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Background: Inflammatory bowel disease (IBD), encompassing Crohn’s disease

(CD) and ulcerative colitis (UC), is linked to significant alterations in gut

microbiota. Conventional diagnostic approaches frequently rely on invasive

procedures, contributing to patient discomfort; hence, non-invasive diagnostic

models present a valuable clinical alternative.

Methods: Metagenomic and amplicon sequencing data were collected

from fecal samples of patients with IBD and healthy individuals across

diverse geographic regions. Diagnostic models were developed using Logistic

Regression (LR), Support Vector Machine (SVM), Naïve Bayes (NB), and

Feedforward Neural Network (FFNN), complemented by an ensemble model

via a voting mechanism. Five-fold cross-validation facilitated the differentiation

between normal controls (NC) and IBD, as well as between CD and UC.

Results: K-mer-based methods leveraging metagenomic sequencing data

demonstrated robust diagnostic performance, yielding ROC AUCs of 0.966 for

IBD vs. NC and 0.955 for CD vs. UC. Similarly, models based on amplicon

sequencing achieved ROC AUCs of 0.831 for IBD vs. NC and 0.903 for

CD vs. UC. In comparison, k-mer-based approaches outperformed traditional

microbiota-based models, which produced lower ROC AUCs of 0.868 for IBD

vs. NC and 0.810 for CD vs. UC. Across all machine learning frameworks, the

FFNN consistently attained the highest ROC AUC, underscoring its superior

diagnostic performance.

Conclusion: The integration of k-mer-based feature extraction with

machine learning offers a non-invasive, highly accurate approach for IBD

diagnosis, surpassing traditional microbiota-based models. This method holds

considerable potential for clinical use, offering an effective alternative to invasive

diagnostics and enhancing patient comfort.
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GRAPHICAL ABSTRACT

Highlights

• Significant microbiota differences were found between NC
and IBD, highlighting its role in disease progression.

• The k-mer approach outperformed traditional models,
improving accuracy, especially in differentiating CD from UC.

• Using smaller k-mers (such as 3-mers and 5-mers)
substantially reduces processing times for feature table
generation.

Background

Inflammatory bowel disease (IBD), comprising Crohn’s disease
(CD) and ulcerative colitis (UC), is a chronic gastrointestinal
disorder characterized by recurrent inflammation, which severely
diminishes patient quality of life. Affecting millions globally, the
highest incidence rates are observed in North America and Europe,
with approximately 0.2% of the European population diagnosed
(Zhao et al., 2020) and an incidence rate of 10.9 per 100,000
person-years in the United States (Lewis et al., 2023). Prolonged
chronic inflammation in patients with IBD leads to complications
such as intestinal strictures, fistulas, and colorectal cancer, further
impacting health and well-being (Rieder et al., 2016; Shah and
Itzkowitz, 2022).

Immune factors, genetic predisposition, environmental
influences, and the gut microbiota are recognized as the four
principal triggers of IBD. Over the past 2 decades, genome-wide
association studies have identified more than 200 IBD risk genes
(El Hadad et al., 2024); in these genetically susceptible individuals,
gut microbiota dysbiosis promotes disease onset and progression
by disrupting immune regulation, impairing epithelial barrier
function, and altering microbial metabolite profiles (Shan et al.,
2022; Turner, 2009). Diagnosis traditionally requires multiple
tests—such as blood work, computed tomography (CT) scans,
and invasive procedures like gastroscopy, colonoscopy, and
enteroscopy—placing considerable psychological and economic
stress on patients (Braithwaite et al., 2021; Deding et al., 2023). In
response, recent research has evaluated the diagnostic potential

of fecal microbiota analysis, achieving an AUC of 0.966 in
distinguishing patients with IBD from healthy individuals (Liang,
2021). Despite this, distinguishing CD from UC remains complex,
with current studies primarily focused on bacterial profiles,
often neglecting other microbiota components such as viruses,
eukaryotes, and archaea.

This study addresses these gaps by integrating machine learning
with traditional biological analyses. Machine learning, recognized
for its capacity to manage large, intricate datasets and detect
patterns without predetermined rules, has become instrumental in
genomics and metagenomics, enhancing biomarker identification,
outcome prediction, and diagnostic accuracy (Loomba et al., 2017).

Our approach includes k-mer analysis, which divides DNA
sequences into subunits of length “k,” enabling the detection of
subtle genetic variations within microbial communities (Koslicki
and Falush, 2016). By leveraging k-mers extracted from fecal
metagenomic data, our models effectively differentiate between
CD, UC, and healthy controls, relying on gut microbiome data.
This integration improves diagnostic accuracy and offers a less
time-intensive, cost-effective alternative to conventional methods,
supporting earlier, more individualized treatment strategies.

