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Livestock and poultry manure, as a significant organic resource, had an enormous 
annual production but a utilization rate of less than 50%. Improperly managed 
manure had become the primary source of agricultural non-point pollution, posing 
severe challenges to the ecological environment. Achieving efficient resource 
utilization of livestock manure was a critical step in promoting green agricultural 
development. Existing research indicated that microbial activity significantly 
influences the transfer and dissemination of antibiotic resistance genes (ARGs) 
and the community dynamics of human pathogenic bacteria (HPB) during pig 
manure composting. However, the specific mechanisms remain unclear. This study 
innovatively introduced two thermophilic microbial agents (TMS1 and CTMS2) 
into a pig manure-spent mushroom compost (SMC) aerobic composting system 
to systematically investigate their regulatory effects on pollutant reduction. The 
results showed that persistent ARGs (ErmF, ErmQ, ErmX, blaR1, QnrA1, QnrA6, 
bla-F, QnrA2, QnrA5, Qnra4 and bla-VIM) primarily rely on vertical gene transfer 
(VGT) for dissemination, whereas easily removable ARGs (tetX, tetW, tetG, tetC, 
suI1 and suI2) were regulated by both horizontal gene transfer (HGT) and VGT. 
Notably, the co-addition of thermophilic microbial agents and SMC reduced 
persistent ARGs by lg0.45–3.73, significantly decreased the abundances of HPB 
such as Bacteroides and Treponema, and reduced the enrichment of related 
metabolic pathways, greatly improving compost quality. In stark contrast, the 
control group (with only SMC and no thermophilic microbial agents) exhibited ARG 
proliferation. Overall, the application of thermophilic microbial agents not only 
extended the high temperature phase of composting by over 30% and shortened 
the composting cycle by 50%, but more importantly, it achieved comprehensive 
improvement in compost quality by selectively enriching functional microbial 
communities such as Pseudomonas. This study provides a theoretical foundation 
and data support for the industrial application of CTMS2 in the safe production 
of organic fertilizers and the synergistic control of environmental risks.
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1 Introduction

According to statistics, the annual amount of livestock and poultry 
manure resources in China reaches 4 billion tonnes, of which 40% 
remain untreated and unutilized, making it the primary source of 
agricultural non-point source pollution. Among them, pig manure 
accounts for 36.71% of the total output (He et al., 2021; Zhang S. et al., 
2025). Pig manure, an organic complex that riched in crude protein, 
fiber, and hemifiber (Samanta et al., 2022), could serve as a valuable 
nitrogen source and slow-release fertilizer. It could enhance soil 
fertility and improved the physical and chemical environmental 
properties of soil. However, owing to various technological and 
process limitations, nearly 60% of pig manure resources was wasted 
(Wu et  al., 2020), posing a great threat to environmental safety. 
Therefore, exploration of green treatment methods for pig manure and 
the development of efficient recycling systems for its utilization were 
urgently needed.

Current treatment methods include anaerobic digestion (AD) and 
aerobic fermentation (AF). While AD of livestock and poultry manure 
76.5% of cellulose and 84.9% of hemicellulose were converted into 
methane (Ma et  al., 2021; Muhammad and Birgitte, 2021), its 
resilience on specialized equipment and risks of secondary pollution 
limit practicality. In contrast, AF is simpler, cost–effective, and 
increasingly adopted for manure treatment (Zhao et al., 2024). Key 
factors influencing AF efficiency include carbon–to–nitrogen (C/N) 
ratios, feedstock particle size, and moisture content (Ji et al., 2022), 
with the optimal performance achieved at a C/N ratios of 25 and a 
turning frequency of twice per day (Chen et al., 2023). Agricultural 
wastes like spent mushroom compost (SMC)—a byproduct of 
mushroom cultivation with high nutrient and water-holding 
capacity—are widely used to adjust compost properties. For instance, 
adding 15% woody peat to pig manure reduces nitrogen loss by 
suppressing denitrifying bacteria and related functional genes (Xie 
et al., 2023; Wu et al., 2023).

Similarly, co-composting organic waste of different sizes, such as 
5 cm corn straw (Ren et  al., 2023) and 2 cm branch piles (Zhang 
D. et al., 2023; Jiao J. X. et al., 2023) with animal manure can reduce 
greenhouse gas emissions and accelerate the composting process. The 
co-addition of organic waste during composting has also been shown 
to inhibit and reduce the expression of antibiotic resistance genes 
(ARGs), affecting species diversity and ARG migration pathways 
(Zhou Y. W. et al., 2022). For example, coconut shell, bamboo (Awasthi 
et al., 2021), wine grape pomace (Zhang J. et al., 2023), and 5% humic 
acid (Shi et  al., 2023) have been reported to enhance antibiotic 
removal from pig manure and inhibit the accumulation and spread of 
ARGs (Tong et al., 2022). SMC, a type of agricultural waste, with high 
water-holding capacity and nutrient content (Tao et al., 2022), had a 
production volume of 2.2 × 107 tonnes (dry weight) in China in 2020 
(Guo et al., 2022). When mixed with chicken manure, it can shorten 
the high-temperature composting period by 2 days (Pan et al., 2023; 
Jia et al., 2022), promote humification, and immobilize heavy metals 
such as Cu, Zn, Cd, Cr, and Pb (Kong et al., 2022). This mixture also 
reduces emissions of ammonia (NH3), hydrogen sulfide (H2S), 
dimethyl sulfur, and dimethyl disulfide (Wei et al., 2022; Yan et al., 
2020), recruits beneficial microbial communities, suppresses potential 
plant pathogens (Xu M. Y. et al., 2022; Wang L. et al., 2024), and 
significantly reduces the abundances of pathogenic fungi associated 
with rice blast disease (Zeng et al., 2023).

