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Metabolic dysfunction-associated fatty liver disease (MAFLD) is a complex 
metabolic disorder characterized by hepatic lipid accumulation and subsequent 
inflammation. This condition is closely linked to metabolic syndrome and obesity, 
with its prevalence rising due to sedentary lifestyles and high-calorie diets. The 
pathogenesis of MAFLD involves multiple factors, including insulin resistance, 
lipotoxicity, oxidative stress, and inflammatory responses. The gut microbiota 
plays a crucial role in MAFLD development, with dysbiosis contributing to liver 
inflammation through various mechanisms, such as enhanced intestinal permeability 
and the translocation of bacterial products like lipopolysaccharide (LPS). Microbial 
metabolites, including short-chain fatty acids (SCFAs) and bile acids, influence 
hepatic function and immune responses, with potential implications for disease 
progression. Specific gut microbiome signatures have been identified in MAFLD 
patients, offering potential diagnostic and therapeutic targets. Moreover, gut-
derived toxins, such as endotoxins, lipopolysaccharides, trimethylamine-N-oxide 
and bacterial metabolites, significantly influence liver damage and inflammation, 
highlighting the complex interplay between the gut microbiome and hepatic 
health. This review comprehensively examines the complex interplay between 
the gut microbiota and MAFLD, focusing on underlying pathogenic mechanisms, 
potential biomarkers, and emerging microbiome-targeted therapeutic strategies 
for disease management.
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1 Introduction

Metabolic-associated fatty liver disease (MAFLD) represents a significant global health 
burden, affecting an estimated 25–30% of the adult population worldwide (Younossi et al., 
2019). This complex metabolic disorder, previously termed non-alcoholic fatty liver disease 
(NAFLD), has emerged as the most prevalent liver disease (Fouad et al., 2020). The escalating 
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incidence of MAFLD is attributed to a constellation of factors, 
including sedentary lifestyles, diminished physical activity, and dietary 
patterns characterized by caloric intake substantially exceeding energy 
expenditure (Guo et al., 2022).

The pathogenesis of MAFLD is intricately linked to the regulatory 
mechanisms underlying metabolic syndrome and obesity 
(Yki-Järvinen, 2014). The hallmark feature of MAFLD is hepatic lipid 
accumulation, resulting in lipotoxicity. This lipotoxic state may 
progress to metabolic-associated steatohepatitis (MASH) (Tilg et al., 
2021). Without intervention, MASH can lead to fibrosis, potentially 
culminating in cirrhosis and hepatocellular carcinoma (Huang 
et al., 2022).

High-fat diet (HFD) consumption has been implicated in MAFLD 
development (Velázquez et  al., 2019). HFD-induced lipotoxicity 
significantly contributes to hepatic insulin resistance, a pivotal factor 
in the pathogenesis of both type-2 diabetes mellitus (T2DM) and 
MAFLD (Birkenfeld and Shulman, 2014). The mechanisms involved 
in MAFLD development and its progression to MASH interact at 
multiple levels, forming a complex network of processes 
conceptualized as the “multiple hit” hypothesis (Tilg et al., 2021).

The “multiple hit” hypothesis posits that MASH progression 
results from a complex interplay of numerous pathophysiological 
factors (Tilg et  al., 2021). These factors encompass genetic 
predisposition, insulin resistance, aberrant lipid metabolism, 
mitochondrial dysfunction, and lipotoxicity. Additionally, oxidative 
stress, endoplasmic reticulum (ER) stress, ethanol consumption, and 
compromised gut barrier integrity contribute to the disease process. 
Furthermore, gut-derived endotoxins, particularly LPS, and 
dysregulation of cytokine and adipokine profiles play crucial roles in 
MAFLD pathogenesis (Tilg et al., 2021; Liu et al., 2016).

Alterations in gut microbial composition, or dysbiosis, are 
implicated in the augmentation of intestinal permeability, resulting in 
the translocation of bacterial components, including LPS and 
peptidoglycans, as well as other microbial metabolites, into the portal 
circulation. This process initiates hepatic inflammatory cascades 
through the Toll-like receptor 4 (TLR4)/nuclear factor kappa B 
(NF-κB) signaling pathway (Tilg et  al., 2021; Liu et  al., 2016). 
Furthermore, SCFAs, specifically butyrate, acetate, and propionate, 
have been demonstrated to modulate insulin sensitivity, lipid 
metabolism, and inflammatory responses, thereby possessing the 
potential to either exacerbate or attenuate disease progression (Harte 
et al., 2010; Leung et al., 2016). Concurrently, secondary BAs, which 
are subject to microbial modification within the gut lumen, interact 
with the farnesoid X receptor (FXR) and the Takeda G-protein-
coupled receptor 5 (TGR5), exerting influence over hepatic lipid 
homeostasis and inflammatory processes (Mori et  al., 2022; 
Buchynskyi et al., 2024b).

The human microbiota, a diverse ecosystem of microorganisms 
colonizing various anatomical niches, has emerged as a critical factor 
in MAFLD pathophysiology. While these microorganisms inhabit 
multiple body sites, the gastrointestinal tract harbors the most 
substantial and diverse microbial population, hence the prevalent use 
of the term “gut microbiota” (Vallianou et al., 2021). In adult humans, 
the gut bacterial population is predominantly composed of two phyla: 
the Gram-positive Firmicutes and the Gram-negative Bacteroidetes 
(Vallianou et al., 2019). Microorganisms, through their involvement 
in diverse metabolic processes, modulate host health by conferring 
protection against pathogens and influencing innate immune system 

development. Perturbations in the homeostatic balance of these 
microbial communities, termed dysbiosis, are associated with disease 
states (Vallianou et al., 2019).

Alterations in the composition and function of the gut microbiota, 
termed dysbiosis, have been implicated in various hepatic pathologies, 
including MAFLD. The pathogenic potential of gut microbiota 
dysbiosis in MAFLD is mediated through multiple mechanisms. 
Intestinal bacteria and their metabolic byproducts can translocate to 
the liver via the portal venous system, directly influencing hepatic 
pathophysiology (Wiest et al., 2017; Nawrot et al., 2021). Moreover, 
gut microbiota-derived metabolites, including SCFAs, BAs, LPS, 
choline, and trimethylamine (TMA), have demonstrated correlations 
with MAFLD severity and fibrosis stage. These findings suggest the 
potential utility of microbial metabolites as non-invasive diagnostic 
and prognostic biomarkers for MAFLD (Loomba et al., 2019).

The intestinal barrier, a complex anatomical and functional entity, 
serves as a critical interface mediating gut-liver interactions. This 
barrier functions to restrict the systemic dissemination of microbes 
and their potentially harmful products while facilitating the selective 
absorption of nutrients into the portal circulation for hepatic 
processing (Rochoń et  al., 2024). Maintenance of gut-liver axis 
homeostasis is contingent upon the intricate regulation of microbial 
communities. The liver plays a pivotal role in this regulatory process 
through bidirectional communication with the gut microbiota, 
influencing microbial composition and metabolic activity (Albillos 
et al., 2020).

Recent investigations have revealed significant perturbations in 
gut microbiota composition and gut-liver axis function in human 
subjects with MAFLD (Yang et al., 2023). These alterations appear to 
be  intricately involved in the pathomechanism of the disease, 
potentially contributing to its onset, progression, and associated 
complications (Yang et al., 2023). The elucidation of these complex 
interactions between the gut microbiome and MAFLD pathogenesis 
opens new avenues for research and may lead to the development of 
innovative diagnostic tools and therapeutic interventions.

In conclusion, the multifaceted nature of MAFLD pathogenesis, 
encompassing metabolic dysregulation, gut microbiota dysbiosis, and 
altered gut-liver communication, necessitates a comprehensive and 
integrative approach to understanding and managing this increasingly 
prevalent liver disease.

2 Pathogenesis of MAFLD

The pathogenesis of MAFLD is characterized by a complex 
interplay of multiple factors, encompassing genetic predisposition, 
environmental influences, and lifestyle determinants factors (Sookoian 
and Pirola, 2023). At the core of MAFLD’s pathophysiology lies insulin 
resistance, a metabolic aberration that precipitates an augmented 
release of fatty acids from adipose tissue (Parthasarathy et al., 2020).

The process of lipid accumulation in MAFLD involves a cascade 
of cellular events. As fat absorption escalates, hypertrophic adipocytes 
stimulate the proliferation of hyperplastic adipocytes. This cellular 
expansion attracts an influx of macrophages, which subsequently 
release pro-inflammatory mediators known as adipokines. Over time, 
these hypertrophic adipocytes undergo functional deterioration, 
becoming highly lipolytic. This dysfunction results in the excessive 
production of free fatty acids (FFA), further exacerbating insulin 
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resistance. The surplus of FFA leads to ectopic lipid accumulation, 
surpassing the hepatic capacity for fatty acid oxidation and 
intracellular storage (Elkanawati et al., 2024).

The hepatic uptake of these excess fatty acids culminates in 
hepatic steatosis, marking the initial phase of MAFLD (Zhang et al., 
2018). The progression from simple steatosis to steatohepatitis 
involves a multifaceted process characterized by oxidative stress, 
mitochondrial dysfunction, and endoplasmic reticulum stress.

