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The mite T. truncatus is a significant agricultural pest and may serve as a potential

vector for viral transmission. However, the virome of T. truncatus remains

understudied. Through metatranscriptomic analyses of publicly available data,

we uncovered a diverse range of viruses associated with the spider mite,

including crop-infecting pathogenic species such as Potato virus Y and Cherry

virus A, and fourteen previously unknown viruses across several families (e.g.,

Virgaviridae, Dicistroviridae, Kitaviridae, Betaflexiviridae, and Nudiviridae). Taking

advantage of mite samples under different conditions, we also assessed the

impact of biotic (Wolbachia and Spiroplasma infection) and abiotic stresses

(pesticide exposure and temperature stress) on the T. truncatus virome.

Interestingly, Wolbachia appeared to restrict viral infections in T. truncatus

by reducing viral diversity and abundance, with a pronounced effect on

dicistroviruses. Surprisingly, a similar effect also observed with Spiroplasma.

However, the viral restriction phenotype vanishes in co-infected mites.

Transcriptomics analysis of singly-infected mites revealed upregulation of piRNA

and autophagy-related genes, while lipid metabolism processes-related genes

were downregulated, indicating an endosymbiont-sharing mechanisms of viral

interference. Although the impact of abiotic stressors on the virome was

not statistically significant, Potato virus Y and TtDV-2 viruses were absent in

abamectin-exposed mites, suggesting a potential reduction in the viral diversity,

while heat-stressed mites exhibited slightly higher viral diversity compared to
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those raised at regular temperatures. Overall, our work provides a detailed

analysis of the T. truncatus virome, shedding light on how endosymbionts and

environmental factors shape viral dynamics and offering potential insights for

pest management strategies.
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Introduction

Mites (Arachnida: Acari) are an important group of arthropods
that play a significant role as agricultural pests. They cause direct
damage to plants by feeding on tissues or indirectly by acting as
vectors for viruses, which can severely affect plant health, reducing
vigor or even causing plant death in extreme cases (Hoy, 2011;
Sarwar, 2020). Among these, the Tetranychidae family, which
includes spider mites, is particularly notable. These mites infest
over 4,000 plant species and are recognized as major agricultural
pests. One such species, T. truncatus, commonly known as the
red spider mite, is a significant pest that infests approximately
104 plant species, including major crops such as bean, papaya,
corn, soy, cotton, maize, and cassava. Despite its widespread
agricultural impact, including crop damage that can reach up to
73% in some cases (Guo et al., 2013; Vacante, 2016), there is no
direct evidence linking T. truncatus to the transmission of plant
pathogens.

In contrast, several other species within the Tetranychidae
family have been identified as vectors of plant viruses. For
example, Petrobia latens has been shown to transmit Barley
Yellow Mosaic Virus (BaYSMV), primarily vectored by Polymyxa
graminis (Adams et al., 1988; Smidansky and Carroll, 1996).
Tetranychus urticae, the two-spotted spider mite, is linked to
the transmission of Potato Virus Y (PVY), although aphids
are the primary vectors for this virus (Schulz, 1963; Gray and
Power, 2018). Additionally, T. urticae has been associated
with the transmission of several other viruses, including
Tobacco Ringspot Virus (TRSV), which is typically spread by
nematodes (Yang et al., 2020), Tobacco Mosaic Virus (TMV),
primarily transmitted through mechanical means (Heinlein,
2002), Southern Bean Mosaic Virus (SBMV), transmitted by
beetles (Kopek and Scott, 1983), and Cotton Leaf Curl Virus
(CLCuV), which is spread by whiteflies (Briddon and Markham,
2000).

In insects and other arthropods that vector viruses,
endosymbiotic bacteria can profoundly influence both host
fitness and viral dynamics. The α-proteobacterium Wolbachia
infects up to 76% of insect species yet inhibits viral replication not
exclusively through cytoplasmic incompatibility (CI) itself—which
manipulates host reproduction to promote symbiont spread—but
via immune priming and resource competition mechanisms. These
effects have raised interest in using Wolbachia to control virus
transmission, particularly after its success in mosquitoes, which
has led to further exploration in other arthropods, including spider
mites (Min and Benzer, 1997; Weeks et al., 2002; Hoffmann et al.,

2011; Zhu et al., 2021). Endosymbionts, including Rickettsia spp.
(Kliot et al., 2014) and Arsenophonus (Kaur et al., 2022), play
crucial roles in viral dynamics. For example, Rickettsia facilitates
viral transmission in Bemisia tabaci, while Rosenbergiella reduces
viral transmission in Aedes mosquitoes (Zhang et al., 2024).
Similarly, Spiroplasma, known for its protective roles against
bacterial infections, parasitism, and nematode damage in species
like Drosophila melanogaster and aphids (Hamilton et al., 2016;
Ballinger and Perlman, 2019; Hrdina et al., 2024), has shown
promise in reducing viral transmission. Although no direct
evidence of Spiroplasma’s antiviral properties is available, certain
strains produce ribosome-inactivating proteins (RIPs) that target
rRNA. Plants-derived RIPs have demonstrated antiviral activity
in several viruses, including HIV (Kaur et al., 2011), DENV, and
CHIKV (Citores et al., 2021). Additionally, Spiroplasma strains
are known to induce cytoplasmic incompatibility and may engage
in resource competition mechanisms akin to those observed in
Wolbachia, potentially contributing to phenotypes associated with
reduced viral loads (Sinkins, 2004; Werren et al., 2008). These
endosymbionts have substantial implications for pest control and
virus management in agriculture (Werren et al., 2008; Moreira
et al., 2009).