Microorganisms play an important role in the transformation 
of organic materials during composting, leading to significant 
changes in bacterial community composition (Wang Y. et al., 2024). 
Solid and semi-solid microbial agents, including lignocellulosic 
hemicellulose-degrading biological agents, thermophilic microbial 
agents, fungal agents, and antibiotic-degrading agents, contribute 
to organic matter degradation and nutrient enrichment. These 
microbial agents also enhance pollutant degradation, alter microbial 
communities, increase enzyme activity, promote fungal abundance, 
and immobilize heavy metals (Yin Y. N. et al., 2023; Wu et al., 2022). 
Additionally, they facilitate ARG removal (Chen X. J. et al., 2022; Li 
et al., 2022), enhance lignocellulose degradation efficiency (Bikram 
et al., 2021; Shangguan et al., 2022; Zhang Y. G. et al., 2023), improve 
methane production rates in AD systems (Bikram et al., 2020), and 
accelerate substance transformation (Bohrer et  al., 2023). 
Thermophilic microbial agents have been shown to promote the 
decomposition of recalcitrant organic compounds in biogas 
residues and improve the seed germination index (Xu S, Y. et al., 
2022). In this study, two thermophilic strains, Bacillus flexus FM 
and B.cereus KU, were screened and used as microbial agents to 
study their corresponding effects on promoting pig manure 
composting fermentation.

Recent research had addressing antibiotic residues in pig manure 
composting has predominantly examined the effects of non-biological 
and biological factors on ARGs, cadmium, human pathogenic bacteria 
(HPB), and other toxic substances in compost materials (Chen 
Z. Q. et al., 2022; Abdellah et al., 2023; Jiao J. X. et al., 2023). Under 
heat stress conditions, the abundances of ARGs and mobile genetic 
elements (MGEs) had been decreasd in pig manure significantly (Sun 
et al., 2021; Sun et al., 2023; Zhu et al., 2023; Tang et al., 2023). The 
transmission and transfer of ARGs occured through horizontal gene 
transfer (HGT) mechanism mediated by MGEs or through vertical 
gene transfer (VGT) mechanism mediated by host bacterial 
proliferation and functional gene enrichment (Luo et al., 2023). This 
study utilized thermophilic microbial agents to promote the 
co-composting of pig manure and SMC. The research systematically 
examined the dynamics of ARGs, HPB and the structural and 
compositional shifts in beneficial microbial communities during 
composting. The results provided critical theoretical and empirical 
support for tracking the fate of hazardous contaminants in livestock 
manure, while advancing the sustainable utilization of livestock and 
poultry manure and the development of eco-circular agriculture.

2 Materials and methods

2.1 Screening of thermophilic strains

A total of 62 culturable strains were isolated from pig manure at a 
farm in Tai’an city, Shandong province, China (Huang et al., 2014; Du 
et al., 2022). The primary selection criteria were the ability to survive 
at a high temperature of 60°C, along with the capacity to produce at 
least two of the following enzymes: cellulase (Subhojit et al., 2016; 
Warasirin et  al., 2017), laccase (Aslam et  al., 2012) and xylanase 
(Fatma and Filiz, 2023). Based on these criteria, B. flexus FM and 
B. subtilis KU were isolated. The fermentation broth of B. flexus FM 
was mixed with soybean meal in a 1:1 ratio to obtain the thermophilic 
microbial agents S1 (TM S1). Similarly, a composite thermophilic 
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microbial agent S2 (CTM S2) was prepared by mixing the fermentation 
broths of B. flexus and B. subtilis KU with soybean meal in a 1:1:2.

2.2 Composting experimental design and 
sample collection

Pig manure was collected from a breeding farm in Tai’an city, 
Shandong province, China. SMC and pig manure were purchased 
from Shandong Hengxin Biotechnology Co., Ltd., and Wenshi Pig 
Breeding Co., Ltd., both of which were located in Shandong province, 
China. The pig manure had a moisture content of 83.40%, a pH of 
7.51, a total carbon content of 30.41%, and a total nitrogen content of 
1.74%. The SMC had a moisture content of 62.5%, a pH of 6.39, a total 
carbon content of 38.57%, and a total nitrogen content of 2.50%.

Four experimental treatments were established: (A) pig manure 
and TM S1, (B) pig manure and SMC, (C) pig manure, SMC and 
TMS1, and (D) pig manure, SMC and CTMS2, each treatment was 
replicated three times. Physicochemical indicators, resistance gene 
abundance, microbial diversity, and cadmium content were measured 
on days 0, 1, 4, 7, and 11. Additionally, non-target metabolite 
indicators were assessed using LC–MS for each treatment group at 0, 
4 and 11 days (the B0 sample data were the same as those of the C0 
and D0 samples). Each test was performed in triplicate.