The accumulation of FFAs within the liver disrupts hepatic lipid 
homeostasis, leading to elevated levels of hepatic triglycerides, free 
cholesterol, and other lipid metabolites. This lipotoxic state within 
hepatocytes triggers a cascade of deleterious consequences, including 
mitochondrial dysfunction and oxidative stress. The impaired 
mitochondrial function, coupled with the excessive influx of FFAs, 
overwhelms the electron transport chain, leading to an increased 
production of reactive oxygen species (ROS). This heightened 
oxidative stress further exacerbates cellular damage and promotes 
inflammation (Tzeng and Lee, 2024).

Adding to this intricate interplay of pathological mechanisms is 
the compromise of the intestinal barrier, often observed in the context 
of MAFLD (Chopyk and Grakoui, 2020). Circulating lipid metabolites 
can disrupt the integrity of tight junctions between intestinal epithelial 
cells, increasing intestinal permeability (Chopyk and Grakoui, 2020). 
This breach allows for the translocation of bacterial products, such as 
LPS, from the gut lumen into the portal circulation. LPS, a potent 
immunostimulatory molecule, activates TLR4 signaling in hepatic 
Kupffer cells and other immune cells (Rivera et al., 2007), leading to 
the production of pro-inflammatory cytokines, such as TNF-α and 
IL-6 (De Muynck et al., 2021).

Inflammation, a hallmark of MAFLD progression, is orchestrated 
by the activation of the innate and adaptive immune systems. 
Pro-inflammatory cytokines, released by activated immune cells in 
response to lipotoxicity and bacterial products, play a central role in 
mediating hepatocellular injury, promoting fibrogenesis, and driving 
the progression from simple steatosis to steatohepatitis (De Muynck 
et al., 2021).

The intricate interplay of these pathophysiological processes 
highlights the complexity of MAFLD pathogenesis. It is not merely an 
excess of hepatic fat accumulation but rather a complex metabolic 
disorder characterized by a web of interconnected mechanisms. 
Understanding these interconnected pathways is critical for 
developing effective therapeutic strategies to combat this increasingly 
prevalent disease.

3 The importance of the intestine 
microbiota—liver communication

The intricate communication between the intestinal microbiota 
and the liver represents a critical axis in maintaining systemic 
homeostasis and metabolic health. This bidirectional interaction is 
mediated through a complex network of anatomical and physiological 
components, each playing a crucial role in the delicate balance 
between host and microbiota.

The gut barrier, a sophisticated multi-layered defense system, 
serves as the primary interface between the host and the luminal 
environment. This barrier comprises a mucus layer, strategically 
organized into two distinct strata: an outer, more permeable layer and 

an inner, densely packed layer (Paradis et al., 2021). Beneath this 
mucus fortress lie the epithelial cells, which form a secondary, equally 
critical line of defense. These epithelial cells are intricately connected 
by tight junctions (TJs), molecular complexes that regulate 
paracellular permeability with exquisite precision (Paradis 
et al., 2021).

Tight junctions, by virtue of their molecular architecture and 
functional plasticity, perform a dual role of paramount importance. 
They act as selective gatekeepers, impeding the invasion of the 
intestinal epithelial cells by potentially pathogenic microorganisms 
while simultaneously facilitating the controlled absorption of essential 
nutrients (Benedé-Ubieto et al., 2024). This discriminatory function 
is fundamental to maintaining the delicate balance between nutrient 
acquisition and host defense (Benedé-Ubieto et al., 2024).

The immune system plays an equally pivotal role in this complex 
interplay between the gut and liver. IgA, secreted locally by plasma 
cells residing in the lamina propria, serves as a first line of 
immunological defense (Vallianou et al., 2024). These antibodies bind 
and neutralize invading microorganisms, preventing their adherence 
to the epithelial surface and subsequent translocation. In parallel, the 
release of IL-23 by antigen-presenting cells triggers the activation of 
group 3 innate lymphoid cells. These cells, in turn, produce IL-22, a 
cytokine crucial for maintaining epithelial barrier integrity and 
promoting antimicrobial peptide production (Vallianou et al., 2024).

The vascular and lymphoid components of the gut-liver axis 
further reinforce this defensive network. The anatomical arrangement 
of the portal circulation, where the majority of small and large 
intestinal blood flow converges before reaching the liver, creates a 
unique immunological niche (Paradis et al., 2021). As blood from the 
intestines reaches the hepatic sinusoids, it encounters a specialized 
population of endothelial cells. These cells play a crucial role in 
activating Kupffer cells, the liver’s resident macrophages (Paradis et al., 
2021). Upon activation, Kupffer cells strategically relocate to the 
periportal area, where they form an additional immunological barrier. 
This strategic positioning allows Kupffer cells to efficiently intercept 
and neutralize pathogens and gut-derived toxins that may have 
breached the intestinal barrier (Paradis et al., 2021).

The gut-liver defensive mechanism operates bidirectionally, with 
a significant liver-to-gut component complementing the gut-to-liver 
axis. This hepatic contribution to intestinal defense is primarily 
mediated through bile, a complex mixture of BAs, IgA, antimicrobial 
peptides, and bicarbonates. This hepatic secretion exhibits potent 
host-defending properties, forming a chemical barrier against 
potential pathogens in the intestinal lumen (Mori et al., 2022). Bile 
acids, the predominant component of bile, exert their antibacterial 
effects through multiple mechanisms. Directly, their detergent-like 
properties can disrupt bacterial cell membranes, leading to cell lysis. 
Indirectly, bile acids activate specific receptors, notably the FXR and 
TGR5, which modulate various aspects of host metabolism and 
immunity (Mori et al., 2022; Buchynskyi et al., 2024b).

Bile acids, a diverse group of steroid acids, are synthesized in the 
liver from cholesterol through a complex series of enzymatic reactions. 
Following their synthesis, these molecules are transported to the 
intestine, where they undergo extensive metabolic transformations 
mediated by the gut microbiota. These microbial-dependent 
modifications include deconjugation, dehydroxylation, oxidation, 
epimerization, and re-conjugation, among other reactions 
(Buchynskyi et al., 2023c) (Figure 1).
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This intricate interplay between host-derived bile acids and 
microbial metabolism results in a diverse pool of bile acid species with 
varying physiological effects.

Bile acids are conventionally categorized into primary and 
secondary bile acids, based on their origin and chemical structure. 
Primary BAs, predominantly cholic acid (CA) and chenodeoxycholic 
acid (CDCA), are synthesized de novo in hepatocytes and subsequently 
excreted into the bile duct (Fiorucci and Distrutti, 2019). In contrast, 
secondary SBAs, including lithocholic acid (LCA), deoxycholic acid 
(DCA), ursodeoxycholic (UDCA), and their respective isoforms (such 
as isolithocholic acid), are products of microbial transformation of 
primary bile acids in the small intestine (Fiorucci and Distrutti, 2019).

The physiological roles of bile acids extend far beyond their 
classical function in lipid emulsification and absorption (Figure 2).

Primary bile acids play a crucial role in maintaining intestinal 
microbiota homeostasis through direct inhibition of pathogenic 
bacterial overgrowth. Moreover, they act as endogenous agonists for 
the FXR in the intestinal mucosa (Fiorucci and Distrutti, 2019). The 
potency of FXR activation follows the order: CDCA > DCA > LCA > 
CA, while UDCA acts as an FXR inhibitor. FXR activation triggers the 
expression of downstream defense genes in the ileal mucosa, 
conferring protection to intestinal epithelial cells against bacterial and 
microbial degradation (Fiorucci and Distrutti, 2019).

Furthermore, FXR activation exerts profound effects on 
hepatic metabolism. It downregulates the expression of liver X 
receptor (LXR) and sterol regulatory element-binding protein 1c 
(SREBP-1c), leading to a reduction in fatty acid and triglyceride 
synthesis in the liver (Han et al., 2019). This mechanism contributes 
to the attenuation of steatogenesis and gluconeogenesis. 
Concurrently, FXR upregulates hepatic glycogen synthesis through 
the activation of fibroblast growth factor (FGF) 15/19, peroxisome 
proliferator-activated receptor gamma (PPARγ), glucose 
transporter type 4 (GLUT-4), and glucagon-like peptide-1 (GLP-1), 
collectively improving insulin sensitivity (Han et al., 2019).

The G protein-coupled bile acid receptor 1 (GPBAR1), also 
known as TGR5, represents another classical bile acid receptor. TGR5 
is preferentially activated by secondary bile acids, with the potency 
order being LCA > DCA > CDCA > CA. The physiological balance 
of secondary bile acids is critical; insufficient levels lead to reduced 
FXR activity and increased systemic inflammation, while excessive 
amounts can induce cellular DNA damage through the generation of 
ROS (Fang et al., 2022). TGR5 activation in intestinal L cells promotes 
the expression of GLP-1, which enhances insulin synthesis and 
secretion, thereby protecting islet β-cells from apoptosis and 
improving glucose homeostasis (Maczewsky et al., 2019). Bile acids 
also exert other influences, which are illustrated in Figures 3, 4.