Beyond the biological interactions between endosymbionts and
viruses, environmental factors, particularly temperature, is known
to shape symbiont densities, mite development, and viral dynamics.
Fluctuations in temperature modulate endosymbiont replication,
alter the pace of mite growth and reproduction, and influence viral
replication rates, microbiome composition, host susceptibility, and
immune responsiveness—collectively determining the efficiency of
virus transmission (Van Opijnen and Breeuwer, 1999; Lowen et al.,
2007; Kilpatrick et al., 2008). Furthermore, the use of pesticides,
such as abamectin, plays a crucial role in modern pest control
strategies (Kole et al., 2019; Kumar et al., n.d.). While effective
in mitigating pest populations, abamectin also impacts arthropod
survival, and, potentially, alters viral load (Varghese et al., 2016;
Khodayari and Hamedi, 2022).

Our study investigates the virome of the spider mite
T. truncatus, focusing on the impact of biotic and abiotic stresses on
its viral diversity and abundance. Using 39 publicly available high-
throughput RNA sequencing (RNA-seq) libraries from diverse
locations and conditions—including abamectin exposure, variable
temperature, and Wolbachia and/or Spiroplasma infections—
we identified both known and novel virus species. We also
assessed how these environmental and biological factors influenced
the mite’s virome.
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Materials and methods

RNA libraries

Publicly available T. truncatus RNAseq libraries were obtained
from the Sequence Read Archive (SRA) database at NCBI.
A total of 39 libraries, representing diverse sampling conditions
and geographical origins across five distinct Bioprojects, were
selected for this study. Among these, 25 libraries were used
as input for virus discovery while 14 were used as biological
replicates to access independent RNA levels. Of note, each
of the libraries were analyzed individually according to the
analysis objective. Overall, these libraries were constructed from
total RNA of T. truncatus individuals, including libraries from
mites (i) reared on different host plants (soybean, eggplant,
and tomato) - PRJNA636216, (ii) reared in heat-stressed
environments - PRJNA881040, (iii) infected or co-infected with
Wolbachia pipientis and/or Spiroplasma ixodetis - PRJNA717652
and PRJNA644209, and (iv) exposed or not exposed to the
acaricide abamectin - PRJNA475023. Detailed description
of each individual library used in the work is available in
Supplementary File 1.

Identification of endogenous viral
elements (EVEs)

To provide disambiguation between possible Endogenous
Viral Elements (EVEs) and exogenous virus species circulating in
T. truncatus, we screened the reference genome GCA_028476895.1
(Chen et al., 2023) using the pipeline previously described in Aguiar
et al. (2020).

Metaviromic Analyses

De novo virus discovery in RNAseq libraries was performed
as described in Espinal et al. (2023). Briefly, for each library
quality control of sequenced reads was assessed using FastQC
(version 0.74 + galaxy0) (Wingett and Andrews, 2018) and low-
quality reads (Phred < 20) and adaptor sequences were removed
using Trimmomatic (Galaxy Version 0.38.1) (Bolger et al., 2014).
Trimmed reads were aligned against the host genome using
Bowtie2 (version 2.5.0 + galaxy0) (Langmead and Salzberg, 2012)
with default settings to identify host-related reads. Unaligned reads
were assembled in parallel using different assembly tools including
Trinity (version 2.15.1 + galaxy0) (Grabherr et al., 2011), SPAdes
(version 3.15.4 + galaxy1) (Prjibelski et al., 2014), rnaviralSPAdes
(version 3.15.4 + galaxy2) (Antipov et al., 2016), metaviralSPAdes
(Antipov et al., 2019), Megahit (Li et al., 2015), and OASIS (Schulz
et al., 2012). To identify potential virus-derived contigs, sequence
similarity search was performed using Diamond (2.0.15 + galaxy0)
(Buchfink et al., 2015) with BlastX mode, utilizing the NCBI
Viral Refseq database (release 218) as reference. These analyses
were conducted using the Galaxy Australia platform (Afgan et al.,
2018).

Manual curation of contigs annotated as
viral genomes

Non-retroviral sequences were filtered based on a minimum
size threshold of 500 nucleotides. Filtered sequences were manually
examined through online version of BLAST against Nucleotide
(NT) and Protein (NR) databases (release 04/2024). The ORFfinder
(Rombel et al., 2002) tool was used to predict open reading frames
(ORFs) within contigs and InterPro (Blum et al., 2021), Hmmer
(Finn et al., 2011, 2015; Potter et al., 2018), and CDblast (Marchler-
Bauer and Bryant, 2004) to identify conserved protein domains. An
overview of BLAST best hits at nucleotide and amino acid levels for
each virus-derived contig can be visualized in the Supplementary
File 2.

Phylogenetic analysis

Sequences showing similarity to genes encoding for
polymerases or polyproteins were used to build phylogenetic
trees. MAFFT (Katoh and Standley, 2013) was used for global
alignment using standard parameters. ModelTest (Posada and
Crandall, 1998) was used to identify the best evolutionary model
for the dataset and a maximum likelihood phylogenetic tree was
inferred using 1,000 bootstrap replicates. The CIPRES Science
Gateway (Miller et al., 2010) was used for phylogenetic tree
construction.

RNA abundance of viral segments

The tool Salmon (version 1.5.1 + galaxy0) (Patro et al., 2017)
was used to assess the abundance of virus-derived sequences
for each library. The host mitochondrial ribosomal protein S11
(rps) protein and nuclear calmodulin-1 (cal) genes were selected
as constitutive endogenous genes for comparison with virus
abundance. An overview of the abundance of the viral sequences
can be visualized in Supplementary File 3.