2.3 Determination of non-biological 
indicators

Stack and ambient temperatures were recorded three times daily 
and the average values were calculated. The total carbon (TC) and 
total nitrogen (TN) contents in the stack were analyzed using an 
elemental analyzer (Vario Macro Cube, Elementar, Germany). 
Phosphorus was determined via chromatography (Chen, 2015), while 
potassium content was measured using tetraphenylboron sodium 
mass method (Wang et al., 2016), The water content was assessed 
using the vacuum oven method (Yin Y. Y. et  al., 2023), and the 
cadmium content was determined by atomic fluorescence photometry 
(Zhang et al., 2015). Each test was conducted also in triplicate.

2.4 DNA extraction and qPCR

DNA extraction: Genomic DNA was extracted from 100 mg of 
freeze-dried samples using the TIANAMP Soil DNA Kit (DP336) and 
eluted with low melting point solvent (DES). The quality and 
concentration of the extracted DNA were assessed using 1.5% (w/v) 
agarose gel electrophoresis and an enzyme plate instrument 
(BiotekElx808). High-throughput quantitative PCR (HT-qPCR) was 
performed using a StepOnePlus™ Real-time PCR system (Thermo 
Fisher Scientific) with a TB Green™ Premium Ex Taq™II (Tli 
RNaseH Plus) kit (Takara, Code No. RR820A). Each HT-qPCRs assay 
was conducted in triplicate as described by Gong C. P. et al. (2024).

This study focused on six representative ARGs: (1) tetracycline 
resistance genes (tetC, tetG, tetM, tetW and tetX), (2) sulfonamide 
resistance genes (sul1 and sul2), (3) macrolide resistance genes (ermF, 
ErmQ and ermX), (4) quinolone resistance genes (gryA and qnrA), (5) 
β-lactam resistance genes (bla-VTM and bla-CTX), and (6) 

aminoglycoside genes [aac (6′)-Ib-cr]. Additionally, three MGEs, 
nameed Tn916/1545, intI1, and ISCR1, were analyzed alongwith 16S 
rRNA for simultaneous quantification (Zhou et al., 2021).

2.5 Metagenomic sequencing

Total genomic DNA was extracted from the compost samples 
using the E.Z.N.A.® Soil DNA Kit (Omega Biotek, Norcross, GA, U.S.) 
according the manufacturer’s instructions. The concentration and 
purity of the extracted DNA were measured using a TBS-380 
fluorometer and NanoDrop2000 spectrophotometer. The quality of 
the extracted DNA was verified by electrophoresis on a 1% agarose gel.

Metagenomic data were assembled using MEGAHIT (Li et al., 
2015; https://github.com/voutcn/megahit, version 1.1.2), which used 
succinct de Bruijn graphs. Contigs with a length ≥ 300 bp were 
selected as the final assembly result, and these contigs were 
subsequently used for gene prediction and annotation.

Open reading frames (ORFs) from each assembled contig were 
predicted using MetaGene (Noguchi et al., 2006; http://metagene.
cb.k.u-tokyo.ac.jp/). Predicted ORFs with a length of ≥ 100 bp were 
retrieved and translated into amino acid sequences using the NCBI 
translation table.1 Antibiotic resistance annotation was performed 
using Diamond (Buchfink et al., 2015; http://www.diamondsearch.
org/index.php, version 0.8.35) against the ARDB database2 or the 
CARD database3 with an e-value cutoff of 1e−5.

2.6 Non-target metabolite determination

A 50 mg solid sample was added to a 2 ml centrifuge tube along 
with a 6 mm diameter grinding bead, and 400 μl of extraction solution 
(methanol:water = 4:1, v/v) containing 0.02 mg/mL internal standard 
(L-2-chlorophenylalanine) was added. The samples were then ground 
using a Wonbio −96°C frozen tissue grinder (Shanghai Wanbo 
Biotechnology Co., Ltd) for 6 min at −10°C and 50 Hz followed by 
low-temperature ultrasonic extraction for 30 min at 5°C and 40 kHz. 
Afterward, the samples were incubated at −20°C for 30 min and 
centrifuged for 15 min at 4°C and 13,000  rpm, after which the 
resulting supernatant was transferred to an injection vial for LC–
MS analysis.

2.7 Statistical analysis

SPSS 25.0 (IBM, Armonk, NY, USA) was used to compare 
differences and determine correlations among the experimental 
results. The histograms were generated using Origin 2024b software. 
Principal coordinate analysis and Procrustes analysis were performed 
using the Meiji Biocloud platform (Shanghai, China). Heatmap and 
cluster analysis were conducted with SciPy (Python) Version 1.0.0, 
whereas differentially abundant metabolite analyses were performed 

1 http://www.ncbi. nlm.nih.gov/Taxonomy/taxonomyhome.html/index.

cgi?chapter=tgencodes#SG1

2 http://ardb.cbcb.umd.edu/

3 https://card.mcmaster.ca/home
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using Ropls (R packages) Version 1.6.2. The correlation coefficient 
between Spearman and Gephi in the network analysis was determined 
to be 0.9.2 (p < 0.01). AMOS 26.0 software was used for structural 
equation modeling to elucidate causal relationships between variables.

3 Results and discussion

3.1 Target ARG and MGE fate during 
composting process

Normalizing the copy number of ARGs to the relative abundances 
evaluation method of bacterial abundance changes was a more 
effective way for evaluating ARGs dynamics (Czekalski et al., 2015). 
In this study, the relative abundances indicators of 15 ARGs and three 
MGEs had shown that tetracycline, macrolide, sulfonamide, and 
quinolone-resistant ARGs dominated across all composting samples 
(Figure 1), Co-composting of livestock manure with plant-derived 
organic waste effectively reduced the relative abundances of most 
tetracycline ARGs (tetM, tetW and tetX), sulfonamide ARGs (sul1 and 
sul2) and macrolide ARGs (ermF).

