soil microbial alpha diversity metrics (richness and Shannon index), spatial turnover of taxa (distance decay index) and fungal 
guild relative abundances across old-growth forest (OG), naturally regenerating logged forest (NR) and actively restored logged forest (AR). Summaries are given for overall models and post hoc comparisons 
between forest types. p-values for pairwise tests for LMM and Kruskal-Wallis analyses were adjusted using the Tukey and Bonferroni methods, respectively. Significant p-values (> 0.05) are highlighted in bold. 
Sample numbers analysed were n = 168 for bacterial richness and Shannon diversity, n = 171 for fungal richness, Shannon diversity and fungal guild relative abundances, and n = 9 for both bacterial and fungal 
distance decay indices. 

Metric Soil microbial 
group 

Overall model Pairwise tests 

OG - NR OG - AR NR - AR 

R2 F/χ2* p t-ratio/Z* p t-ratio/Z* p t-ratio/Z* p 

Richness Total fungi 0.21 22.03 <0.001 6.37 <0.001 4.79 <0.001 −1.59 0.255 

Saprotrophic fungi 0.36 31.10 0.001 5.91 0.003 7.48 0.001 1.57 0.329 

Pathogenic fungi 0.21 7.58 0.023 3.69 0.024 2.93 0.060 −0.76 0.739 

Shannon diversity index Bacteria 0.21 8.71 0.017 −4.05 0.016 −2.89 0.063 1.16 0.514 

Total fungi 0.26 29.87 <0.001 7.56 <0.001 5.16 <0.001 −2.41 0.045 

Saprotrophic fungi 0.20 21.84 <0.001 −4.55 <0.001 −6.43 <0.001 −1.87 0.150 

Distance decay index (rate of 
spatial turnover of taxa) 

Bacteria 0.94 45.45 <0.001 9.23 <0.001 2.53 0.098 −6.70 0.001 

Mycorrhizal fungi 0.65 5.48 0.044 2.41 0.115 3.17 0.044 0.77 0.735 

Ectomycorrhizal fungi 0.77 10.15 0.012 3.51 0.029 4.20 0.013 0.69 0.777 

Fungal guild relative abundance Total pathogenic 0.28 12.64 0.007 2.44 0.110 5.03 0.006 2.59 0.091 

Plant pathogenic 0.30 14.06 0.005 4.63 0.009 4.55 0.009 −0.08 0.996 

Animal pathogenic 0.18 5.75 0.040 −0.60 0.824 2.59 0.091 3.19 0.043 

Lichenized fungal* - 7.20 0.027 1.34 0.539 2.68 0.022 −1.34 0.539 
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FIGURE 4 

Principal coordinates analysis (PCoA) ordinations of Bray-Curtis dissimilarities for soil bacterial (a) and fungal (b–f) communities studied across 
old-growth forest (black), naturally regenerating logged forest (orange) and actively restored logged forest (blue) using data merged at the site level 
(n = 9). p-values denote significance of differences in community composition across forest types in PERMANOVA tests. See Table 3 for a full 
summary of statistical test results. 
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TABLE 3 PERMANOVA test statistics for the effect of forest type 
on soil microbial community Bray-Curtis dissimilarities using data 
merged at the site level (n = 9). Significant p-values (< 0.05) are 
highlighted in bold. 

Soil microbial 
group 

R2 F p 

Bacteria 0.49 2.89 0.007 

Total fungi 0.38 1.85 0.004 

Saprotrophic fungi 0.36 1.71 0.004 

Mycorrhizal fungi 0.29 1.25 0.006 

Ectomycorrhizal 
fungi 

0.28 1.14 0.074 

Pathogenic fungi 0.37 1.74 0.007 

3.2 Microbial indicators of forest types 

Indicator analysis of bacterial taxa identified 566 significant 
indicator ASVs for old-growth forest, 99 for naturally regenerating 
forest and 139 for actively restored forest (Supplementary Data 
Sheet 2, see also for indicator ASV taxonomic classifications). 
At the phylum level, a larger proportion of indicator ASVs 
unique to old-growth appeared to belong to the Firmicutes 
in comparison to both logged forest types (Supplementary 