Diversity and batch effect analysis

Assessment of alpha diversity per library was performed using
the package VEGAN on R (Oksanen et al., 2008) utilizing the
richness (Fisher et al., 1943) to unravel the virus diversity within
the conditions. In order to address potential confounding factors
and ensure the robustness of our dataset, we performed batch effect
analysis using RUVSeq (Risso et al., 2014).

Improving the annotation of T. truncatus
genome

To improve the current T. truncatus gene annotation, we
performed a comprehensive gene reannotation utilizing the
Blast2GO v3.3.2 (Conesa et al., 2005) pipeline (November/2023).
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The process began with sequence alignment via Diamond/Blast
v2.1.8, followed by domain search using InterProScan v5.64-96.0.
Orthologous groups were identified through eggNOG-mapper
v2.1.12 (Cantalapiedra et al., 2021), after which GO mapping was
performed. Finally, the Blast2GO functional annotation algorithm
was employed to complete the reannotation. This pipeline ensured
the inclusion of genes from the Arthropoda phylum, resulting
in the annotation of over 400 additional genes compared to the
previously available annotation. The novel annotation is available
in the Supplementary File 4.

Ortholog inference, differential gene
expression, and gene set enrichment
analysis

In order to have a functional annotation for the T. truncatus
genome (GCA_028476895.1), we deployed the tool OrthoFinder
(Emms and Kelly, 2019) v2.5.5.2 with default parameters
to perform ortholog inference, using as reference the well
described fly model Drosophila melanogaster (genome release
FB2024_01) - available in Supplementary File 5. Subsequently,
to unveil potential variations in gene expression across different
conditions, we performed differential gene expression analysis
utilizing DESeq2 (Love et al., 2014). This analysis was conducted
exclusively on libraries from the Wolbachia and/or Spiroplasma
bioprojects (PRJNA717652 and PRJNA644209), which originate
from mite populations sharing the same genetic background and
experimental conditions. Gene expression differences were assessed
by comparing control samples to those exposed to stressors. Genes
were considered significantly differentially expressed when having
a fold change > 2 log2 and p-value < 0.05. Gene Set Enrichment
Analysis (GSEA) – ClusterProfiler (Yu et al., 2012) (version 3.8)
(Shi and Walker, 2007) was used to elucidate enriched pathways
using D. melanogaster gene sets (version 3.13.0) as model obtained
from Bioconductor annotation packages (Gentleman et al., 2004).

Results

Virome of spider mites

To characterize the virome of T. truncatus, we retrieved publicly
available RNAseq libraries covering a wide range of biological
and environmental conditions and performed Sabrina Ferreira
Isaque João da Silva de Faria Santana novo virus identification
using an unbiased virus discovery pipeline (Espinal et al., 2023).
Our analysis revealed at least 30 potential virus-derived assembled
contigs belonging to known and new virus species (Figure 1 and
Supplementary File 2). Among these, three contigs showed high
sequence similarity to the genome of known viruses and coded for
similar protein domains as their BLAST best hits. Among them, one
contig showed 99.64% nucleotide identity and 99.77% amino acid
identity to Potato virus Y, another contig had 99.47% nucleotide
identity and 99.70% amino acid identity with Cherry virus A, while
the last contig had 99.63% nucleotide identity and 99.81% amino
acid identity with Acyrthosiphon pisum virus (Supplementary
Figure 1). Ten additional contigs showed sequence similarity above

50% at the amino acid level and similar conserved domains
to positive single-strand RNA ((+) ssRNA) viruses (Figure 1
and Supplementary File 2). Phylogenetic analyses grouped three
putative contigs as viruses belonging to the Dicistroviridae
family. The remaining contigs showed sequence similarity to the
Kitaviridae, Betaflexiviridae, Virgaviridae, Botourmiaviridae, and
Nodaviridae families (Figure 1 and Supplementary File 2). Among
these, seven contigs contained polyproteins with start and stop
codons, two contigs encoded for RdRp and capsid segments similar
to nodaviruses, and one contig resemble a fragment of a narnavirus
RdRp (Figure 1 and Supplementary Figures 2–7, 8A–F, 9A–C,
respectively). Four contigs exhibited sequence similarity above 30%
and their ORFs contained conserved domains commonly present
in the negative single-stranded RNA viral family Phenuiviridae.
These contigs encoded for three incomplete and one complete
RdRp protein (Supplementary Figures 9D–G, 10). The remaining
13 contigs matched both in amino acid sequence similarity and
conserved domains to core genes of the dsDNA family Nudiviridae
(Supplementary Figures 11, 12).

One major issue in virus discovery works is the presence
of endogenous viral elements (EVEs) that can mislead the
identification of exogenous viruses in metagenomics data. To
avoid this issue, we performed de novo identification of EVEs
on the T. truncatus genome. We identified three endogenized
sequences sharing similarities with viral proteins of the Chuviridae
and Rhabdoviridae families (see Supplementary File 6 for details).
Assembled contigs from RNAseq libraries matching any of these
potential EVEs with sequence similarity above 70% and similar
length were discarded from our analyses.