In this study, the addition of thermophilic microbial agents had 
significantly reduced the abundances of most ARGs in the windrows. 
Compared with traditional composting methods (Wu et al., 2023; Jiao 
J. X. et al., 2023), the thermophilic microbial agents extended the high-
temperature phase by over 30% and shortened the compost maturation 
time by 50%. Moreover, compared to B0 sample, the relative 
abundances of the seven types of ARGs of C11 and D11 samples 
(tetM, tetW, ermF, ermQ, tetC, gryA and tetX) decreased significantly 
(p < 0.05), with values ranging from 0.45–2.98lg and 0.48–3.73lg, 

respectively. Moreover, compared with those of the C11 sample (11th-
day data of C sample), two types of D11 sample (11th-day data of D 
sample) with ARGs (tetM and tetW) presented decrease in relative 
abundances of 0.82lg and 0.74lg, respectively (p < 0.05), this indicated 
that CTMS2 had unique advantages over TMS1 in the degradation of 
some ARGs. However, compared with those in B0 sample, the two 
ARGs (blaR1 and QnrA2) in the C11 and D11 samples increased by 
0.02–0.63lg and 0.78–0.83lg, respectively, which indicated that 
removing some heat-resistant ARGs during composting were difficult.

In this study, IntI1 and Tn916/1545 emerged as the main 
constituents contributing to the abundances of MGEs during the 
composting process (Figure 1C). Compared to those of the B0 sample, 
the relative abundances of two types of MGEs (ISCR1 and Tn916/1545) 
had been decreased between 0.08lg and 1.41lg in C11 and D11 
samples, highlighted that the efficacy of thermophilic microbial agents 
in promoting the degradation of MGEs in SMC and pig manure 
co-composting, which was consistent with trend changes in seven 
ARGs (tetM, tetW, ermF, ermQ, tetC, gryA and tetX). Moreover, 
compared with that in the C11 sample, the MGE (intI1) in the D11 
sample had been decreased by 0.28lg (p < 0.05), indicated that CTMS2 
might have a greater advantage than TMS1 in inhibiting the rebound 
of MGE abundance.

3.2 Analysis of the bacterial community 
composition structure

The bacterial community was the main driving factor for changes 
in the composition and abundance of ARGs (Zhang Y. G. et al., 2023), 
and the differences in bacterial community structure in this study 

FIGURE 1

Abundances of ARGs and MGEs at the beginning and end of composting. (A) Normalized relative abundance of ARGs and MGEs. The same color 
indicates that ARGs or MGEs belong to the same category, and the size of the circles indicates the normalized value; (B) Accumulated relative 
abundance of ARGs; (C) Accumulated relative abundance of MGEs.
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were using principal coordinate analysis to compared and analyzed, 
as detailed in the Supplementary materials. The results had shown that 
different samples had a significant effect on the type and abundance 
of microbial communities in the compost (Supplementary material S6). 
The interpretation rate of the first and second main components for 
the results was 85.00%. In addition to the A0 and A11 samples, 
different samples were clustered together at each stage of compost, 
indicated that the composition of the bacterial community had an 
important influence on the progress of pig manure compost (Jie 
et al., 2023).

Figure 2 illustrates the 30 bacterial dominant phyla, classes and 
genera with the greatest relative abundances during pig manure 
composting. Among them, the horizontal distribution of the dominant 

bacterial phyla in the initial stage of pig manure composting was 
mainly Pseudomonadota, Bacillota, Bacteroidota and Actinomycetota, 
accounting for more than 62.7% of the total bacterial count in each 
sample. Moreover, in the high-temperature thermophilic phase of pig 
manure composting, compared with that in the B0 sample, the 
abundance of Pseudomonas increased between 1.43lg and 1.37lg in 
the C11 and D11 samples, whereas the abundance of Bacillota 
increased between 0.93lg and 0.96lg. Conversely, the abundance of 
Bacteroidota decreased between 1.15lg and 1.24lg, whereas the 
abundance of Actinomycetota increased between 1.36lg and 0.89lg in 
the same sample. Pseudomonadota and Bacillota maintained 
dominance across all the samples, followed by Actinomycetota. 
Compared with the B11 sample, the C11 and D11 samples resulted in 

FIGURE 2

(A) Sangi diagram showing the composition of bacterial communities at the phylum, class, order, and genus levels. (B) Stacked bar chart showing the 
relative abundance changes in the top 30 genera of bacteria. (C) Stacked bar chart of the abundance of human pathogenic bacteria at the beginning 
and end of composting.
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decreases of 0.60lg and 1.07lg, in Actinomycetota. Therefore, a high 
level of HGT mechanism might still have occured in sample B and 
indirectly led to an increase in the abundances of some ARGs.

The 30 most abundant bacteria in the C11 sample were 
Pseudomonas (14.15%), Xanthomonas (6.48%) and 
Pseudoxanthomonas (4.87%), whereas those in the sample D11 
included Pseudomonas (12.23%), Pseudoxanthomonas (8.87%) and 
Xanthomonas (5.8%). Compared with those in the B0 sample, 
Bacteroides (9.11%), Bacillus (0.47%) and Actinomyces (0.03%), 
significantly changed the abundances of Bacteroides (0.59 and 0.67%), 
Bacillus (3.65 and 3.97%), and Actinomycetes (0.76 and 0.25%), were 
observed in the C11 and D11 samples, respectively (see Figure 2B). 
The increase in the horizontal abundance of Bacillus species in the 
windrow might be due to the increase in the abundance of high-
temperature resistant Bacillus (see the Supplementary material).