Figure 5a). Only two significant bacterial indicator ASVs were 
shared by old-growth and actively restored logged forest, both 
belonging to the phylum Firmicutes, class Bacilli (Alicyclobacillus 
sp. and Bacillus foraminis). 205 significant fungal indicator 
ASVs were identified for old-growth forest, 45 for naturally 
regenerating forest and 94 for actively restored forest. Notable 
dierences in composition of fungal indicator taxa phyla was 
Mortierellomycota appearing to occur mostly only in old-growth 
forest, and Mucoromycota mostly only in actively restored forest 
(Supplementary Figure 5b). Four significant indicator ASVs were 
shared between old-growth and actively restored forest from 
the two phyla Ascomycota and Basidiomycota, and two classes 
Sordariomycetes and Tremellomycetes (Trichoderma deliquescens, 
Clonostachys rosea, Castanediella sp. and Saitozyma podzolica). 

3.3 Soil physicochemical properties, 
microclimate and forest structural 
characteristics across old-growth, 
naturally regenerating and actively 
restored logged forest 

Of all the soil physicochemical properties, microclimate and 
forest structural characteristics measured, only soil pH significantly 
diered between forest types (Table 4; overall model: R2 = 0.83, 

FIGURE 5 

Relative abundances of fungal guilds (means ± 1 standard error) across old-growth forest (black), naturally regenerating logged forest (orange) and 
actively restored logged forest (blue) (n = 171). Horizontal bars and asterisks indicate significant overall effects of forest type on relative abundances 
of fungal guilds identified by linear mixed model or Kruskal-Wallis analysis, **p < 0.01, *p < 0.05. Lower case letters indicate statistically different or 
similar groups by forest type within fungal guilds at the p < 0.05 level identified in post hoc tests. See Table 2 for a summary of statistical test results. 
Means ± 1 standard error for fungal guilds with low relative abundances in old-growth forest (OG), naturally regenerating logged forest (NR) and 
actively restored logged forest (AR) are as follows: ericoid mycorrhizal fungi – OG: 0.09 ± 0.05, NR: 0.10 ± 0.03, AR: 0.14 ± 0.04; endophytic fungi -
OG: 0.22 ± 0.07, NR: 0.47 ± 0.15, AR: 0.14 ± 0.08; epiphytic fungi - OG: 0.14 ± 0.11, NR: 0.05 ± 0.03, AR: 0.04 ± 0.02; lichenized fungi - OG: 
1.45 ± 0.16, NR: 0.17 ± 0.04, AR: 0.05 ± 0.01. 
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TABLE 4 Soil physicochemical properties, microclimate and vegetation characteristics in old-growth forest, naturally regenerating logged forest and 
actively restored logged forest (means ± 1 standard deviation). Superscript letters indicate statistically different or similar groups at the p < 0.05 level 
identified in post hoc tests after linear mixed model analysis. Sample numbers analysed were n = 171 for soil and microclimate variables and n = 9 for 
forest structural characteristics (i.e., one value per site). 

Group Parameter Forest type 

Old-growth Naturally 
regenerating 

Actively restored 

Soil pH 5.57 ± 0.42a 4.02 ± 0.30b 3.89 ± 0.19b 

C (%) 5.87 ± 2.13 5.31 ± 1.67 4.25 ± 1.41 

N (%) 0.44 ± 0.14 0.40 ± 0.11 0.31 ± 0.07 

C: N ratio 13.23 ± 1.49 13.26 ± 1.23 13.52 ± 1.92 

Total P (µg g−1) 478.42 ± 142.44 253.39 ± 43.43 348.49 ± 89.32 

Inorganic P (µg g−1) 11.65 ± 7.63 14.55 ± 5.22 8.79 ± 4.23 

Microclimate Understory PAR (µmol m −2 s−1) 60.75 ± 83.99 144.37 ± 345.82 82.77 ± 194.71 