FIGURE 1

Chemical modifications of bile acids observed in humans. Shows the modifications of the bile acid core: hydroxylation, dehydroxylation, epimerization, 
oxidation, dehydrogenation, dehydration; modifications of the carboxy: thioesterification, taurine amidation, glycine amidation, esterification or 
addition of sugar, oxidative amidation and other amino acid amidation; modifications of the hydroxyl: sulfation, esterification, methylation, acetylation, 
acylation, ether formation or addition of sugar.
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FIGURE 2

The roles of bile acids in gastrointestinal homeostasis and inflammation reduction. Bile acids, synthesized in the liver from cholesterol, are secreted 
into the intestine as primary conjugated bile acids, where they undergo microbial modifications to form secondary bile acids. These bile acids play a 
crucial role in maintaining gut homeostasis by modulating microbial composition, enhancing gut barrier integrity, and influencing immune cell activity. 
Within the intestinal environment, bile acids regulate the balance between pro-inflammatory and anti-inflammatory responses. They promote the 
secretion of IgA, strengthen tight junctions, and reduce gut inflammation through the modulation of macrophages and regulatory T cells (T-regs), 
which secrete anti-inflammatory cytokines such as IL-10 and transforming growth factor-beta (TGF-β). Concurrently, they suppress the production of 
pro-inflammatory cytokines, including IL-1, IL-6, and tumor necrosis factor-alpha (TNF-α). At a systemic level, bile acids influence immune function by 
interacting with nuclear receptors such as the FXR, which modulates CD4+ T cell differentiation. The activation of FXR supports the expansion of anti-
inflammatory regulatory T cells expressing FOXP3 while suppressing the differentiation of pro-inflammatory Th17 cells expressing RORγt. This 
immunomodulatory effect contributes to a reduction in systemic inflammation by decreasing lipopolysaccharide (LPS) translocation into the 
bloodstream. The physiological outcomes of these processes include improved insulin sensitivity, enhanced lipid metabolism, increased short-chain 
fatty acid production, and antioxidant effects.
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Sayin et al. (2013) elucidated a novel aspect of the microbiota-bile 
acid interaction, demonstrating that the gut microbiota not only 
metabolizes bile acids but also modulates signaling through the 
FXR. Their groundbreaking research revealed that the microbiota 
plays a crucial role in deconjugating tauro-beta-muricholic acid 
(TβMCA), a naturally occurring FXR antagonist in mice. This 
deconjugation process effectively promotes FXR signaling, highlighting 
the intricate interplay between microbial metabolism and host nuclear 
receptor activation (Sayin et al., 2013). Furthermore, their findings 
underscored the importance of the microbiota in the production of 
secondary bile acids, which serve as potent ligands for FXR (Kuipers 
et al., 2014).

In a related study, it was observed that microbiota-induced adipose 
tissue inflammation and increased hepatic expression of genes involved 
in lipid uptake occurred in an FXR-dependent manner (Parséus et al., 
2017). This observation further emphasizes the complex relationship 
between the gut microbiome, bile acid metabolism, and host metabolic 
regulation. Intriguingly, when the altered gut microbiota from high-fat 
fed FXR-deficient mice was transferred into germ-free (GF) mice, it 
resulted in less weight gain compared to the microbiota transferred from 
wild-type (WT) counterparts (Sayin et al., 2013). This finding suggests 
that the absence of FXR signaling in the donor mice led to alterations in 
the gut microbiome that conferred a degree of protection against diet-
induced obesity in the recipient GF mice (Parséus et al., 2017).

The reciprocal relationship between bile acids and the gut 
microbiota is further exemplified by the ability of bile acids to 
shape the microbial community composition (Wahlström et al., 
2016). Bile acids promote the growth of bile acid-metabolizing 
bacteria while inhibiting the proliferation of bile-sensitive 
bacterial species. This selective pressure exerted by bile acids plays 
a crucial role in maintaining microbial homeostasis in the gut. 
Studies have demonstrated that biliary obstruction, which impedes 
the flow of bile into the intestine, leads to bacterial overgrowth and 
translocation in the small intestine. Remarkably, this pathological 
state can be  reversed through the administration of bile acids 
(Wahlström et  al., 2016), underscoring the critical role of bile 
acids in regulating microbial ecology and intestinal 
barrier function.

The antimicrobial effects of bile acids are multifaceted. Directly, 
they exert their bactericidal action by disrupting bacterial cell 
membranes, a consequence of their detergent-like properties. 
Indirectly, bile acids modulate the immune system through 
FXR-mediated mechanisms, inducing the transcription of antimicrobial 
agents such as inducible nitric oxide synthase (iNOS) and IL-18 
(Inagaki et al., 2006). These FXR-induced factors contribute to the 
host’s defense against pathogenic microorganisms, further illustrating 
the complex interplay between bile acids, nuclear receptors, and the 
immune system in maintaining gut homeostasis (Inagaki et al., 2006).

FIGURE 3

The influence of conjugated bile acids on receptors and their effects on human cells and tissues. Tau-ursodeoxycholic acid (Tau-UDCA) interacts with 
the TGR5 receptor, resulting in a reduction in microglial inflammation and underscoring its potential role in neuroinflammatory regulation. 
Glucuronidated bile acids, including glucuronidated cholic acid (Glu-CA) and glucuronidated chenodeoxycholic acid (Glu-CDCA), engage multiple 
nuclear receptors such as FXR, PXR, AHR, CAR, and PPARα, although their precise physiological functions remain unclear. Further modifications, 
including the conjugation of alanine (Ala-CA), serine (Ser-CA), and tryptophan (Trp-CA), as well as phenylalanine-conjugated cholic acid (Phe-CA), 
tyrosine-conjugated cholic acid (Tyr-CA), and isoleucine-conjugated cholic acid (Ile-CA), influence epithelial cells through FXR and TGR5 receptor 
activation, thereby enhancing WNT signaling and promoting intestinal stem cell proliferation. The latter three bile acid conjugates have been tested in 
the mouse ileum and have been shown to activate the FXR receptor, leading to the increased expression of FGF15, SHP, CYP8B1, and CYP7A1. 
Additionally, glycine-deoxycholic acid (Gly-DCA) interacts with the TGR5 receptor in granulosa cells, facilitating ovarian dysfunction recovery.
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Both FXR and TGR5 receptors play pivotal roles in regulating bile 
acid synthesis through a negative feedback loop. This regulation is 
achieved by inhibiting the expression of cholesterol 7 alpha-
hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis 
(Goodwin et al., 2000). In patients with MAFLD, a reduced expression 
of FXR has been observed, coinciding with elevated levels of serum 
triglycerides (TGs) (Yang et al., 2010). Moreover, these patients exhibit 
an altered bile acid profile, characterized by an elevated ratio of DCA 
to CDCA (Jiao et al., 2018). These perturbations in bile acid levels and 
compositions may result in a diminished capacity of the FXR and 
TGR5 receptors to exert their regulatory functions, potentially 
contributing to the development of insulin resistance and exacerbating 
lipid accumulation in the liver (Puri et al., 2018).

4 Gut microbiota and hepatic immune 
function

The intricate relationship between the gut microbiota and hepatic 
immune function is mediated by a complex array of microbial 
metabolites, with LPS and SCFAs playing particularly pivotal roles 

(Harte et  al., 2010; Leung et  al., 2016). These microbial-derived 
compounds exert profound and multifaceted effects on liver 
physiology, demonstrating both beneficial and detrimental impacts 
contingent upon their relative abundance and the overall 
metabolic milieu.

Lipopolysaccharide, a key structural component of gram-negative 
bacterial cell walls, has emerged as a critical mediator in the 
pathogenesis of various liver disorders (Harte et  al., 2010). 
Concurrently, short-chain fatty acids, primarily comprising butyrate, 
propionate, and acetate, have been identified as crucial signaling 
molecules that modulate hepatic function (Leung et al., 2016). The 
delicate balance between these microbial metabolites significantly 
influences liver homeostasis, with perturbations in their levels 
potentially contributing to the onset and progression of hepatic 
pathologies (Furet et al., 2010).

It is noteworthy that these microbial-derived metabolites extend 
their influence beyond hepatic function, playing substantial roles in 
systemic metabolic regulation. Their involvement in obesity and 
metabolic disturbances, including T2DM, has been extensively 
documented (Cani et  al., 2007). Murine models have provided 
compelling evidence demonstrating elevated circulating LPS levels 

FIGURE 4

The influence of unconjugated bile acids on receptors and their effects on human cells and tissues. Cholic acid primarily activates the FXR in 
eosinophils, inducing the release of interleukin (IL)-33. DCA and lithocholic acid (LCA) also act through FXR in endothelial cells, stimulating the 
secretion of IL-1, which contributes to a cascade of inflammatory events, including vasoconstriction. DCA, LCA, isoallo-LCA, isoDCA, and 3-oxo-CA 
target the TGR5 on T cells. Activation of TGR5 suppresses the production of pro-inflammatory cytokines such as IL-1β, IL-6, IL-12p70, and TNF while 
promoting T cell differentiation. Furthermore, these bile acids facilitate the differentiation of T cells into regulatory T cells (Tregs) through activation of 
the vitamin D receptor (VDR), leading to increased expression of FOXP3 and RORγt. Additionally, FXR signaling in dendritic cells plays a crucial role in 
Treg modulation and the broader anti-inflammatory response mediated by conjugated bile acids. Collectively, these mechanisms contribute to the 
reduction of inflammation.
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during obesity-induced metabolic dysfunction. This increase in LPS 
activates insulin resistance signaling cascades across multiple tissue 
types, underscoring the systemic impact of this gut-derived endotoxin 
(Cani et al., 2007).

Short-chain fatty acids, despite their well-established beneficial 
effects on metabolic health, present a paradoxical aspect in energy 
homeostasis. These microbial fermentation products contribute 
significantly to host energy metabolism and, under certain 
circumstances, may promote weight gain (Canfora et al., 2015). This 
dichotomous nature of SCFAs is further exemplified by clinical 
observations reporting elevated fecal SCFA concentrations in obese 
individuals compared to their lean counterparts (Schwiertz 
et al., 2010).