In this study, HPB were found to belong to 9 genera, included 
Bacteroides, Fibrobacter, Clostidium, and Trepinema, which collectively 
represented 90.91% of the total HPB (Figure 2C). Compared with 
those in the B0 sample, the HPB abundances in the C11 and D11 
samples were 0.82 lg and 0.90 lg lower, respectively (p < 0.05), and 
Bacteroides was the pathogenic microorganism with the greatest 
reduction in abundance, followed by Treponema. Most HPB were 
potential hosts of ARGs and MGEs (Imtiaz et al., 2022), therefore, 
HPB species and abundances were commonly used as potential 
measures of ARGs and MGEs. However, the B11 sample, which did 
not receive the addition of thermophilic microbial agents, exhibited a 
significant increase in the abundance of Treponema (see 
Supplementary materials). This suggests that some HPB may have 
undergone incomplete degradation or partial enrichment. These 
findings further emphasize the necessity of incorporating thermophilic 
microbial agents in the aerobic composting process of pig manure.

3.3 Bacterial community composition and 
structure lead to changes in ARG 
abundance

Figure  3A showed the correlation between ARGs and MGEs, 
one-third of the ARGs (tetX, tetW, tetG, tetC, suI1 and suI2) were 
positively correlated with MGEs (p < 0.05). However, ARGs which 
mediated by MGEs could be easily transferred and spreaded after 
composting, indicated that the inhibitory effect of the HGT 
mechanism might play a crucial role in preventing their spread. 
Similarly, the remaining ARGs (ErmF, ErmQ, ErmX, blaR1, QnrA1, 
QnrA6, bla-F, QnrA2, QnrA5, Qnra4 and bla-VIM) were not 
significantly correlated with MGEs, and were difficult to degrade 
during the composting process. Considered that the overall trend of 
abundance changes during the composting process, its degradation 
transfer might been mediated by other mechanisms.

Procrustes analysis had revealed that the abundances of ARGs and 
MGEs were significantly correlated with the bacterial community 
composition at the genus level (M2  = 0.253, p < 0.05), which was 
consistented with the Mantel Test results (r = 0.6062, p = 0.01). Many 
easily removable ARGs (tetM, tetW, tetX, tetG, tetC, suI1, suI2, ermF 
and ermQ) had been found positively correlated with genus-level 
changes in multiple bacterial groups (p < 0.01), However, persistent 
removable ARGs correlated with the levels of only a few bacterial 
genera, such as Treponema, Borrelia and Bacteroides.

3.4 Relationships between bacterial 
microflora and environmental factors

In this study, redundancy analysis (RDA) was used to determine 
the relative contributions of environmental factors, MGEs and ARGs 
to the bacterial community, and the explanatory rates of the sample 
bacterial community were 93.32, 0.70 and 0.27%, respectively (see 
Supplementary materials). Among these factors, the bacterial 
community composition had been found to be  the main 
environmental factor. Among all abiotic environmental factors, 
temperature (99.97%) and TC (99.97%) were accounted for the 
greatest proportion of bacterial community changes, followed by TK 
(75.56%). In addition, this study revealed that the changes in ARGs 
during composting were similar to the changes in bacterial 
communities and environmental factors as determined by principal 
coordinate analysis.

This study used structural equation modeling to explore in more 
detail the potential causal relationships between multiple factors and 
ARGs (Figure  4A). The analysis had revealed that compost 
characteristics had the greatest impact on compost quality (r = 0.413, 
p < 0.01) (Figure  4B), provided important theoretical insights for 
guide compost in production practices. Temperature also had a 
negative effect on ARGs, with a relatively high degree of influence 
(λ = −0.834, p < 0.01) (Figure  4B), which was consistent with the 
results of the redundancy analysis. Therefore, temperature was the 
main driver of changes in the ARG pedigree, the distribution of ARGs 
during composting might be more closely related to the biological 
mechanisms of microorganisms.

The organic carbon content in the windrow was significantly 
negatively correlated with both ARGs (λ = −0.759, p < 0.01) and 
MGEs (λ = −0.538, p < 0.01), mainly because of its different effects on 
microbial communities (Figure 4C). Organic carbon was suspected to 
be a key influencing factor of the host during composting (r = 0.899, 
p < 0.01), whereas organic carbon was significantly correlated with the 
quality of the compost (r = 0.303, p < 0.01). The addition of SMC that 
stem from agricultural waste reduced the abundances of Bacteroides, 
Treponema and Borrelia, which were carriers of persistent ARGs (sul1, 
tetG and bla_VIM) in the windrow. Moreover, compared with sample 
A, the addition of SMC had significantly increased the organic carbon 
content in the samples C11 (17.83%) and D11 (19.71%), which was 
also a necessary and sufficient condition for normal compost.