Soil temperature (◦C) 26.29 ± 1.10 24.88 ± 0.66 26.37 ± 0.82 

Understory air temperature (◦C) 26.20 ± 0.69 24.95 ± 0.44 25.86 ± 0.49 

Forest structural Basal area (m−2 ha−1) 93.55 ± 42.99 117.92 ± 25.11 141.36 ± 18.00 

Stem density (no. stems DBH ≥ 5 cm ha−1) 896.97 ± 98.93 1,336.99 ± 146.88 1,091.60 ± 235.66 

Mean stem diameter (cm) 26.23 ± 4.35 28.61 ± 1.73 27.21 ± 0.19 

F = 50.56, p < 0.001). Post hoc tests identified significantly higher 
soil pH in old-growth forest relative to both logged forest types 
(p < 0.001), which did not significantly dier between themselves 
(p > 0.05). Mean understorey PAR was highest in naturally 
regenerating logged forest, although not significantly dierent due 
to high heterogeneity in this forest type. 

4 Discussion 

We evaluated responses in soil microbial community attributes, 
soil physicochemical properties, microclimate and forest structural 
characteristics to active and passive restoration of logged Bornean 
lowland dipterocarp rainforest relative to old-growth forest across 
dierent spatial scales. Bacterial community attributes diered by 
forest type, including community composition (Figure 4a), alpha 
diversity metrics and rate of spatial turnover of taxa (Figures 3a, 
g, m), broadly supporting our first hypothesis. Specifically, results 
showed higher bacterial alpha diversity and lower rates of spatial 
turnover of taxa in naturally regenerating forest, in agreement 
with the observation that forest disturbance increases local 
bacterial diversity while homogenizing communities over larger 
spatial scales (Rodrigues et al., 2013). Although tropical forest 
disturbance is often accompanied by declines in both alpha and 
beta diversity of aboveground organisms (Bierregaard et al., 2001; 
Sodhi et al., 2009), this is not necessarily the case for belowground 
microbial communities where the opposite trend may be seen 
in local diversity patterns (Petersen et al., 2019). As discussed 
by Rodrigues et al. (2013), this “decoupling” of alpha and beta 
diversity with disturbance may depend on the relative eects 
of disturbance on ecosystem productivity. For example, alpha 
diversity in aboveground communities has been shown to increase 
with disturbance when productivity rates are higher in resulting 
ecosystems (Smart et al., 2006). In microbial terms, old-growth 
rainforests may be characterized by relatively low belowground 