Prevalence and widespread of
T. truncatus-associated viruses

Following virome characterization, to assess virus prevalence
across all analyzed samples, we cross-mapped each library to the
20 assembled putative viral sequences, including both endogenous
and exogenous viruses (Figure 2). Except for AcPV, reads matching
all viruses were present in at least two distinct samples, and
most of them belonged to the same sequencing project. However,
the dicistroviruses TtDV-1, TtDV-2, and AVT, together with
the phenuiviruses GVT-1 and GVT-2, and the botourmiavirus
TtOV were detected in libraries originated from independent
projects (Figure 1). Of note, AVT and TtDV-1 were present
in approximately 82% and 52% of the libraries, respectively
(Figure 2). Interestingly, the dicistroviruses TtDV-1 and AVT, and
the kitaviruses BVT-1 and BVT-2 showed normalized transcript
abundance 10 to 40 times higher than constitutive genes (Figure 2).
On the other hand, the Goukoviruses (GVT-1–4) showed the lowest
abundance. Of note, EVE2 was the only endogenous viral element
found in this work that showed to be transcriptionally active.

Wolbachia presence impact on the viral
dynamics

Upon evaluating the prevalence and distribution of viral
contigs, a potential difference emerged between the virome
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FIGURE 1

Overview of viruses identified in T. truncatus samples classified by Bioproject identifiers, conditions, genome composition and viral family. The
diagram depicts the flow of viral contigs across different Bioprojects and libraries. The upward-facing arcs represent viral contigs, colored according
to their viral family. The first downward-facing arc corresponds to libraries, colored by treatment conditions, while the second downward-facing arc
reflects the Bioprojects. Contigs matching (+)ssRNA viruses composed 68.75% of the total and included Blunervirus truncatus 1 (BVT-1), Blunervirus
truncatus 2 (BVT-2), Cherry virus A (CVA), Citrivirus truncatum (CVT), Aparavirus truncatus (AVT), Potato virus Y (PVY), T. truncatus-associated
dicistro-like virus 1 (TtDV-1), T. truncatus-associated dicistro-like virus 2 (TtDV-2), T. truncatus-associated noda-like virus (TtNoV),
T. truncatus-associated ourmia-like virus (TtOV), T. truncatus-associated tobamo-like virus (TtTV), and Acyrthosiphon pisum virus (AcPV). Contigs
matching (–)ssRNA represented 25.00% and included Goukovirus truncatum 1 (GVT-1), Goukovirus truncatum 2 (GVT-2), Goukovirus truncatum 3
(GVT-3), and Goukovirus truncatum 4 (GVT-4). Contigs annotated as dsDNA viruses represented 6.25% and included the Alphanudivirus
truncatus (ANT).

composition of samples infected and uninfected by endosymbionts.
This observation prompted an investigation into the potential
impact of Wolbachia on the virome of T. truncatus, as
seen in several other arthopods (Pimentel et al., 2021). To
explore this hypothesis, we analyzed the levels of virus-derived
transcripts across all treatments in the bioprojects PRJNA717652
and PRJNA644209. These datasets included samples infected
exclusively with Wolbachia pipientis (W+S-) or Spiroplasma
ixodetis (W-S+), as well as those under coinfection (W+S+) or
uninfected (W-S-) conditions.

In the presence of Wolbachia, we observed a statistically
significant decrease in the TPM levels of the polyadenylated

(+)ssRNA TtDV-1 dicistrovirus. Compared to endosymbiont-
uninfected mites, where the virus was consistently detected across
all samples, the TPM levels dropped from nearly 103 to less than
101 TPM in half of the samples, while the virus was completely
absent in the other half (Figure 3). For the other dicistrovirus,
AVT, a slight decrease in TPM levels was observed, although it was
not statistically significant. Interestingly, the non-polyadenylated
botourmia virus TtOV, despite having lower TPM than TtDV-1, was
detected in approximately half of the uninfected mite samples at
levels around 101 TPM, while it was completely absent in the W+S-
samples (Figure 3).
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FIGURE 2

Abundance of identified viral sequences associated to T. truncatus. Rows were clustered based on Pearson correlation to group sequences with
similar abundance calculated as transcripts per million (TPM). Samples are separated by Bioproject with respect to their treatment conditions.
Bioprojects PRJNA717652 and PRJNA644209 include libraries from populations solely infected with Wolbachia, solely infected with Spiroplasma,
coinfected with both Wolbachia and Spiroplasma, and uninfected. Bioproject PRJNA475023 includes libraries exposed to abamectin and libraries
not exposed to abamectin. PRJNA881040 includes samples from ordinary temperature and high temperature conditions, and Bioproject
PRJNA636216 includes mites reared on distinct host plants. Host ribosomal protein S11 (rps), calmodulin-1 (cal), Histone H1 (H1), and
Cyclooxygenase-2 (COX-2) genes were used as constitutive endogenous controls for comparison with virus abundance.

After evaluating the abundance of viral contigs, alpha diversity
was assessed in the Wolbachia-infected samples. The W+S- samples
displayed a notably lower alpha diversity in comparison to
uninfected mites, suggesting that Wolbachia may interfere with
the virome dynamics of T. truncatus (Figure 4). Consistent with
this observation, uniform manifold approximation and projection
(UMAP) analysis using the transcriptome and virome transcripts
abundance of T. truncatus, revealed a clustering pattern where
samples infected with Wolbachia segregated from co-infected and
uninfected samples (Supplementary Figure 13).

Spiroplasma shows a potential
Wolbachia-like effect in impacting viral
dynamics

Interestingly, when analyzing endosymbiont-related
samples, the well-known viral-protective Wolbachia exhibited
significant effects on viral dynamics. Separately, Spiroplasma, an
endosymbiont associated with protection against nematodes and

parasitoid wasps in some arthropods, also appeared to influence
viral dynamics. Notably, in mites infected solely with Spiroplasma,
the dicistrovirus TtDV-1 exhibited a drastic decrease in abundance,
being completely absent from all samples when compared to
the control, where it reached nearly 103 TPM (Figure 3). This
suggests that Spiroplasma may exert an even stronger impact than
Wolbachia on the same viral transcript.