Among the non-biological factors, compost characteristics (TN, 
and C/N ratio) were found strongly correlated with ARGs (λ = −0.624, 
p < 0.01) and MGEs (λ = −0.326, p < 0.05) (Figure 4B), which had 
indirectly affected ARGs through the concentration of organic carbon. 
According to the RDA results, the C/N ratio had the greatest impact 
on ARGs. The relatively high nitrogen content and low C/N ratio in 
the windrow might provide more available nitrogen sources for 
microbial growth, increasing the TN content in the mature stage of 
compost (Supplementary materialsS1). Consistent with the results of 
this study, the difference in nitrogen content is an important 
environmental factor related to the relative abundance changes of 
ARGs and MGEs, thermophilic microbial agents were necessary for 
aerobic compost of pig manure, and the addition of SMC alone could 
not effectively reduce the abundances of ARGs in the compost.

Interestingly, on the basis of Mantel Analysis, three indicators of 
microbial nutritional growth (TC content, TN content and the C/N 
ratio) were found to be common key factors in the metabolism of 
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easily removable ARGs and persistent ARGs. The abundances of both 
types of ARGs was significantly correlated with temperature (p < 0.05) 
(Figure  4C). Network analysis had revealed that easily removable 

ARGs could be carried by many potential host bacterial communities 
and MGEs, whereas persistent ARGs could be carried by only a few 
possible host bacteria (Figure 3B).

FIGURE 3

(A) Mantel test results based on the correlation between ARGs and MGEs. The color gradient represents the ARGs abundance on the basis of the 
Spearman correlation coefficient and the edge width and color represent the r-value and statistical significance of the Mantel test, respectively. (B) Based 
on Spearman correlation coefficient network co-occurrence patterns of ARGs, MGEs and their potential host bacteria (top 30 genera) (p < 0.01).
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3.5 Bacterial microflora and metabolite 
analysis

Figure 5A showed the correlation between the 30 most abundant 
bacterial genera and the 20 most abundant metabolites in the compost. 
Approximately one-third of the antibacterial metabolites such as 
corchorifatty acid F, coniferaldehide, 13,14-dihydro-15-keto-tetranor 
PGF, sorbitan laurate, and PG [i-22:0/22:6 (5Z, 7Z, 10Z, 13Z, 16Z, 1, 
and azelaic acid)], were associated with the induction of plant 
resistance metabolism (Masanobu et al., 2020; Leonard et al., 2020). 
These genera presented significant positive correlations with the 
abundances of Pseudomonas, Thermomonospora, and Thermopolyspora 
(p < 0.05). This enrichment also indicated that the resistance of the 
compost material to the growth and infection of pathogenic 
microorganisms increased (Supplementary materials). Research had 
shown that high doses of macrolide drugs inhibited the mineralization 
of natural 17 β-estradiol in animal manure and urine, thereby 
increasin the retention of 17β-estradiol and its metabolites in free and 
non-extractable residue forms (He et al., 2019), and the key molecule 
azelaic acid in the plant biological stress response could mobilize 
Arabidopsis thaliana immunity in a concentration dependent manner 
(Francesca et al., 2019; Nagy et al., 2017; Finni et al., 2014). In-depth 

research and exploration of the relationships between metabolic 
products in compost and changes in bacterial flora and related 
functional gene abundance had important practical significance for 
controlling ARGs transfer.

Microorganisms were the main influencing factors of changes in the 
composition and content of antimicrobial and intermediate metabolites, 
so studying and determining their relationships was of great practical 
significance. Procrustes analysis had shown that antibacterial and 
intermediate metabolites were significantly correlated with the bacterial 
community composition at the genus level (M2 = 0.253, p < 0.01) which 
was consistent with the Mantel test results (r = 0.5029, p = 0.01). 
Therefore, the changes in bacterial community structure and abundance 
led to changes in the metabolites detected during the composting process. 
Furthermore, the co-occurrence associations between specific 
antibacterial metabolites, bacterial genera, and intermediate metabolites 
were explored to identify their potential hosts during the composting 
process. According to the network diagram, there were 6 antibacterial 
metabolites, 3 intermediate metabolites and 30 bacterial genera 
(Figure  3B). Differences in the distribution of potential hosts in 
rhizosphere soils were related to the abundance and composition of 
metabolites (Guo et al., 2020). Many easily removable antibacterial metals 
(corchorifatty acid F, coniferaldehide, 13,14-dihydro-15-keto-tetranal 

FIGURE 4

(A) Mantel correlation test results between two types of ARGs and multiple indicators (non-biological factors and MGEs). (B) Standardized total impact 
of selected variables of ARGs.
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PGF, sorbitan laurate, and PG [i-22:0/22:6 (5Z, 7Z, 10Z, 13Z, 16Z, 1, and 
azelaic acid]) were significantly positively correlated with the abundances 
of multiple bacterial genera (p < 0.05) (Supplementary materials), 

indirectly indicating that the composition and abundance of bacteria in 
the windrow and the inhibition of the HGT mechanism might play 
crucial roles in preventing its spread. Similarly, intermediate metabolites 

FIGURE 5

(A) Results of the Mantel correlation test between two types of metabolites and the 30 most abundant genera. (B) Network co-occurrence patterns of 
metabolites (20 most abundant) and potential host bacteria (top 30 genera) (p < 0.01).
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(1-naphthylamine, benzyl acetate and xi-7-hydroxyhexadecanedioic 
acid) were products of antibiotics, benzene rings and pesticide metabolic 
intermediates. These genera were significantly positively correlated with 
the abundances of Bacteroides, Fibrobacter, Treponema and Spirochaeta 
genera (p < 0.01) (Supplementary material), and it was observed that they 
were difficult to metabolize and degrade during composting, resulting in 
incomplete or partial enrichment of HPB degradation.