The role of dietary choline in the interplay between gut microbiota 
and liver function has garnered significant attention in recent years. 
Choline-deficient diets have long been established as a robust 
experimental model for inducing MAFLD, precipitating both hepatic 
steatosis and marked alterations in gut microbial composition 
(Raubenheimer et al., 2006; Yu et al., 2014). Choline, an essential 
nutrient serving as a precursor to phosphatidylcholine and 
acetylcholine, can undergo oxidation to form betaine. Clinical 
investigations have revealed a diminished betaine-to-choline ratio in 
patients presenting with more severe manifestations of MAFLD, 
suggesting a potential link between choline metabolism and disease 
progression (Dumas et al., 2006).

The metabolic fate of dietary choline is intricately linked to gut 
microbial activity. Specific gut bacteria metabolize choline to TMA, 
which is subsequently oxidized to trimethylamine N-oxide (TMAO) 
by hepatic flavin-containing monooxygenase 3 (FMO3) (Wang et al., 
2011). Metagenomic analyses have associated elevated TMAO levels 
with individuals harboring the Prevotella enterotype, with certain 
microbial taxa exhibiting increased abundance in subjects displaying 
higher TMAO concentrations (Koeth et al., 2013). Animal studies 
have demonstrated a positive correlation between MAFLD severity 
and elevated urinary TMA and TMAO levels (Dumas et al., 2006). 
Furthermore, independent clinical investigations have established a 
significant association between increased TMAO levels and MAFLD 
severity when compared to healthy control subjects (Chen 
et al., 2016).

The gut microbiota serves as a crucial mediator in bile acid 
metabolism, orchestrating the biotransformation of primary bile acids 
into their secondary counterparts through a series of intricate 
enzymatic processes. This microbial-mediated conversion is not 
merely a metabolic footnote but a fundamental process that 
profoundly influences host physiology (Di Ciaula et al., 2017). Bile 
acids, once considered solely as facilitators of lipid emulsification and 
absorption, are now recognized as potent signaling molecules that 
regulate a diverse array of physiological processes, including 
cholesterol homeostasis, glucose metabolism, and energy expenditure 
(Di Ciaula et al., 2017).

Emerging evidence from both human and animal studies has 
elucidated the complex relationship between microbial bile acid 
biotransformation and the pathogenesis of MAFLD and its 
progression to MASH. The microbial enzymes responsible for bile 
acid modifications, including bile salt hydrolases (BSH) for 
deconjugation, and 7α-dehydroxylases for dehydroxylation, play 
pivotal roles in shaping the bile acid pool. These enzymatic activities 
not only alter the physicochemical properties of bile acids but also 

modulate their signaling capacity through nuclear receptors such as 
FXR and TGR5 (Ridlon et al., 2014; Arab et al., 2017).

The production of TMAO, a gut microbiota-derived metabolite, 
introduces an additional layer of complexity to the intricate 
relationship between microbial metabolism and hepatic function. 
TMAO has been demonstrated to exert a profound influence on bile 
acid homeostasis through the inhibition of key enzymes in bile acid 
synthesis, notably CYP7A1 and sterol 27-hydroxylase (CYP27A1). 
This inhibitory action results in a quantitative reduction of the bile 
acid pool, potentially altering the delicate balance of lipid metabolism 
and inflammatory processes in the liver (Chen et al., 2016).

The intricate interplay between gut microbiota, bile acid 
metabolism, and liver function is further exemplified in patients with 
advanced cirrhosis (Aron-Wisnewsky et al., 2020). These individuals 
exhibit profound alterations in both bile acid conversion pathways and 
microbiota composition. Specifically, cirrhotic patients demonstrate a 
marked proliferation of Enterobacteriaceae, concomitant with a 
significant depletion of beneficial bacterial families such as 
Lachnospiraceae, Ruminococcaceae, and the genus Blautia (Aron-
Wisnewsky et al., 2020).

A study conducted in 2019 revealed a correlation between elevated 
levels of 3-(4-hydroxyphenyl) lactate and increased severity of 
MAFLD fibrosis in two independent cohorts, totaling 312 participants 
(Caussy et  al., 2018). This metabolite is a gut microbiota-derived 
product of aromatic amino acid metabolism. These findings align with 
another study demonstrating reduced microbial gene richness and 
alterations in aromatic and branched-chain amino acid metabolism in 
patients with varying degrees of steatosis (Hoyles et al., 2018).

Gut microbiota-derived ethanol may also contribute to MAFLD 
pathophysiology. Studies have shown that children with MAFLD 
harbor an increased abundance of ethanol-producing bacteria 
compared to obese or healthy controls (Zhu et al., 2013). Additionally, 
adults with MASH exhibit elevated breath ethanol concentrations in 
the absence of alcohol consumption (Zhu et al., 2013), suggesting 
increased gut microbiota-derived ethanol production in this 
population. Escherichia enriched in MAFLD patients is capable of 
ethanol synthesis, inducing oxidative stress that is involved in MAFLD 
progression (Zhu et al., 2013).

Research employing inflammasome-deficient murine models 
indicates that gut microbiome modulation plays a pivotal role in 
hepatic health, specifically influencing the progression of MAFLD 
(Henao-Mejia et al., 2012). However, in the absence of direct causal 
evidence, the alternative hypothesis, wherein alterations in gut 
microbial composition are a consequence rather than a cause of liver 
pathology, cannot be discounted. Specifically, the potential for hepatic 
steatosis to induce an increased abundance of Escherichia within the 
gut warrants consideration. This scenario, however, appears 
improbable. Spencer et al. (2011) demonstrated that the induction of 
fatty liver disease resulted in a reduction in the abundance of 
Proteobacteria, the phylum to which Escherichia belongs, within the 
gut microbiome.

In addition to Escherichia, alternative gut microbial genera, such 
as Bacteroides (Frantz and McCallum, 1979), Bifidobacterium 
(Amaretti et al., 2007), and Clostridium (Weimer and Zeikus, 1977), 
have been identified as capable of endogenous ethanol production. 
The cumulative ethanol generated by these diverse microbial 
populations may impose a significant burden on hepatic ethanol 
metabolism. Consequently, an elevated prevalence of 
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ethanol-producing Escherichia within the gut microbiome may 
constitute a pathogenic factor in the transition from obesity to MASH 
(Bashiardes et al., 2016).

Research has identified Klebsiella pneumoniae as a bacterium 
capable of producing ethanol from glucose, even in the absence of 
alcohol intake, supporting this hypothesis (Yuan et al., 2019).

SCFAs, comprising butyrate, acetate, and propionate, are primarily 
produced in the colon through microbial fermentation of indigestible 
complex carbohydrates (dietary fiber) (Furet et al., 2010; Kolodziejczyk 
et  al., 2019). Proposed as key contributors to hepatic triglyceride 
accumulation and weight gain (Samuel et  al., 2008), SCFAs are 
implicated in fatty acid synthesis and gluconeogenesis (den Besten 
et al., 2013). Comparative studies of MAFLD, MASH, and healthy 
controls have revealed elevated fecal SCFA concentrations in MAFLD 
and/or MASH patients (Rau et al., 2018) concurrent with increased 
abundance of SCFA-producing bacterial groups.

The physiological impact of SCFAs is multifaceted and context-
dependent. While SCFAs can exert beneficial metabolic effects, they 
also possess anti-inflammatory properties. Research has demonstrated 
that activation of G protein-coupled receptor 43 (GPR43) by SCFAs 
results in the attenuation of proinflammatory responses and reduction 
of T cell infiltration (Sun et al., 2017).

Given these complex interactions, elucidating the intricate 
interplay between LPS, bile acid metabolism, and SCFAs in the 
development and progression of MAFLD remains a critical area of 
investigation. Further research in this domain may yield valuable 
insights into the pathogenesis of MAFLD and potentially inform novel 
therapeutic strategies.

5 Microbiome signature in MAFLD 
patients

The dysfunction of the gut-liver axis, precipitated by intestinal 
bacterial overgrowth, dysbiosis, and compromised intestinal 
permeability, exerts a profound influence on the pathogenesis and 
progression of MAFLD (Rinaldi et al., 2021).

Interventional studies have demonstrated that modulation of the 
gut microbiota through probiotic administration results in 
amelioration of hepatic injuries, normalization of metabolic 
parameters, and attenuation of inflammatory chemokine levels in 
MAFLD patients (Ma et al., 2013).

Miele et al. (2009) initially demonstrated a correlation between 
MAFLD in humans and elevated intestinal permeability, attributing 
this phenomenon to the heightened incidence of small intestinal 
bacterial overgrowth (SIBO) within this patient population. The 
observed increase in permeability is posited to result from the 
disruption of intercellular tight junctions, thereby potentially 
assuming a significant role in the pathogenic mechanisms underlying 
MAFLD. Conversely, Loguercio et  al. (2005) have reported that 
probiotic interventions can mitigate hepatic injury associated with 
MAFLD and enhance liver functionality. This therapeutic effect is 
thought to be mediated through multiple mechanisms, including the 
inhibition of pathogenic bacterial proliferation, reduction of SIBO, 
restoration of gastrointestinal barrier integrity, and modulation of the 
immune response (Macfarlane and Cummings, 2002; Guarner and 
Malagelada, 2003), collectively contributing to the amelioration 
of MAFLD.

Research has established that probiotics can augment epithelial 
barrier function (Malasanos and Stacpoole, 1991), concurrently 
mitigating intestinal permeability and endotoxemia in individuals 
with hepatic pathologies (Malaguarnera et  al., 2010). Moreover, 
probiotics exert influence over host metabolic processes through 
diverse mechanisms, including the regulation of energy extraction 
from dietary substrates and the modulation of genes implicated in 
substrate metabolism (Vanni and Bugianesi, 2009).