The impact on the abundance of the dicistrovirus AVT and
the botourmiavirus TtOV was similar to that observed with
Wolbachia. The AVT exhibited a slight decrease in abundance,
while TtOV, which was present in approximately half of the
libraries from uninfected mites, was completely absent in the
Spiroplasma infection scenario. Notably, another dicistrovirus,
TtDV-2, was detected exclusively in Spiroplasma-infected mites, the
only population where TtDV-1 was absent (Figure 3).

Similar to the W+S- samples, mites infected solely with
Spiroplasma exhibited lower viral alpha diversity compared to
the control samples, although it was slightly higher than in
mites infected solely with Wolbachia (Figure 4). This suggests
that Wolbachia has a stronger impact on viral diversity than
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FIGURE 3

Abundance of virus-derived transcripts among different endosymbiont infection conditions. Boxplots illustrate TPM abundance of transcripts
representing mite viruses in libraries subjected to distinct Wolbachia and Spiroplasma infection scenarios, including mites solely infected with
Wolbachia (W+S-), Spiroplasma (W-S+), coinfected with both (W+S+), or uninfected (W-S-). Y-axis shows normalized TPM abundance while X-axis
distinguishes between treatments. The statistical analysis was performed using Wilcoxon test and significance determined at a p-value < 0.05.

Spiroplasma. Supporting these findings, UMAP analysis showed
that the whole transcriptome abundance of Spiroplasma-infected
mites segregated from co-infected and uninfected samples but
was closely clustered with the Wolbachia-infected mite population
(Supplementary Figure 13).

Co-infection possibly neutralize
symbiont-driven virome suppression

In this distinct mite population, where both Wolbachia and
Spiroplasma endosymbionts were present, despite both bacteria
displaying potential effects on viral dynamics, a possible mutually
antagonistic interaction was observed. The TtDV-1 virus, which
showed decreased abundance in both W+S- and W-S+ populations,
had its abundance restored to levels comparable to uninfected mites
(nearly 103 TPM) in the coinfection scenario (Figure 3). A similar
effect was observed for the AVT virus, although the change was
not statistically significant. Interestingly, TtOV, which was absent
in solely infected samples and present in only half of the uninfected

samples, was detected in all samples from the coinfection scenario
(Figure 3). Additionally, the (-)ssRNA phenuivirus GVT-2 was
exclusively detected in the coinfection samples and absent in all
other conditions.

Interestingly, the coinfected samples exhibited high viral alpha
diversity, comparable to that of the endosymbiont-uninfected mite
population (Figure 4). In the UMAP analysis, the coinfected
samples were distinctly segregated from the solely infected
populations but clustered closely with the uninfected mite
populations (Supplementary Figure 13). This suggests that the
interaction between Wolbachia and Spiroplasma may influence
viral dynamics in a unique way, potentially mitigating the observed
individual impacts of each endosymbiont on the virome.

Effect of temperature and abamectin
treatment on the T. truncatus virome

Exploring the impact of abamectin exposure and different
temperatures on virome composition and abundance of
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FIGURE 4

Alpha diversity is significantly altered by the presence of
endosymbionts. Boxplot illustrating alpha diversity in libraries
corresponding to different Wolbachia and Spiroplasma infection
status, including mites infected with Wolbachia (W+S-) or
Spiroplasma (W-S+) alone, coinfected with both (W + S +) or
uninfected (W-S-). The Y-axis represents alpha diversity, and the
X-axis categorizes libraries based on the sample conditions. The
statistical analysis utilized the Wilcoxon test, with significance
determined at a p-value < 0.05.

T. truncatus, we observed that Potato virus Y (PVY) and
TtDV-2 were exclusively detected in T. truncatus samples collected
from plants not exposed to abamectin (ABM–). Their abundance
was approximately 10 and 100 TPM, respectively, suggesting
a notable association between the absence of the pesticide and
virus abundance. Conversely, TtNoV was exclusively identified in
libraries containing T. truncatus exposed to abamectin (ABM+).
Although not statistically significant, a distinct viral dynamic
was observed in mites exposed to the pesticide (Supplementary
Figure 14A).

On the other hand, temperature did not cause any significant
change in virus abundance comparing ordinary and high
temperature conditions (Supplementary Figure 14B). However,
virus diversity analyses indicated that mites exposed to regular
temperatures displayed lower alpha diversity compared to
those subjected to high-temperature stress, although these
differences were not statistically significant (Supplementary
Figure 15A). Conversely, samples exposed to abamectin exhibited
a more pronounced, although still not statistically significant,
difference in alpha diversity compared to non-exposed individuals
(Supplementary Figure 15B).

Mite transcriptional responses to
Wolbachia and/or Spiroplasma infection

Infection with Wolbachia and/or Spiroplasma significantly
altered the virome composition and abundance of T. truncatus.
Therefore, we investigated the transcriptional responses and
pathways involved in the dynamics between endosymbiont bacteria
and the host, focusing on the potential impact to virus infection.