Materials and methods

Data source

Our research incorporates samples collected across multiple
continents, with North America contributing 303 samples,
consisting of 84 metagenome and 219 amplicon samples. South
America provides 53 amplicon samples, without metagenome data.
Europe contributes 143 samples, all of which are amplicon-based,
while Asia supplies the highest total with 760 samples, comprising
182 metagenome and 578 amplicon samples (Figure 1a).

Sequencing data are accessible in the European Nucleotide
Archive (ENA). Metagenome samples are derived from projects
ERP017091, SRP075633, SRP324954, and SRP131166, while
amplicon samples originate from ERP006859, SRP072280,
SRP098586, SRP183770, SRP140631, SRP252115, SRP095645,
SRP246037, SRP271847, and SRP131281. This study utilized
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FIGURE 1

Microbiota distribution and diversity in NC, CD, and UC. (a) Global distribution of sample origins by continent, categorized by sequencing data type
(metagenome and amplicon), with total sample count displayed using a color gradient. (b) Principal coordinates analysis (PCoA) plot illustrating
microbiota clustering based on beta diversity, with groups including normal controls (NC), Crohn’s disease (CD), and ulcerative colitis (UC). (c) Box
plots comparing alpha diversity of microbiota across NC, CD, and UC groups using the Shannon and Chao1 indices, with significant p-values from
the Kruskal-Wallis test and post-hoc pairwise comparisons using Dunn’s test for each group. (d) Genus-level stacked bar plot showing the relative
abundance of microbiota in NC, CD, and UC groups. (e) Phylogenetic cladogram displaying microbial composition across NC, CD, and UC groups.
k, kingdom; p, phylum; c, class; o, order; f, family; g, genus; s, species.
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data obtained from publicly available databases that provide
anonymized and de-identified datasets. All procedures complied
with the terms of use of these databases and relevant ethical
guidelines. Therefore, ethical approval and informed consent were
not required for this research.

Within the metagenome dataset, there are 39 normal
control (NC) samples, 197 CD samples, and 30 UC samples
(Supplementary Table S1). The amplicon dataset comprises
249 NC samples, 517 CD samples, and 227 UC samples
(Supplementary Table S2).

Raw data processing and quality control

Our previously published pipeline EasyMetagenome (Bai et al.,
2025) was used to conduct microbiome analysis. Raw reads
were processed with KneadData (v0.6.1), which (1) invoked
Trimmomatic (Bolger et al., 2014) (v0.39) to remove adapters and
trim low-quality bases, and (2) mapped the surviving reads to
the GRCh37/hg19 human reference using Bowtie2 (Langmead and
Salzberg, 2012) (v2.3.5.1). Reads aligning to the host genome were
discarded. The resulting high-quality, host-depleted reads were
subsequently forwarded to downstream taxonomic analysis.

Taxonomic assignment of microbiome

Microbiome composition analysis was conducted with
Kraken2 (Wood and Salzberg, 2014; Wood et al., 2019), aligning
clean reads to the pluspf database, which encompasses sequences
and annotations for bacteria, archaea, eukaryotes, and viruses,
available at https://genome-idx.s3.amazonaws.com/k2_pluspf_
20240605.tar.gz. The analysis applied default parameters to classify
input reads, generating comprehensive reports with abundance
data for each identified taxon. The resulting data were standardized
using relative abundance metrics.

Generating k-mer feature tables from
high-throughput sequencing data

A feature extraction method was developed specifically for
high-throughput sequencing data to efficiently extract k-mer
features from FASTQ files, enabling rapid and precise analysis of
large genomic datasets through parallel processing and accurate
k-mer counting.

Initially, preprocessing was conducted with a custom script,
GetKmerSignature.py, capable of processing both compressed and
uncompressed FASTQ files and supporting batch reading from
paired or single files. The script reads sequence data in 128-
line batches per cycle, retaining only the base sequence lines for
further analysis.

Next, a combinatorial method was used to generate all possible
k-mer sequences composed of the four nucleotide bases (A, G, C,
and T). This step employed a generator function that dynamically
produces all k-mer combinations based on the user-defined length
k, yielding 4k features. For this study, k values of 3, 5, and 7 were
utilized for feature extraction.

In the feature extraction phase, k-mer frequencies within each
sequence were calculated by first constructing a dictionary with
k-mers as keys and their counts as values. Each sequence was then
traversed to update the count of each relevant k-mer. Finally, k-mer
frequencies in each sample were normalized by dividing each k-mer
count by the total number of k-mers in that sample.