Recent investigations have revealed the potential utility of gut 
microbiome signatures as non-invasive diagnostic biomarkers in 
MAFLD and cirrhosis (Aron-Wisnewsky et al., 2020). Several studies 
have reported a reduced diversity of the gut microbiota in MAFLD 
patients compared to healthy individuals (Aron-Wisnewsky et al., 
2020; Wang et al., 2016; Shen et al., 2017; Forlano et al., 2022; Carpi 
et al., 2022; Loomba et al., 2017) (Figure 5). A comprehensive meta-
analysis of MAFLD patients unveiled specific alterations in gut 
microbial composition, characterized by increased abundance of 
Escherichia, Prevotella, and Streptococcus genera, concomitant with 
decreased populations of Coprococcus, Faecalibacterium, and 
Ruminococcus in fecal samples (Li et al., 2021).

The expansion of the Proteobacteria phylum, particularly 
Escherichia coli and members of the Enterobacteriaceae family, has 
been associated with increased intestinal permeability and elevated 
portal lipopolysaccharide levels. These changes may trigger 
inflammasome activation, contributing to hepatic injury (DuPont and 
DuPont, 2011). Prevotella, a bacterial genus linked to diets rich in 
fruits and vegetables, has been implicated in SCFA production (De 
Filippis et al., 2019). The meta-analysis revealed a consistent increase 
in Prevotella abundance across MAFLD studies.

Conversely, bacterial taxa that exhibited reduced abundance in 
MAFLD patients, such as Ruminococcaceae and Faecalibacterium, are 
known to produce SCFAs through fermentation of dietary soluble 
fibers. These SCFAs activate free fatty acid receptors (FFARs), 
including G-protein coupled receptor 43 and 41 (GPR43, GPR41) 
(Zhang et al., 2015). This activation pathway inhibits proinflammatory 
functions in neutrophils, monocytes, and macrophages, thereby 
reducing the production of TNF-α and monocyte chemotactic 
protein-1. The efficacy of SCFA-rich diets in alleviating insulin 
resistance and inflammation has been demonstrated in both 
experimental mouse models and clinical trials (Kimura et al., 2020). 
Consequently, the decreased abundance of Ruminococcaceae and 
Faecalibacterium may result in lower SCFA levels in the gut, potentially 
exacerbating the inflammatory processes implicated in 
MAFLD pathogenesis.

A comprehensive study conducted by Yang et al. (2023) identified 
specific microbial taxa associated with MAFLD patients. Their 
findings revealed that Ruminococcus obeum and Alistipes were 
significantly enriched in healthy individuals compared to MAFLD 
patients. Alistipes, a member of the Rikenellaceae family, has been 
consistently observed to be depleted in MAFLD patients (Zhu et al., 
2013). Moreover, Alistipes has demonstrated notable anti-
inflammatory properties in both human and animal studies. Several 
investigations have correlated the presence of Alistipes genus with a 
healthy metabolic state (Mancabelli et al., 2017).

Conversely, the same study reported an enrichment of Dorea, 
Lactobacillus, and Megasphaera genera in the MAFLD cohort 
(Mancabelli et  al., 2017). While Dorea is generally considered a 
component of the healthy gut microflora, its increased abundance 
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has been associated with inflammatory conditions such as 
inflammatory bowel disease (IBD), suggesting a potential 
pro-inflammatory role for this bacterium (Shahi et  al., 2017). 
Research by Rocha-Ramírez et  al. (2017) has demonstrated that 
Lactobacillus species can stimulate TNF-α production, indicating 
that the enrichment of Lactobacillus in MAFLD patients may 
contribute to alterations in inflammatory factors implicated in 
disease progression.

Comparative analyses of gut microbial composition have revealed 
that MAFLD patients exhibit lower proportions of Bacteroidetes and 
higher proportions of Prevotella and Porphyromonas species relative 
to healthy controls. In patients with MASH, an increased abundance 
of ethanol-producing bacteria has been observed in their gut 
microbiome, accompanied by elevated blood ethanol concentrations. 
These findings suggest a potential role for alcohol-producing 
microbiota in MASH pathogenesis (Zhu et al., 2013).

A focused investigation of MASH patients demonstrated an 
increased relative abundance of Bacteroidetes compared to non-MASH 
subjects. Furthermore, the proportion of Prevotella was significantly 
diminished in patients with MASH and advanced fibrosis (F ≥ 2) 
compared to those with mild fibrosis (F0/1). Metagenomic profile 
analysis associated the presence of advanced fibrosis (F ≥ 2) with 

alterations in carbohydrate, lipid, and amino acid metabolism 
pathways (Boursier et al., 2016).

A noteworthy study by Del Chierico et  al. (2017) employed 
integrated metagenomic and metabolomic approaches to elucidate the 
microbial and metabolic signatures of MAFLD. Their findings 
corroborated the inverse relationship between microbial diversity and 
obesity/MAFLD severity when compared to healthy controls. 
Importantly, they identified Oscillospira as a potential marker of 
hepatic health, while noting increased abundances of Ruminococcus 
and Dorea correlating with MAFLD progression toward MASH (Del 
Chierico et al., 2017). Of particular interest, the researchers proposed 
that a combination of low Oscillospira abundance and elevated 
2-butanone levels may serve as a specific intestinal signature profile 
for pediatric MAFLD. These bacterial strains and metabolites differ 
from those identified by Loomba et al. (2017), who defined a signature 
comprising several strains and metabolites associated with the 
progression from mild/moderate MAFLD to advanced fibrosis in 
adult populations.

Investigations have indicated that certain bacterial species within 
the genus Turicibacter may exert deleterious physiological effects on 
the host (Vanni and Bugianesi, 2009; Peña-Rodríguez et al., 2022). 
Notably, Ran et al. (2024) and Frantz and McCallum (1979) reported 

FIGURE 5

Gut microbiota diversity in MAFLD. The figure illustrates the dysregulation of specific intestinal microbiota, which may contribute to the elevation of 
inflammatory factors via their metabolic byproducts. Intestinal dysbiosis can induce inflammatory responses in both the intestinal and hepatic tissues, a 
process potentially mediated by the translocation of endotoxins and bacteria consequent to increased intestinal permeability. This phenomenon 
results in an augmented risk of both localized and systemic low-grade inflammation, coupled with a diminished anti-inflammatory capacity within the 
intestine, thereby exacerbating the progression of MAFLD (Aron-Wisnewsky et al., 2020; Wang et al., 2016; Shen et al., 2017; Forlano et al., 2022; Carpi 
et al., 2022; Loomba et al., 2017).
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a positive correlation between the relative abundance (RA) of and 
serum alanine aminotransferase (ALT) and aspartate aminotransferase 
(AST) levels. Furthermore, they demonstrated that therapeutic 
interventions employing Bifidobacterium spp., either alone or in 
combination with rosuvastatin, resulted in improved hepatic function, 
potentially mediated through a reduction in Turicibacter 
RA. Additionally, a comparative analysis of MAFLD patients with 
significant liver fibrosis versus those with no or mild fibrosis revealed 
elevated RAs of Turicibacter, Sarcina, Enterobacter, and in the former 
group (Rodriguez-Diaz et al., 2022). These findings suggest a potential 
role for these bacterial taxa in the progression of MAFLD to advanced 
liver fibrosis.

While the growing body of evidence substantiates the role of 
intestinal dysbiosis in MAFLD pathogenesis, the heterogeneity of 
findings across studies underscores the need for further comprehensive 
investigations to elucidate the precise mechanisms and establish 
consistent microbial signatures associated with disease progression.

6 Microbe toxin and liver damage

While the role of microbial-derived products in driving advanced 
liver disease and its complications, such as hepatic encephalopathy, is 
well-established, the contribution of dysbiosis observed in earlier 
stages of liver diseases to hepatic inflammation remains ambiguous. 
The intestinal epithelial barrier, a critical component in host defense 
against bacterial invasion, has been demonstrated to be compromised 
in various chronic inflammatory disorders, including MAFLD. The 
gut microbiome is postulated to play a pivotal role in maintaining the 
integrity of this epithelial barrier (Chopyk and Grakoui, 2020).

TLRs, the most extensively characterized pattern recognition 
receptors, are capable of initiating inflammatory responses that 
contribute to the progression of liver injury. In human subjects, 
dysbiosis has been associated with alterations in the intestinal barrier, 
resulting in increased intestinal permeability. This permeability leads 
to bacterial translocation, followed by the activation of 
pro-inflammatory pathways upon binding to specific hepatic receptors 
(Rahman et al., 2016; Pendyala et al., 2012; Peterson and Artis, 2014). 
TLRs are multiprotein complexes that recognize pathogen-associated 
molecular patterns (PAMPs), such as bacterial peptidoglycans, LPS, 
double-stranded DNA and RNA (dsDNA, dsRNA) (Heymann and 
Tacke, 2016), as well as danger-associated molecular patterns 
(DAMPs) produced during cellular stress or death (Guo et al., 2015). 
TLR-mediated intracellular signaling involves the activation of 
inflammasomes. Upon stimulation by specific TLRs, an intracellular 
cascade is initiated, culminating in the secretion of biologically active 
cytokines IL-1β and IL-18, which are implicated in inflammation and 
cell death (Szabo and Iracheta-Vellve, 2015). Accumulating evidence 
suggests a role for inflammasomes in MAFLD pathogenesis. However, 
conflicting results have been reported, with some studies indicating 
that the absence of inflammasome components may protect against 
liver injury in experimental MAFLD models, while others have 
demonstrated that their absence is associated with more aggressive 
disease progression (Mridha et al., 2017; Stienstra et al., 2011; Henao-
Mejia et al., 2012).