Gene Set Enrichment Analysis (GSEA) revealed several pathways
enriched in during Wolbachia (W+S-) and Spiroplasma (W-S+)
infection, many overlapping between conditions. Upregulated
enriched pathways included piRNA processing, adaptation of
rhodopsin-mediated signaling and membrane bending (Figures 5A,
B, Supplementary Figures 16, 17 and Supplementary File 7).
Notably, five unique pathways were significantly upregulated
during Wolbachia or Spiroplasma infection alone. However, to
our knowledge, none of these were yet described to have
an association with antiviral activity (Figures 5A, B and
Supplementary Figures 16, 17). Conversely, GSEA also identified
significantly downregulated pathways that were shared between
W+S- and W-S+ infected samples. These pathways included
positive regulation of G protein-coupled receptor signaling,
carbohydrate transport, octopamine regulation pathways and lipid
metabolic processes. (Figures 5A, B, Supplementary Figures 16, 17
and Supplementary File 7).

Remarkably, GSEA analysis revealed a minimal overlap of
enriched pathways between solely infected and co-infected samples
with endosymbionts. The unique pathways enriched in upregulated
genes in co-infected mites were associated with the host’s
modulation of viral processes, including viral genome replication
and interactions related to symbiosis. Additionally, pathways such
as translation readthrough and the export of the ribosomal large
subunit from the nucleus were also enriched. Conversely, pathways
involved in the regulation of oxidative stress response, cardiolipin
metabolism and biosynthesis, as well as the sequestering of proteins
and transcription factors, were found to be downregulated. This
differential regulation suggests a complex interplay between the
host’s immune responses and viral dynamics in co-infected mites
(Figures 5A, B and Supplementary Figure 18). A schematic
illustration explaining the Wolbachia- and Spiroplasma-induced
phenotypes can be visualized in the Figure 5C.

Discussion

Metatranscriptomics is a powerful approach to understanding
complex ecosystems and has illuminated the interplay between
microorganisms and their hosts (Bashiardes et al., 2016; François
et al., 2019). Our metatranscriptomic analysis of the important
agricultural pest T. truncatus using data obtained from 39 libraries
publicly available offered a glimpse into its virome landscape.
Overall, most of the viral families identified have elements known
to infect mites such as Dicistroviridae (Niu et al., 2019) and
Nodaviridae (François et al., 2019). Furthermore, we have also
identified viruses from the families Phenuiviridae (Yadav et al.,
2019) and Nudiviridae (Harrison et al., 2020), both known to
infect arthropods. In addition, we have identified previously
known and several new viruses associated with families that
are traditionally associated with plants including Kitaviridae,
Botourmiaviridae, Virgaviridae, Betaflexiviridae, and Potyviridae.
Of note, transmission by mites of viruses belonging to these
families has been described, as exemplified by the transmission
of viruses from the Kitaviridae family by Ramos-González et al.
(2022), Tassi et al. (2022), while virgaviruses transmission has
been described by Pleshakova et al. (2018). Furthermore, the mite-
mediated transmission of Betaflexiviridae has been described by
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FIGURE 5

Transcriptionally altered pathways and gene sets during infection with Wolbachia and/or Spiroplasma in T. truncatus mites. Heatmap illustrating the
top 20 enriched and bottom 20 enriched pathways identified through Gene Set Enrichment Analysis (GSEA) of T. truncatus naturally infected with
Wolbachia alone (W+S-), Spiroplasma alone (W-S +), and Wolbachia and Spiroplasma coinfected individuals (W+S+). Up-regulated pathways are
represented in blue while down-regulated pathways are shown in red (A). The color gradient reflects the normalized enrichment score (NES) of each
pathway. UpSet plot showing the intersections between the top 20 enriched and bottom 20 enriched pathways among W+ S-, W-S+ and W+S+
conditions. Up-regulated pathways are represented in blue while down-regulated pathways are shown in red (B). Schematic representation of viral
restriction phenotypes and mock phenotypes in various T. truncatus infection states. This schematic figure illustrates the viral restriction phenotypes
observed in T. truncatus solely infected by Wolbachia (W+S-) and Spiroplasma (W-S+), as well as the control phenotypes observed in co-infected
mites (W+S+) and uninfected mites (W-S-). The figure also highlights the enriched pathways associated with each infection state (C).

Bertazzon et al. (2021) and Potyviridae transmission by Choi
et al. (1999). We could speculate that viruses identified in our
study can potentially be transmitted to plants by T. truncatus.
This hypothesis was supported by the identification of Potato
virus Y and Cherry virus A, both known to infect economically
important crops (Schulz, 1963; Karasev and Gray, 2013; Simkovich
et al., 2021). The viruses identified in this study were classified
into viral families including, the Dicistroviridae and Nudiviridae
families, both of which are known to hold significant potential
for arthropod control strategies (Bonning and Miller, 2010).

Dicistroviruses, including Cricket paralysis virus (CrPV) (Manousis
and Moore, 1987), Rhopalosiphum padi virus (RhPV) (D’Arcy
et al., 1981), and Homalodisca coagulata virus 1 (HoCV-1)
(Biesbrock et al., 2014), have been demonstrated to negatively
impact arthropod populations. Similarly, Nudiviruses, which infect
various arthropods, can impair development and reduce fertility
in pest species (Prasad and Srivastava, 2016). Both viral families
offer environmentally friendly alternatives to chemical pesticides,
although further research is essential to validate the finds and fully
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understand the potential applications of these characterized viruses
in broader pest control strategies.