3.6 Prediction of bacterial community 
function

Functional enrichment analysis was a computational method used 
to analyze the degree of functional pattern enrichment in gene sets or 
genomic data (Mahantesha et al., 2013). This information could help 
researchers understand the biological significance of gene sets, thereby 
revealing the regulatory mechanisms of biological processes, 
metabolic pathways, cellular components, etc., under specific 
conditions and providing valuable guidance for further experimental 
design and research (Zakrzewski et al., 2013).

Compared with sample A, the mixed composting of thermophilic 
microbial agents and SMC with pig manure reduced the metabolic 
abundance of multidrug resistance efflux pumps, the Embden-
Meyerhof pathway and beta-lactam resistance pathway in mature 
compost piles (Figure  6A). This reduction might promote the 
metabolism of multiple beta-lactam antibiotics and inhibit the VGT 
mechanism and the HGT mechanism of ARGs from compost 
products to the soil environment. The transmission of ARGs was 
usually regulated by key regulatory genes in certain bacterial pathways. 

In previous studies, 10 specific genes involved in glycolysis, multidrug-
resistance efflux pumps and β-lactam resistance regulation were 
identified (Lin et al., 2021). As shown in Figure 6A, compared with 
the A11 sample, the addition of SMC was more effective than the 
addition of multiple drug resistant efflux pumps. Furthermore, the 
enrichment of pathways related to the metabolism of multiple 
antibiotics in β-lactam (K03585 and K02171) was relatively low, 
indicating that thermophilic microbial agents might inhibit the 
expression of related genes. Moreover, compared with those in the 
sample A, the enrichment of ARG-related metabolic pathways had 
been decreased to varying degrees by the additive of TMS1 (sample 
C) and CTMS2 (sample D), furthermore, the CTMS2 showed the 
greatest decrease in the total abundances of ARG-related genes. 
Therefore, in the context of co-composting SMC and thermophilic 
microbial agents, the combination of CTMS2 and SMC had a greater 
inhibitory effect on the expression of ARG-related genes, led to a 
deeper decrease in the abundances of ARGs (Fu et al., 2024).

Human disease-related KEGG pathway 3 significantly changed 
during the composting process (Figure  6B). The enrichment of 
clusters associated with human disease, such as β-lactam resistance, 
cationic antimicrobial peptide resistance, vancomycin resistance, 
legionellosis, alcoholic liver disease, and central carbon metabolism 
in cancer, tended to decrease, with the D sample showing the greatest 
decrease during composting. Notably, although samples C and D 
presented a reduced abundance of clusters related to infectious 
diseases, the residual levels in sample C were significantly greater than 
those in sample D. Therefore, on basis of the results had shown that in 
the HPB abundances stacking bar chart (Figure 2C), it could be find 
that the co-composting process of pig manure utilizing a combination 

FIGURE 6

Enrichment plots of human disease-associated metabolic functions and relative abundance of genes under different treatment conditions during 
composting.A-KEGG enrichment map of the metabolic functions associated with ARGs.B-Human disease KEGG pathway 3 level cluster.
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of CTMS2 and SMC was to yield compost products with less harmless 
compost products than that of sample C.

4 Conclusion

The findings of this study had indicated that the co-addition of 
organic waste such as SMC, which was the basis for the successful 
compost of pig manure during aerobic composting, and had 
advantages in reducing the abundances of ARGs, MGEs, and 
HPB. The co-composting of thermophilic microbial agents and SMC 
could limit the proliferation of ARG-related hosts and decreas the 
abundances of ARG-related metabolic pathways, regulatory genes, 
and human disease clusters, potentially leading to ARG attenuation. 
The VGT mechanism might play a key role in shaping the progressive 
degradation of ARGs, especially on persistent ARGs. Compared with 
TMS1, the CTMS2 had significantly better effects and potential in the 
compost process, which was convenient for storage, transportation, 
and easy to use, promoted rapid heating of the compost, had a long 
duration of high temperature, and was conducive to killing pathogenic 
bacteria in the compost. In addition, when site requirements were not 
strict, organic fertilizer could be composted separately by farmers and 
returned to the field or sold on a large scale, and the organic fertilizer 
produced had good quality and great application and promotion value.

5 Discussion

The misuse of antibiotics in livestock farming and the unregulated 
discharge of livestock and poultry manure (Li S. Y. et al., 2023), had 
caused severe environmental pollution while promoting the 
enrichment and transmission of ARGs to plants and animals, posing 
significant risks to human health (Zhang Y. et al., 2025; Wu et al., 
2025). However, aerobic composting had been demonstrated to 
substantially reduce antibiotic residues and ARG abundance in 
livestock manure (Li et al., 2024; Zhao et al., 2024). Research had 
found that co-composting of livestock and poultry manure with plant-
derived organic waste could effectively reduce the relative abundances 
of most tetracycline ARGs (tetM, tetW, tetX), sulfonamide ARGs (sul1 
and sul2), and macrolide ARGs (ermF) (Jiao J. X. et al., 2023; Fu et al., 
2024). The abundance of most ARGs were significantly associated 
with MGEs, and reducing the abundance and suppressing HGT 
spread of MGEs could mitigate the spread and diffusion of ARGs (Liu 
et al., 2023). Bacteroidota, Proteobacteria and Actinomycetota were 
potential hosts associated with the enrichment and transfer of ARGs 
and MGEs, and were the main carriers for the transmission of ARGs 
and MGEs (Wang et al., 2022; He et al., 2023; Wu et al., 2024). The 
solid bacterial agents (TMS1 and CTMS2) inhibited the enrichment 
and transfer of ARGs and MGEs by altering the composition and 
abundance of bacteria in the windrow.