Macrophages, key components of the innate immune system, 
comprise diverse subpopulations in the liver, including resident 
Kupffer cells and recruited monocyte-derived macrophages (Kolios 

et al., 2006). These cells regulate hepatic immune homeostasis through 
phagocytosis and antigen presentation (Krenkel and Tacke, 2017). 
Traditionally, gut-derived endotoxins, particularly LPS, have been 
identified as primary factors contributing to macrophage activation. 
Under physiological conditions, constitutive exposure to LPS educates 
liver macrophages, fostering LPS tolerance and downregulating TLRs 
(Wu et al., 2015). Pathologically, mounting evidence suggests a crucial 
role for excessive activation of liver macrophages, induced by the 
LPS-TLR axis (specifically TLR4), in MAFLD progression (Rivera 
et al., 2007). The modulation of this specific axis presents a potentially 
efficacious therapeutic strategy for MAFLD. Notably, the application 
of novel bioactive peptides, specifically EWYF and EWFY, has 
demonstrated a reduction in hepatic steatosis, hepatic injury, and 
proinflammatory responses in murine models. In silico molecular 
docking analyses suggest that the observed therapeutic effects of 
EWYF and EWFY may be attributed to their antagonistic activity 
against fructokinase and inhibitory effects on TLR4, thereby 
contributing to the attenuation of MAFLD pathogenesis (Wayal 
et al., 2025).

The increased susceptibility of hepatic macrophages to LPS may 
be  further mediated by lipids (termed lipotoxicity), leading to 
enhanced release of pro-inflammatory cytokines (Kawaratani et al., 
2008), recruitment of effector immune cells (Leroux et al., 2012), and 
ROS activation (Kudo et al., 2009). Furthermore, early colonization of 
the infant gut microbiota originating from obese mothers has been 
shown to increase susceptibility to MAFLD via impaired phagocytosis 
of hepatic macrophages (Soderborg et al., 2018). In addition to LPS, 
certain bacterial metabolites also modulate the immune state of 
hepatic macrophages. Tryptophan metabolites, including tryptamine 
and indole-3-acetate (I3A), have been demonstrated to reduce 
pro-inflammatory cytokine production in macrophages through 
activation of the aryl hydrocarbon receptor (Krishnan et al., 2018).

Emerging evidence has identified N,N,N-trimethyl-5-
aminovaleric acid (TMAVA), a gut microbiota-derived metabolite, as 
a potential driver of hepatic steatosis in MAFLD. Serum levels of 
TMAVA have been observed to be elevated in MAFLD patients and 
have been shown to exacerbate hepatic lipid accumulation (Zhao 
et al., 2020). This microbial metabolite is produced through the gut 
microbial conversion of trimethyllysine, highlighting the role of 
specific bacterial metabolic pathways in the pathogenesis of MAFLD.

Furthermore, the gut microbiome-derived metabolite 
phenylacetate has been implicated as a direct contributor to hepatic 
steatosis. Hoyles et al. (2018) demonstrated that fecal transfer from 
obese women into mice resulted in the development of hepatic 
steatosis, a phenotype that was recapitulated by feeding phenylacetate 
to the recipient mice. This finding underscores the potential for gut 
microbial metabolites to directly influence the development of fatty 
liver disease.

The role of endotoxin, a key microbiota-derived driver, has been 
particularly highlighted in the more advanced stages of liver disease. 
Patients with MASH have been shown to exhibit higher circulating 
endotoxin levels compared to those with simple steatosis. Moreover, 
hepatocytes in MASH livers have been found to be  positive for 
endotoxin, accompanied by an increased abundance of TLR4-positive 
hepatic macrophages (Carpino et al., 2020).

Specific microbial metabolites, such as phenylacetate, have 
been implicated in hepatic lipid accumulation in obese females, 
thereby contributing to the pathogenesis of MASH. At the 
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microbial community level, patients with MAFLD exhibited a 
significant increase in the relative abundance of Proteobacteria, 
Enterobacteriaceae, and Escherichia spp., when compared to 
healthy controls (Del Chierico et al., 2017). Similarly, pediatric 
populations with steatosis or MASH demonstrated a depletion of 
Oscillospira spp., concomitant with an elevation in the abundance 
of Dorea and Ruminococcus spp. (Del Chierico et al., 2017). These 
microbiota alterations associated with metabolic liver disease were 
correlated with increased concentrations of hepatotoxic molecules, 
including 2-butanone and 4-methyl-2-pentanone (Del Chierico 
et al., 2017).

In addition to TLRs and nucleotide-binding oligomerization 
domain-like receptors (NLRs) have also been implicated in MAFLD 
pathogenesis. These pattern recognition receptors are expressed by 
various cell types within the liver and are activated by gut-derived 
microbial components. The activation of TLRs and NLRs leads to the 
production of numerous cytokines and chemokines, ultimately 
driving liver inflammation (Xu et al., 2018).

These studies are important, as they suggest that bacterial 
components are of importance in various aspects of MAFLD, finally 
resulting in fibrosis and cirrhosis (Luo et al., 2016; Petrasek et al., 2013; 
Dela Peña et al., 2005).

7 The influence of pharmacological 
agents on gut microbiota and MAFLD 
progression

Pharmacological agents used in treating metabolic and 
cardiovascular diseases can significantly influence the composition 
and functional activity of the gut microbiota, which plays a crucial role 
in the pathogenesis of MAFLD (Figure 6) (Wang et al., 2022; Nesci 
et al., 2023). The interaction between these drugs and the microbiota 
occurs through various mechanisms, including alterations in 
microbial populations, modulation of SCFA production, bile acid 
metabolism, and regulation of systemic inflammation (Pi et al., 2024; 
Facchin et al., 2024; Buchynskyi et al., 2023a) (see Table 1).

Metformin, one of the most commonly used antidiabetic drugs, 
is known for its ability to modulate the gut microbiota by increasing 
the abundance of beneficial bacteria, particularly Akkermansia 
muciniphila and Bifidobacterium spp. (Wang et al., 2024; Halabitska 
et  al., 2024b; Petakh et  al., 2022). These bacteria enhance gut 
barrier integrity and reduce endotoxin-mediated inflammation (Di 
Vincenzo et  al., 2024; Petakh et  al., 2023b; Islam et  al., 2023). 
Disruption of the intestinal barrier is a key mechanism contributing 
to the progression of MAFLD, particularly the development of liver 
fibrosis through the translocation of microbial metabolites and 
PAMPs into the portal circulation (An et  al., 2022; Plaza-Díaz 
et  al., 2020; Halabitska et  al., 2024a). In addition to improving 
glycemic control, metformin enhances SCFA production, which 
improves insulin sensitivity and lipid metabolism (Petakh et al., 
2023c; He, 2020; Mueller et  al., 2021). Moreover, metformin 
influences bile acid metabolism by modulating the FXR, leading to 
reduced hepatic fat accumulation (Sun et al., 2018; Petakh et al., 
2023a; Halabitska et al., 2024d). It also lowers TMAO levels, which 
are associated with cardiovascular risk in comorbidity (Jing et al., 
2022; Dzhuryak et al., 2020; Belenichev et al., 2024). Collectively, 
these effects suggest a potential hepatoprotective role for 

metformin in MAFLD management, making it a promising 
therapeutic option (Kamyshnyi et al., 2021; Petakh et al., 2023d; 
Beygi et al., 2024).

Statins, including atorvastatin, simvastatin, rosuvastatin, 
pravastatin, and lovastatin, exhibit effects beyond lipid-lowering 
properties by modulating gut microbiota composition (Zivkovic et al., 
2023; Morofuji et al., 2022; Repchuk et al., 2021). Studies have shown 
that statins reduce the abundance of pathogenic Gram-negative 
bacteria that produce LPS, potent triggers of inflammatory responses 
(McFarland et al., 2017; Bilyi et al., 2015; Luo et al., 2024). This is 
particularly relevant for MAFLD patients, as chronic inflammation 
drives disease progression from steatosis to steatohepatitis and fibrosis 
(Buchynskyi et al., 2024a; Gallego-Durán et al., 2022). Additionally, 
statins may enhance SCFA production, positively impacting glucose 
homeostasis, lipid metabolism, and insulin sensitivity (Sun et al., 2022; 
Halabitska et al., 2024c).

Angiotensin-converting enzyme (ACE) inhibitors, such as 
enalapril, lisinopril, ramipril, perindopril, and captopril, also influence 
gut microbiota by reducing inflammatory cytokine levels and 
modulating bacterial composition (Jaworska et al., 2021; Zheng et al., 
2022). Some studies suggest these drugs increase the abundance of 
beneficial SCFA-producing bacteria while decreasing 
pro-inflammatory microorganisms and improving hepatic metabolic 
function in MAFLD patients (Pasta et  al., 2025; Buchynskyi 
et al., 2023b).

Bile acid-modulating agents, including cholic acid, obeticholic 
acid, cholestyramine, and colesevelam hydrochloride, play a key role 
in gut microbiota–liver interactions (Chiang, 2013; Bertolini et al., 
2022). Obeticholic acid, an FXR agonist, regulates bile acid metabolism 
and reduces endotoxemia by altering gut bacterial composition 
(Zhang et  al., 2019; Li Y. et  al., 2024). Dysregulation of bile acid 
homeostasis is linked to hepatic inflammation, highlighting the 
potential of FXR agonists in MAFLD treatment (Radun and Trauner, 
2021; Belka et al., 2024).