Our study revealed a substantial impact in the abundance of
specific viral sequences in T. truncatus when infected alone with
either Wolbachia or Spiroplasma. Notably, the dicistrovirus TtDV-
1, a virus in our study, is the most impacted by endosymbiont’s
influence, with a considerable impact on virus abundance.
Nevertheless, a distinct scenario emerges when considering
populations co-infected with both Wolbachia and Spiroplasma
(W+S+) or those uninfected (W-S-). Our analyses pointed out to
a reduction in virus abundance of (+)ssRNA viruses in Wolbachia-
infected samples, which is aligned with the Wolbachi’s established
role in regulating viral replication in other species (Moreira et al.,
2009; Mousson et al., 2010; Hoffmann et al., 2011; Aliota et al.,
2016; Caragata et al., 2016; Edenborough et al., 2021; Loterio
et al., 2024). A similar effect has also been reported in the
dicistrovirus Cricket paralysis virus and Drosophila C virus (DCV)
in D. melanogaster (Bonning, 2009). Moreover, we were not able
to detect TtDV-1 in Spiroplasma infected samples, indicating a
potentially stronger inhibition of virus abundance in comparison to
Wolbachia. Both TtOV and AVT exhibited comparable outcomes,
revealing a consistent pattern of diminished viral abundance. It is
important to point out that the virus restriction effect was evident
across both polyadenylated viruses (TtDV-1 and AVT) and the non-
polyadenylated botourmia virus TtOV, suggesting it is an authentic
mechanism instead of an artifact due to the strategy used to build
the sequencing libraries.

When analyzing viral abundance in singly infected mites,
we saw that Spiroplasma suppressed the dicistrovirus TtDV-1,
permitting TtDV-2 to predominate, a pattern reminiscent of
competitive release between distinct arboviral genotypes (Norton
et al., 2020). In Aedes and other arthropods, Wolbachia similarly
diminishes viral diversity and load (Sinkins, 2004; Moreira et al.,
2009; Hoffmann et al., 2011; De Oliveira et al., 2015; Ant et al.,
2020). Of note, work in T. truncatus confirms that co-infecting
symbionts engage in hierarchical competition: Wolbachia typically
outcompetes Spiroplasma in double infections, achieving higher
densities and inducing stronger cytoplasmic incompatibility than
Spiroplasma alone (Yang et al., 2021). In addition, Xie et al. (2020)
showed that co-infection can impose fitness costs yet restore CI
phenotypes lost in single infections, underscoring the antagonistic
interplay between these bacteria.

Mechanistically, both Wolbachia and Spiroplasma can induce
CI—although sometimes weak—in T. truncatus, disrupting host
reproduction and limiting vertical viral transmission (Xie et al.,
2020). In other species it has been shown that they also compete
for intracellular resources—space, nutrients, and host molecular
machinery—thereby constraining viral replication niches (Werren
et al., 2008; Sinkins, 2013; Jupatanakul et al., 2014; Hrdina
et al., 2024). Spiroplasma uniquely produces ribosome-inactivating
proteins that defend against nematodes and parasitoids (Ballinger
and Perlman, 2019; Jones and Hurst, 2020) and may similarly
inhibit viral translation in mites. Additionally, endosymbionts
can modulate the host’s immune system by enhancing RNA
interference pathways and altering gene expression, thereby
strengthening antiviral defenses (Ou et al., 2022; Mushtaq et al.,
2025).

In this study, mites infected with either Wolbachia or
Spiroplasma alone exhibited transcriptional regulation targeting

genes involved in several pathways potentially linked to
Wolbachia’s antiviral mechanisms, as described by Mushtaq
et al., 2025. Notably, one of the most prominent enriched pathways
among upregulated genes was the piRNA processing pathway. This
finding is particularly noteworthy as Wolbachia has been described
to modulate host piRNAs (Hess et al., 2011; Aguiar et al., 2016;
Etebari et al., 2016; Hussain et al., 2016). Overall, RNAi pathways
including the small interfering RNAs (siRNAs) are well described to
control arbovirus infections in mosquitoes and other arthropods,
and recent research are providing evidence that the piRNA pathway
might also contribute to antiviral activity (Wu et al., 2010; Blair,
2011; Donald et al., 2012; Morazzani et al., 2012; Schnettler et al.,
2013). These results provide evidence that multifactorial events
resulting of Wolbachia or Spiroplasma infections could explain the
changes in viral abundance and diversity observed. Supporting this
hypothesis, we also observed that autophagy was enriched by both
endosymbionts’ infection. This important pathway is involved in
cellular degradation previously shown to be activated by Wolbachia
and Spiroplasma infection and can function as an antiviral host
response (Tallóczy et al., 2006; Voronin et al., 2012; Sinkins, 2013;
Jheng et al., 2014; Ou et al., 2022).

Analysis of downregulated gene sets and pathways in
Wolbachia- and Spiroplasma-exclusively infected mites revealed a
link to lipid metabolism, particularly sterol and steroid metabolic
processes. Cholesterol, the end-product of this pathway, is a vital
molecule targeted by various viruses, including Dengue virus.
Modulation of cholesterol dynamics and metabolism is a strategy
employed by the host’s innate immunity to combat viral infections
(Haas and Mooradian, 2010; Blanc et al., 2011). Interestingly,
Wolbachia lacks the ability to synthesize cholesterol itself (Wu et al.,
2004; Molloy et al., 2016). This dependency leads to competition
with the host for lipid molecules, a mechanism proposed to
contribute to Wolbachia-mediated viral blocking (Caragata et al.,
2013; Koh et al., 2020). Wolbachia and Spiroplasma are known
to deplete lipid availability, creating an unfavorable environment
for viral replication (Koh et al., 2020) and larval development
(Paredes et al., 2016). Furthermore, lipid metabolic processes are
linked to changes in the membrane lipid composition of host cells,
which can be critical for the formation of replication complexes
for (+)ssRNA viruses (Loterio et al., 2024). Further research is
needed to explore the potential antiviral capabilities of Wolbachia
and Spiroplasma and the specific mechanisms involved in providing
protection against viral infections in T. truncatus (Hamilton et al.,
2016; Ballinger and Perlman, 2019).