productivity compared to adjacent open ecosystems created 
through anthropogenic disturbance (Cenciani et al., 2009; Cerri 
et al., 2004). In the current study system, increased bacterial alpha 
diversity with SL may potentially result from changes in vegetation 
characteristics, e.g., changes in tree community composition, or 
increasing understorey vegetation through creation of canopy gaps 
(Denslow, 1995) aecting the quality and quantity of plant inputs 
to the soil, improving eective resource availability (Cenciani et al., 
2009; Cerri et al., 2004) and creating dierent ecological niches 
for bacterial communities (Zhang et al., 2018). This observation 
is congruent with the intermediate disturbance hypothesis, which 
predicts increases in diversity with a certain level of disturbance 
(Ferrenberg et al., 2013; Galand et al., 2016; Wilkinson, 1999; 
Zhang et al., 2011). While the measured soil properties were 
largely similar between forest types, soil pH, an important 
determinant of bacterial communities in Southeast Asian tropical 
forests (Tripathi et al., 2012), was significantly greater in old-
growth forest sites (Table 4). The observed dierences in soil 
bacterial community attributes disagree with some previous work 
in the same region of Borneo that found bacterial communities 
and diversity to be broadly resilient to selective logging (Lee-
Cruz et al., 2013; Tripathi et al., 2016). This is likely due to 
the coarse spatial sampling resolution used in these studies to 
evaluate alpha and beta diversity (composite samples comprising 
soil collected up to 200 m apart). As bacterial community structure 
can vary considerably over meter-and centimeter-scales (O’ Brien 
et al., 2016), sampling resolution of previous surveys may be 
inappropriate for evaluating bacterial diversity and biogeographical 
patterns in response to forest ecosystem disturbance. The findings 
of the present study highlight the need for landscape studies of 
soil microbial diversity to incorporate fine spatial scale approaches 
to identify impacts and implications for biogeochemical cycling. 
Although clear dierences in bacterial alpha diversity and spatial 
turnover of taxa were detected in naturally regenerating forest, 
findings suggest that restoration of selectively forest by enrichment 
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planting can recover these metrics to levels comparable to old-
growth forest. Bacterial alpha diversity may have potential as 
an indicator of rehabilitation of selectively logged forest, with 
lower values representing ecosystem recovery. This is opposite to 
trends in bacterial alpha diversity used to monitor progress of 
forest rehabilitation after total clearance, which can increase with 
replanting (Nurulita et al., 2016). This emphasizes the importance 
of disturbance history in identifying appropriate context-specific 
recovery indicators. Indicator analysis revealed old-growth forest 
bacterial communities harbor a large number of unique taxa that 
are not found in nearby logged forest, also evident for soil fungi 
(Supplementary Figure 5a, b), suggesting some aspects of ecosystem 
complexity are lost through disturbance and not recovered after 
almost two decades of active restoration or natural regeneration. 
A large proportion of unique bacterial taxa in old-growth forest 
belonged to the Firmicutes, a phylum associated with high soil 
C availability and resilience to environmental (microclimatic) 
perturbations (Battistuzzi and Hedges, 2009; Rodrigues et al., 2013), 
that were largely absent in unique taxa of both logged forests. While 
we found no dierences in total soil carbon between forest types, 
greater abundance of unique taxa in this phylum may result from 
changes in the quality of plant-derived carbon inputs to the soil, 
e.g., logging disturbance has been linked to increased recalcitrance 
of tree litter carbon and reduced functional breadth of microbial 
decomposer communities relative to old-growth forest in the same 
area (Elias et al., 2020). 

Some fungal community attributes also diered by forest type. 
While results broadly agree with observed logging disturbance 
eects of fungal communities (Kerfahi et al., 2014; McGuire 
et al., 2015; Robinson et al., 2020; Robinson et al., 2024), our 
results did not corroborate our prediction that overall fungal 
community composition would be more similar between old-
growth and actively restored forest. Total, saprotrophic, and 
mycorrhizal fungal communities significantly diered by forest 
type, with old-growth forest communities appearing distinct from 
naturally regenerating and actively restored forest which were 
generally more similar (Figures 4b–f). Dierences observed in 
the composition and rate of spatial turnover of mycorrhizal 
communities across forest types is consistent with studies showing 
high sensitivity of mycorrhizae to logging disturbance, likely due to 
the targeted extraction of ectomycorrhizal-associating dipterocarp 
trees (Kerfahi et al., 2014; Robinson et al., 2020; Robinson et al., 
2024). The composition of mycorrhizal and ectomycorrhizal fungal 
communities in actively restored forest appeared even more distant 
to old-growth forest than naturally regenerating forest (Figures 4d, 
e), possibly reflecting dierences in the mycorrhizal associations of 
tree species selected for planting during active restoration and those 
removed during timber extraction. Similarly, the rate of spatial 
turnover of mycorrhizal taxa was most dierent between old-
growth and actively restored forest (the latter approximately three 
times lower), with rates in naturally regenerating forest similar to 
both (Figure 3p). Mean overall mycorrhizal and ectomycorrhizal 
richness, Shannon alpha diversity and relative abundances were 
also highest in actively restored forest, but did not significantly 
dier due to high variability (and likely resulting from low 
number of true spatial replicates in each forest type). There 
were surprisingly few fungal taxa shared between old-growth and 
actively restored forest (420 ASVs; Supplementary Figure 3b) 
relative to those shared between the two logged forest types (1,334 