As previously discussed, FXR signaling along the gut-liver axis 
influences BA synthesis and enterohepatic circulation, intestinal 
barrier integrity, and bacterial translocation, as well as modulating the 
gut microbiota, all of which are implicated in the pathogenesis of 
MASH. During MASH progression, a reduction in gut microbial 
diversity is observed, accompanied by an increase in the relative 
abundance of Streptococcus and Gram-negative bacteria (Henry 
et al., 2022).

Dysbiotic microbiota contribute to the disruption of the intestinal 
barrier, impacting the mucus lining, intercellular junctions within the 
epithelial layer, and the recently characterized gut vascular barrier 
(GVB) (Mouries et al., 2019). Evidence from animal models indicates 
that microbiota-mediated disruption of the GVB constitutes a critical 
antecedent to the development of MASH. Notably, FXR activation 
has been demonstrated to both prevent and ameliorate GVB 
disruption induced by dysbiosis, resulting in a reduction of bacterial 
translocation to the liver and a subsequent attenuation of 
inflammatory mediators (Mouries et al., 2019). Alterations in BAs 
composition, mediated by FXR activation both directly and through 
the fibroblast growth factor 15/19 pathway, have been shown to 
restore the diminished intestinal microbiota diversity associated with 
a high-fat diet, thereby contributing to the therapeutic management 
of MASH (Zhang et al., 2019). Furthermore, FXR activation has been 
shown to augment ileal expression of the antimicrobial peptides 
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angiogenin-1 and alpha-5-defensin, both of which exhibit diminished 
expression in cirrhotic rat models (Úbeda et al., 2016).

Emerging therapeutic agents, such as maralixibat (an ASBT 
inhibitor), cilofexor, tropifexor, and nidufexor (FXR agonists), have 
demonstrated significant effects on the gut-liver axis (Almeqdadi and 
Gordon, 2024; Duan et  al., 2022). These drugs modulate gut 
microbiota by regulating bile acid metabolism, which can mitigate 
inflammatory processes and improve liver function in MAFLD 
patients (Guo et al., 2023; Zherebiatiev and Kamyshnyi, 2016). ASBT 

inhibition, for instance, decreases bile acid reabsorption in the ileum, 
altering their availability to gut bacteria and shifting the microbial 
composition toward a less inflammatory profile (Fleishman and 
Kumar, 2024; Out et al., 2015).

Overall, evidence suggests that pharmacological agents used to 
treat metabolic and cardiovascular diseases can directly or indirectly 
impact gut microbiota, which is crucial for MAFLD development and 
progression (Gupta et  al., 2022; Halabitska et  al., 2024e; Drożdż 
et al., 2021).

FIGURE 6

Clinical phases and predicted approval probability of drugs for metabolic, cardiovascular, and digestive system diseases. The image presents a matrix of 
pharmaceutical agents, their target diseases, and corresponding clinical trial phases. The color coding indicates trial status: terminated (red), phase 
I (orange), phase II (green), phase III (cyan), and approved drugs (blue). The upper section of the graph categorizes diseases into metabolic, 
cardiovascular, and digestive system disorders. The intensity of the blue shading in the matrix cells represents the predicted probability of drug approval 
for a specific condition. This analysis provides valuable insights into the prospects of pharmaceutical agents, their current status in the clinical pipeline, 
and the likelihood of future approval. Figure 5 was generated using https://repurposedrugs.org, accessed on 15.02.2025.
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TABLE 1 Impact of medications on gut microbiota.

Drug name References Pharmacological class Changes in gut microbiota

Metformin Wu et al. (2017) Anti-diabetic drug Increases Escherichia coli, Bifidobacterium, Akkermansia muciniphila, 

Shewanella, and Blautia. These changes may contribute to its 

antidiabetic effects

Atorvastatin and 

rosuvastatin

Kim et al. (1947), 

Wilmanski et al. (2022), 

and Nolan et al. (2017)

Statins Increase Bacteroides, Butyricimonas, and Mucispirillum. These bacteria 

are linked to inflammation in the ileum (Zheng et al., 2022). A gut 

microbiome rich in Bacteroides and low in diversity is associated with 

stronger statin effects (Pasta et al., 2025). Rosuvastatin also increases 

Lachnospiraceae, Rikenella, and Coprococcus in HFD mice 

(Buchynskyi et al., 2023b)

ACE inhibitors Robles-Vera et al. (2020) 

and Dong et al. (2022)

Antihypertensive drugs Reduce harmful bacteria like Enterobacter and Klebsiella while 

increasing beneficial ones like Odoribacter. In a rat study, losartan 

improved gut microbiota diversity, restored the 

Firmicutes/Bacteroidetes ratio, and enhanced intestinal integrity by 

increasing tight junction proteins (Huang et al., 2022)

Obeticholic acid Liu et al. (2023) FXR agonist Increases Akkermansia muciniphila, Bifidobacterium, Bacteroides, 

Alistipes, Lactobacillus, Streptococcus thermophilus, and Parasutterella 

excrementihominis in HFD mice. Alters bile acid metabolism, 

potentially reducing non-alcoholic fatty liver disease (MAFLD)

UDCA Pearson et al. (2019) FXR antagonist Increases Faecalibacterium prausnitzii and reduces Ruminococcus 

gnavus

Gut microbiome modifier

Probiotic VSL#3 Jena et al. (2020) Probiotics Reduces hepatic inflammation, improves insulin sensitivity, and 

restores gut microbiota balance by increasing Lachnospiraceae, 

Ruminococcus, and Faecalibacterium while decreasing Bacteroidaceae, 

Porphyromonadaceae, and Helicobacteraceae

Lactobacillus bulgaricus and 

Streptococcus thermophilus

Aller et al. (2011) Probiotics Reduce liver enzyme levels (ALT, AST, GGT) but have no effect on 

anthropometric or cardiovascular parameters

Probiotic yogurt 

(Lactobacillus acidophilus 

La5, Bifidobacterium lactis 

Bb12)

Nabavi et al. (2014) Probiotics Lowers ALT, AST, total cholesterol, and LDL cholesterol without 

affecting glucose, triglycerides, or HDL cholesterol

Multistrain probiotic 

supplementation

Sepideh et al. (2016) Probiotics Reduces fasting blood sugar, insulin resistance, and IL-6, while TNF-α 

remains unchanged

Probiotic cocktail Manzhalii et al. (2017) Probiotics Lowers ALT, reduces liver stiffness, BMI, and cholesterol levels. GGT 

reduction is not significant

Symbiter omega Kobyliak et al. (2018) Probiotic with omega-3 Reduces fatty liver index, total cholesterol, triglycerides, and systemic 

inflammation markers (IL-1β, TNF-α, IL-8, IL-6, IFN-γ)

Probiotic cocktail Famouri et al. (2017) Probiotics Decreases ALT, AST, cholesterol, LDL-C, triglycerides, and waist 

circumference. Improves liver ultrasound results in a significant 

proportion of patients

Fecal microbiota transplantation

Study type Patients Outcomes

LFMT-capsules vs. Placebo (NCT05821010) MAFLD Recruitment status

FMT via nasojejunal tube (NCT02469272) Diabetes and MAFLD Improved HOMA index

FMT via duodenal infusion (NCT02721264) MAFLD and MASH Lowered liver venous pressure

FMT, pilot study (NCT02469272) MAFLD and MASH Reduced liver steatosis

FMT vs. standard treatment (NCT02868164) Liver cirrhosis due to MASH Safety

FMT via duodenal infusion (NCT03803540) MAFLD and MASH Evaluated for effectiveness in MASH vs. MAFLD
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8 Gut microbiota, MAFLD and 
nutrition

Over the past few years, substantial evidence has emerged 
elucidating the complex interplay between dietary patterns and the 
intestinal microbiota (Shortt et  al., 2018; Mokkala et  al., 2020). 
Notably, short-term alterations in gut microbial composition have 
been observed following adherence to a low-carbohydrate diet (LCD) 
(Henao-Mejia et al., 2012) and a ketogenic diet (KD) (Ang et al., 
2020). Notably, substantial differences in the relative abundances of 
Firmicutes, Bifidobacterium, Bacteroidetes and Actinobacteria have 
been identified across ketogenic diet (KD), low-fat diet (LFD), and 
HFD, with Bifidobacterium exhibiting the most pronounced decline 
following KD (Ang et al., 2020). Moreover, a negative correlation has 
been observed between Bifidobacterium abundance and 
β-hydroxybutyrate (β-OHB) concentration in the intestinal lumen, 
suggesting that β-OHB inhibits Bifidobacterium growth—a 
relationship that has been further validated through in vitro studies 
(Ang et al., 2020). Additionally, the microbiota signature associated 
with KD has been linked to a reduction in intestinal pro-inflammatory 
Th17 cells (Ang et al., 2020).