Notably, W+S+ populations exhibited similar diversity and
abundance patterns to those of W-S- populations, suggesting
that the putative virus-blocking effect of endosymbionts may
be compromised in co-infection scenarios. Interestingly, the co-
infected mite population displayed minimal overlap in enriched
pathways compared to mites solely infected with Wolbachia or
Spiroplasma. This distinction highlights the unique enrichment
of host defense-specific pathways in the co-infected group. These
enriched pathways encompass processes that modulate viral
processes, such as viral genome replication, alongside pathways
involved in symbiosis-related interactions. This implies that,
despite the presence of endosymbionts, the host is actively
responding to viral infections. While oxidative stress is a typical
host response to viral infection, it appears to be connected to
Wolbachia’s presence (Wong et al., 2015). Studies have shown a
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link between Wolbachia’s antiviral function and increased oxidative
stress levels (Wong et al., 2015; Zug and Hammerstein, 2015).
Interestingly, Spiroplasma acts in opposition. It promotes the
production of antioxidants (Ding, 2022) which could potentially
counteract the oxidative stress and weaken Wolbachia’s antiviral
effects in coinfected samples, where oxidative stress pathway is
found enriched in downregulated genes.

Interestingly, several pathways associated with viral replication
were found to be enriched. These include translation readthrough,
protein and transcription factor sequestration, and the export
of the ribosomal large subunit from the nucleus. Viruses have
evolved sophisticated mechanisms to hijack host cellular machinery
for their replication (Jaafar and Kieft, 2019). During infection,
viruses exploit host ribosomes to translate viral mRNA into
proteins essential for viral replication and assembly (Li, 2019).
Additionally, viruses sequester host transcription factors and
proteins, redirecting them to facilitate viral gene expression while
suppressing host defenses (Ahlquist et al., 2003; Den Boon et al.,
2010). This sequestration often involves the manipulation of RNA-
binding proteins, which play crucial roles in RNA metabolism
and gene regulation (Serge Andigema, 2024). Furthermore,
some viruses employ translation readthrough strategies, allowing
ribosomes to bypass stop codons and produce extended viral
proteins that enhance viral replication and pathogenicity (Cimino
et al., 2011; Prasad et al., 2024). Such findings raise questions
about the interplay between endosymbionts and host immune
responses, which reinforces the need for further investigation into
the mechanisms that are basis for these interactions. A deeper
understanding of the relationship between symbionts is particularly
crucial, especially considering the potential release of Aedes
mosquitoes infected with Wolbachia strains exhibiting imperfect
infection blocking. This could exert selective pressure on viral
populations (Salje and Jiggins, 2024), and if our findings are
further confirmed, co-infections with Spiroplasma may undermine
Wolbachia’s antiviral efficacy, potentially compromising research
efforts aimed at reducing arbovirus transmission (Hoffmann et al.,
2011; Murray et al., 2016; Salje and Jiggins, 2024).

Environmental factors, such as temperature and pesticide
exposure, play significant roles in shaping mite viromes and viral
dynamics (Mourier and Poulsen, 2000; Bounfour and Tanigoshi,
2001; Varghese et al., 2016; Li et al., 2023). In our study, T. truncatus
specimens under heat-stressed conditions exhibited higher viral
diversity, although no statistically significant differences were
observed in diversity or viral abundance. Controversially,
abamectin exposure influenced virome composition, with PVY
and TtDV-2 exclusively detected in non-exposed mites, suggesting
a potential suppressive effect of the pesticide. This aligns with
studies showing that abamectin can inhibit viral RNA and protein
synthesis in alphaviruses like Chikungunya virus (Varghese et al.,
2016). Conversely, TtNoV was predominantly found in abamectin-
exposed mites, indicating a selective impact of the pesticide on
virome structure. These effects may stem from both temperature
and abamectin altering mite fitness, thereby influencing their
susceptibility to viral infections. While temperature stress
modulates virome diversity without statistical significance,
abamectin may exert antiviral properties or reshape virome
composition through other mechanisms. Further investigation
is required to elucidate these complex interactions and their
implications for pest control and agricultural ecosystems.

This study provides a comprehensive analysis of the
virome of T. truncatus, a significant agricultural pest. Through
metatranscriptomics, we identified both known and novel viral
species, underscoring T. truncatus’ potential as an emerging vector
for important plant viruses, such as Potato Virus Y and Cherry
Virus A. Our results indicate that abiotic factors, particularly
abamectin, diminish viral abundance, suggesting a complex
interplay between pesticide use and viral dynamics. Moreover, our
investigation into the effects of endosymbionts reveals that single
infections with Wolbachia or Spiroplasma led to a notable decrease
in both viral abundance and diversity, particularly dicistroviruses.
However, co-infection with these symbionts appears to negate this
antiviral effect, suggesting that their interactions may result in
competitive dynamics between endosymbionts, further influencing
viral replication and transmission. It is important to note that these
findings were drawn from publicly available RNA-Seq datasets,
with control and treatment conditions carefully compared within
libraries from the same study to minimize potential biases from
genetic background variations. Further experimental validation
is necessary to confirm the observed effects of abiotic factors and
endosymbionts on the virome of the spider mite. Overall, our
findings contribute to shed light on the intricate relationships
between the virome of T. truncatus, its microbial associates,
and abiotic factors, highlighting the need for further research
into these interactions to inform pest management strategies
in agricultural systems. Understanding these dynamics will be
crucial for developing effective control measures against viral
diseases in crops.
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