ASVs), or even old-growth and naturally regenerating forest (659 
ASVs) – a pattern also evident in bacteria (384 shared between 
old-growth and actively restored forest; 2,843 between logged 
forest types; 1,047 between old-growth and naturally regenerating 
forest; Supplementary Figure 3a). This suggests that some taxa 
may be lost due to current restoration practices that are otherwise 
present in both old-growth and naturally regenerating forest. 
This is reflected in the lower total fungal alpha diversity in 
actively restored forest relative to old-growth (Figures 3b, h), 
which is likely driven by lower saprotrophic fungal alpha diversity 
(Figures 3c, i) as this guild represented the largest proportion 
of total fungal reads (47.17%). These findings may be potentially 
related to long-term control of liana species which have their own 
soil microbial associations (McGuire et al., 2008; Schnitzer et al., 
2005), and removal of understorey vegetation which is practiced 
in these study sites. Vegetation removal may alter plant litter 
inputs, which in turn can aecting resulting microbial decomposer 
communities (Shi et al., 2019). Further study of the eects of 
liana and understorey vegetation removal through controlled field 
experiments (i.e., enrichment planting with and without additional 
vegetation clearance) is required to unpick the underlying drivers 
of these observations, and possible role in the impediment of fungal 
community recovery toward characteristics of old-growth forest. 

No dierences were found in indicators of overall microbial 
biomass between forest types, refuting our second hypothesis and 
contrasting with previous studies observing clear reductions in 
MBC in degraded forest relative to old-growth (Deng et al., 2010; 
Nurulita et al., 2016), or higher MBC in restored versus unrestored 
forest (Daljit Singh et al., 2013). In the present study, it is possible 
either microbial biomass was unaected by logging in these forests, 
or returned to comparable levels with old-growth in both logged 
forest types with natural or managed regeneration during time 
since disturbance. The small number of samples used for analysis 
(n = 32) may also have contributed to lack of dierences found due 
to a large amount of within- forest type (and site) variation. 

Of all the soil physicochemical properties, microclimate and 
forest structural characteristics measured, only soil pH was aected 
by forest type (third hypothesis) with more acidic soils found 
in both logged forest types relative to old-growth (Table 4). 
Interestingly, bacterial alpha diversity was found to be higher 
in unrestored forest soils relative to old-growth despite lower 
pH, contrasting with studies across multiple biomes (including 
Malaysia) which found bacterial alpha diversity to increase with 
soil neutrality over land-use gradients (Lauber et al., 2009; 
Tripathi et al., 2012). Bacterial alpha diversity may therefore 
be influenced more strongly by altered litter inputs while soil 
microbial successional processes are still underway, rather than soil 
pH which may govern attributes of climax bacterial communities 
(also see Robinson et al., 2024). 

5 Conclusion 

In conclusion, while many soil properties and soil microbial 
attributes were similar across forest types, our results demonstrate 
contrasting responses of dierent soil microbial groups to active 
and passive restoration of selectively logged forest. Bacterial and 
fungal community composition remained generally more similar 
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between logged forest types and more distinct in old-growth 
forest following 18 years of natural regeneration or enrichment 
planting. Bacterial alpha diversity and spatial turnover of bacterial 
taxa may recover toward old-growth forest levels with active 
restoration, while fungal alpha diversity showed slower signs 
of recovery largely due to saprotrophic fungal alpha diversity 
remaining lower in both logged forest types relative to old-growth 
forest. The composition and rate of spatial turnover in mycorrhizal 
communities was most dierent between old-growth forest and 
actively restored forest, possibly resulting from discrepancies in 
respective mycorrhizal associations of tree species planted during 
restoration and those removed during timber harvest. Few fungal 
taxa were shared between old-growth and actively restored forest, 
indicating recovery of soil microbial communities may be impeded 
by current management practices, with implications for carbon 
cycling. Further study into the eects of liana and understorey 
vegetation removal through controlled experimentation is required 
to test underlying mechanisms. Taken together our findings 
emphasize the importance of evaluating belowground microbial 
communities during forest restoration, particularly at fine spatial 
(cm to m) scales, to evaluate and predict recovery of biodiversity 
and ecosystem functions in human modified tropical forest. 
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