Differential formulations of high-fructose diets have been shown to 
elicit distinct perturbations in gut microbiota composition. Specifically, 
high-fructose corn syrup (HFCS) consumption resulted in a reduction 
of butyrate-producing bacteria and a decrease in the 
Firmicutes/Bacteroidetes ratio, whereas a high-fructose diet derived from 
fruits induced an opposing shift (Beisner et al., 2020). This observation 
is clinically significant, as an elevated Firmicutes/Bacteroidetes ratio has 
been implicated in the pathogenesis of metabolic syndrome (Horne et al., 
2020; Magne et al., 2020). Furthermore, individuals exhibiting a higher 
relative abundance of Akkermansia muciniphila demonstrated enhanced 
improvements in insulin sensitivity markers and other clinical 
parameters following calorie restriction interventions (Dao et al., 2016). 
Notably, both low-carbohydrate diets (LCDs) and ketogenic diets (KDs) 
have been shown to increase the abundance of Akkermansia muciniphila 
(Olson et al., 2018). Moreover, oral supplementation with Akkermansia 
muciniphila resulted in improved insulin sensitivity and cholesterol levels 
in overweight/obese, insulin-resistant human subjects (Depommier 
et al., 2019).

9 Host genetics and gut microbiota in 
MAFLD patients

The roles of both genetic factors and the microbiome in MAFLD 
have been extensively investigated. In a comparative analysis involving 
44 obese adolescents with MAFLD and 29 obese adolescents without 
MAFLD, the abundance of fecal Gemmiger and Oscillospira, alongside 
the presence of the PNPLA3 rs738409 variant, demonstrated 
predictive value for hepatic fat fraction (Monga Kravetz et al., 2020).

In a separate investigation involving 10 patients with simple 
steatosis and 22 patients with steatohepatitis, a significant decrease in 
the abundance of Desulfobacteraceae bacteria was observed. 
Conversely, fungal genera including Fusarium, Candida, Aspergillus, 
and Saccharomyces exhibited increased abundance in patients 
harboring the PNPLA3 rs738409 GG genotype (Mascardi et al., 2023).

A microbiome analysis performed on liver tissue samples from 
116 patients with MAFLD, comprising 19 controls, 44 patients with 

metabolic dysfunction-associated steatotic liver (MASL), and 53 
patients with MASH, substantiated the association between host 
genetics and the hepatic microbiome. Specifically, individuals carrying 
the PNPLA3 rs738409 G allele exhibited an enrichment of 
Enterobacter and Marivota in liver tissue, whereas carriers of the 
TM6SF2 rs58542926 T allele showed an increased abundance of 
Pseudoalteromonas and Megamonas.

Carriers of the MBOAT7 rs641738 T allele exhibited a depletion 
of Butyricicoccus and Streptococcus, whereas carriers of the HSD17B13 
rs72613567 TA allele demonstrated decreased abundances of 
Fusobacterium and Parasutterella (Mancabelli et al., 2017). Notably, 
the strongest associations observed were between Enterobacter and the 
PNPLA3 rs738409 polymorphism, and between Pseudoalteromonas 
and the TM6SF2 rs58542926 polymorphism. These two genera belong 
to the Gamma proteobacteria class, which has been associated with 
more severe forms of MAFLD (Sookoian et al., 2020).

In addition to the influence of host genetic variants, MAFLD-
related gene expression profiles also impact the composition of the gut 
microbiome. G protein-coupled receptor 35 (GPR35), an orphan 
receptor highly expressed in gut epithelial and myeloid cells, has been 
shown to mitigate obesity-related MASH through the regulation of 
hepatic cholesterol homeostasis (Wei et al., 2023).

Polymorphisms within the GPR35 gene have been associated with 
intestinal inflammation, metabolic stress, and T2DM (Ellinghaus 
et al., 2013). Global and intestinal-specific deletions of GPR35 have 
been demonstrated to induce gut dysbiosis and increase susceptibility 
to hepatic steatosis and metabolic syndrome. Further research has 
revealed that the absence of GPR35 results in an increased abundance 
of Ruminococcus gnavus in the gut. This increase, in conjunction with 
a high-fat diet, disrupts lipid metabolism and promotes hepatic fat 
accumulation through the production of indoxylsulfuric acid, a 
uraemic toxin.

10 Gut mycobiome and virome in 
MAFLD pathogenesis

Emerging evidence indicates that gut fungi (the mycobiome) 
contribute to MAFLD progression. Clinical studies have identified 
shifts in fungal composition in patients with MAFLD, with an 
overrepresentation of opportunistic yeasts such as Candida albicans 
and certain molds (Mucor spp.) especially in those with NASH or 
advanced fibrosis (Hartmann and Schnabl, 2023; Zeng and Schnabl, 
2024). For example, fecal C. albicans and Mucor levels are significantly 
higher in NASH and fibrotic NAFLD patients compared to those with 
simple steatosis (Hartmann and Schnabl, 2023). These fungal taxa 
correlate with clinical indices of liver injury and dyslipidemia.

Mechanistic links between the mycobiome and hepatic 
inflammation are beginning to be  uncovered. Overgrowth of 
C. albicans in the gut may drive liver disease via translocation of 
fungal products. Patients with NAFLD show elevated anti-Candida 
antibody titers that correlate with disease activity, implying that fungal 
antigens breach the gut barrier and stimulate hepatic immune 
responses (Demir et al., 2022; Hartmann et al., 2021).

Fungal cell wall components like β-glucans can activate pattern 
recognition receptors in the liver: in particular, β-glucans engage the 
C-type lectin receptor Dectin-1 on Kupffer cells and macrophages, 
triggering NF-κB signaling and NLRP3 inflammasome activation 
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(Wang et al., 2023; Li L. et al., 2024). In a recent study, Dectin-1 was 
upregulated in the livers of HFD-induced NAFLD mice and human 
NASH patients; genetic knockout or pharmacologic blockade of 
Dectin-1 markedly attenuated steatosis, inflammation and fibrosis in 
NAFLD models (Wang et al., 2023). These findings suggest that gut 
fungi (through β-glucans and other molecules) exacerbate hepatic 
macrophage activation and inflammatory injury (Hartmann and 
Schnabl, 2023). Likewise, C. albicans produces a pore-forming toxin, 
candidalysin, which has been shown to worsen alcoholic liver disease 
and is hypothesized to similarly promote NAFLD/NASH 
pathogenesis (Li L. et  al., 2024). Conversely, not all fungi are 
deleterious—certain commensal yeasts may have protective effects. 
For instance, Saccharomyces species produce immunomodulatory 
β-glucans that can skew immune responses toward anti-
inflammatory pathways and improve metabolic parameters in 
experimental models (Horneck Johnston et al., 2024; Brown and 
Gordon, 2001).

Beyond bacteria and fungi, the gut virome (community of 
viruses, including bacteriophages and eukaryotic viruses) has gained 
recognition as a key player in NAFLD/MAFLD. Viruses are abundant 
in the intestine and intimately interact with bacterial and mammalian 
hosts, yet their role in liver disease has only recently been explored 
(Carding et al., 2017; Lang et al., 2020). In patients with NAFLD, 
especially those with more advanced disease, significant alterations 
in the fecal virome have been observed. Notably, a 2021 metagenomic 
study demonstrated that individuals with severe NASH or fibrosis 
had a reduction in overall intestinal viral diversity, particularly a loss 
of gut bacteriophage richness, compared to those with milder disease 
or healthy controls (Lang et  al., 2020). The proportion of 
bacteriophages within the total viral community was markedly lower 
in advanced NAFLD, suggesting a relative expansion of eukaryotic 
viruses or prophages in these patients (Lang et  al., 2020). These 
findings raise the possibility that changes in the virome could serve 
as biomarkers of disease severity and might actively influence 
disease progression.

Mechanistically, bacteriophages (phages) shape the gut ecosystem 
by regulating bacterial population dynamics and gene content (Liang 
and Bushman, 2021). Lytic phages can directly affect the gut-liver axis 
by lysing Gram-negative bacteria in the intestine, which leads to the 
release of pro-inflammatory bacterial components such as 
lipopolysaccharide (LPS) into the gut lumen (Hsu et al., 2021). Beyond 
phages, the gut virome includes eukaryotic viruses (viruses infecting 
human cells, fungi, or protozoa, as well as dietary plant viruses), 
though their contributions to MAFLD are still poorly characterized 
(Mirzaei and Maurice, 2017).

11 Conclusion

MAFLD is a complex metabolic disorder characterized by hepatic 
lipid accumulation and subsequent inflammation, closely linked to 
metabolic syndrome and obesity. The pathogenesis of MAFLD 
involves multiple factors, including insulin resistance, lipotoxicity, 
oxidative stress, and inflammatory responses. The gut microbiota 
plays a crucial role in MAFLD development, with dysbiosis 
contributing to liver inflammation through various mechanisms.

This review has highlighted the intricate relationship between the 
gut microbiota and MAFLD, emphasizing the importance of 

understanding the complex interplay between the gut microbiome, 
intestinal barrier integrity, and hepatic immune responses. The 
identification of specific gut microbiome signatures in MAFLD 
patients offers potential diagnostic and therapeutic targets, while the 
influence of microbial metabolites on hepatic function and immune 
responses underscores the need for further research.

The findings of this review have significant implications for the 
prevention and treatment of MAFLD. Modulation of the gut 
microbiota through probiotics, prebiotics, or fecal microbiota 
transplantation may offer a novel therapeutic approach for MAFLD 
management. Additionally, the development of diagnostic tools based 
on gut microbiome signatures may enable early detection and 
monitoring of MAFLD progression.

In conclusion, the relationship between the gut microbiota and 
MAFLD is complex and multifaceted, involving various mechanisms 
and pathways. Further research is necessary to elucidate the precise 
mechanisms underlying this relationship and to develop effective 
therapeutic strategies for the prevention and treatment of MAFLD.
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