Thermophilic composting, as an innovative composting 
technology involving exogenous thermophilic microbial agents (Zhang 
Y. G. et al., 2023), induces sustained high temperatures that promoted 
both the degradation of extracellular ARGs (eARGs) (Jiao J. X. et al., 
2023) and the release of intracellular ARGs (iARGs). Certain 
thermophilic microorganisms, such as Novibacillus thermophiles, 
Bacillus thermolactis and Ammoniibacillus agariperforans, could 
accelerate cellulolytic and xylanolytic decomposition. This process 

enhances microbial diversity in compost materials while facilitating the 
recruitment of beneficial microbes and suppressing pathogen 
proliferation (Youn et al., 2020; Wang et al., 2023), thereby optimizing 
both the composting efficiency and final product quality of livestock 
manure (Bang et al., 2024; Wang L. et al., 2024). Notably, Zhang et al. 
(2022) identified significant positive correlations between specific 
ARGs in swine manure (including tetC, tetG, tetX, sul1 and qnrS) and 
the abundances of pathogenic microorganisms. During the compost 
maturation phase, the abundances of pathogenic microorganisms from 
Bacteroides and Verrucomicrobia genera progressively decreased, 
consequently reducing pathogen-mediated VGT of ARGs and 
significantly enhancing the quality of the organic fertilizer product. 
While elevated temperatures generally accelerate bacterial community 
succession, in contrast to conventional microbial inoculants, the TMS1 
and CTMS2 that employed in this study exhibited remarkable 
thermophilic properties, maintaining viability even when compost 
temperatures exceeded 60°C. Compared to previous composting 
research, these novel thermophilic microbial agents demonstrated 
rapid temperature elevation in composting materials, extended 
duration of the thermophilic phase, and achievement of higher peak 
temperatures. These superior thermal characteristics collectively 
contributed to enhanced nutrient preservation, more efficient 
degradation of hazardous substances, and ultimately, the production of 
higher quality organic fertilizers.

Research had shown that, ARGs could be distributed through 
aerobic composting (Ren et al., 2023), anaerobic composting (Chen 
et al., 2023), soil mediums (Wen et al., 2024) and rivers mediums 
(Patel et al., 2024). ARGs had a broad range of potential hosts and they 
could regulate the abundances changes of ARGs by mediating the 
abundances of related factors such as (tetW, sul1 and Tn916/1545) 
(Xiu et al., 2021; Zhou et al., 2021; Zhang D. et al., 2023). Moreover, 
microorganisms were the primary carriers of ARGs and MGEs, 
therefore, the changes in bacterial community composition and 
abundance led to changes in the relative abundances of ARGs and 
MGEs during the composting process (Wang Y. et al., 2024; Nnorom 
et al., 2025).

In this study, the SMC was co-composting with pig manure, the 
abundances of some bacterial genera which associated with organic 
compound degradation increased during the maturation stage, which 
might have led to a decrease in the abundances of potential host 
bacteria carrying ARGs and MGEs, at the same time, the proliferation 
of microbial communities associated with organic matter degradation 
might limit the growth of some potential hosts of ARGs (Wei et al., 
2022; He et al., 2023; Wang et al., 2023). Temperature was considered 
the most important abiotic factor in aerobic composting processes, 
and changes in temperature could greatly alter the abundance and 
content of microbial communities and other abiotic factors (He et al., 
2023; Zhao et al., 2024). Although some researchers believed that 
HGT is one of the important factors for the transfer of ARGs during 
composting, HGT might not be the main driver of ARGs distribution 
(Liu et al., 2023; Zhou P. Z. et al., 2022). In other words, this meant 
that the distribution of ARGs during composting might be  more 
closely related to the biological mechanisms of microorganisms.

In fact, the compost properties were often considered nutrients 
for bacteria, as most of them were essential for microbial growth 
(Magid et al., 2006; Grosso et al., 2016), which was potentially relate 
to the VGT mechanism of ARGs. Some compost characteristics could 
be adjusted by adding organic carbon to the compost stage, which 
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could affect the structural composition of bacterial communities 
during the composting process (Gong X. et al., 2024; Hu et al., 2023), 
which could affect changes in ARGs also (Ya et al., 2023; Shan et al., 
2024). Guo et al. (2019) reported that differences in nitrogen content 
were important environmental factors which related to changes in the 
relative abundances of ARGs and MGEs. The TC content, TN content 
and C/N ratio were important environmental factors for the survival 
and reproduction of microorganisms in livestock and poultry manure, 
which might indirectly affect the abundances of ARGs and MGEs by 
affecting changes in the host bacterial community of ARGs (Sun et al., 
2020; Kai et al., 2023; Jiao M. N. et al., 2023). Therefore, these findings 
suggested that the VGT mechanism might play a key role mechanism 
in the transfer and transformation of ARGs during the composting 
process in this study, especially for persistent ARGs, whereas easily 
removable ARGs were also regulated by the HGT mechanism.
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