To optimize processing efficiency for large datasets, a parallel
computing strategy was implemented using ProcessPoolExecutor,
enabling concurrent processing of multiple samples and
substantially improving computational speed. The results for all
samples were consolidated and output to a designated temporary
directory, with each output file containing k-mer frequencies and
the sample name.

Construction and evaluation of machine
learning models

Four machine learning models—Logistic Regression (LR),
Support Vector Machine (SVM), Naive Bayes (NB), and
Feedforward Neural Network (FFNN)—were evaluated using
5-fold stratified cross-validation, which preserved class proportions
across folds to ensure robust model assessment and mitigate the
impact of data variability.

During each cross-validation fold, the training data was
oversampled using the Synthetic Minority Over-sampling
Technique (SMOTE) to address class imbalance, with
augmentation restricted to the training subset. Features were
standardized using a StandardScaler fitted on the training
data, and the same scaling was applied to the validation data
to maintain consistency. This standardization step enhanced
model performance, accelerated convergence in gradient-based
optimization, and ensured numerical stability. For the FFNN,
data processing was conducted using TensorFlow (v2.13.1) and
Keras (v2.13.1).

Model-specific configurations included setting the LR model
(from scikit-learn) with a maximum of 1,000 iterations to
ensure convergence. The SVM model employed a linear kernel
with probability estimates enabled, while the NB model utilized
GaussianNB. The FFNN architecture was configured with an input
layer containing 16 units and ReLU activation, followed by a
dropout layer with a rate of 0.5, a dense layer with 4 units and ReLU
activation, and a final output layer with a single unit and sigmoid
activation for binary classification. The FFNN was compiled with
the Adam optimizer and binary cross-entropy loss function and
trained for 50 epochs, incorporating early stopping with patience
of 10 epochs to monitor validation loss.

An integrated model was developed to enhance predictive
performance by combining the outputs of the four machine
learning models—LR, SVM, NB, and FFNN—using a weighted
voting approach. Each model’s contribution to the final prediction
was weighted according to its ROC AUC score, which was scaled
to assign a weight for each model. During each cross-validation
fold, predictions from all models were aggregated, with the class
receiving the highest weighted vote selected as the final prediction
for each sample. This ensemble method utilized the strengths of
individual models, offering greater accuracy and robustness than
any single model alone.
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To evaluate model performance, multiple metrics were
employed, including ROC AUC, accuracy, F1 score, precision,
recall (sensitivity), specificity, Matthews Correlation Coefficient
(MCC), and Precision-Recall (PR) curves. Confusion matrices
were generated for each fold and averaged across folds to
provide a comprehensive view of classification performance. Model
performance visualization was achieved by calculating and plotting
the mean ROC curve across the 5 folds for each model, with
standard deviation bands illustrating result variability.

Data analysis and visualization

Data analysis and visualization were conducted using R (v 4.3.2)
and Python (v 3.8). In R, data preprocessing utilized the packages
dplyr, tidyr, data.table, and stringr, while microbial data analysis
employed vegan, phyloseq (McMurdie and Holmes, 2013), and
rstatix. Visualization in R was performed with ggplot2, ggpubr,
pheatmap, and grid. Group comparisons for more than two
groups were conducted using the Kruskal-Wallis test, with pairwise
comparisons using Wilcoxon or Dunn’s tests. In Python, data
preprocessing was managed using pandas, numpy (Harris et al.,
2020), and scikit-learn. Class imbalance in microbial data was
addressed with the imbalanced-learn library, applying the SMOTE
technique to generate synthetic samples for minority classes.
Feature selection was performed through Lasso regression, and
dimensionality reduction was achieved using principal component
analysis (PCA) from scikit-learn (Jolliffe and Cadima, 2016).
Visualization involved matplotlib, with ROC curves and confusion
matrices plotted to assess model performance. Model comparison
metrics included sensitivity, specificity, recall, F1 score, accuracy,
and AUC, with confidence intervals estimated via bootstrapping.

Results

Gut microbiota dysbiosis of patients with
IBD

In this study, the diversity and composition of the gut
microbiota—including bacteria, archaea, eukaryotes, and
viruses—were analyzed across NC, CD, and UC groups.
Principal Coordinates Analysis (PCoA) demonstrated clear
clustering distinctions among these groups, indicating significant
compositional differences in the gut microbiota (PERMANOVA,
p < 0.001, Figure 1b).

Further analysis of alpha diversity using the Shannon
Index showed significant intergroup variations (Kruskal-Wallis,
p < 0.001, Figure 1c). The NC group displayed higher diversity
than both the CD (Dunn’s Test, p < 0.001) and UC (Dunn’s Test,
p = 0.0037) groups, while no significant difference was observed
between the CD and UC groups (Dunn’s Test, p = 1.00). The Chao1
Index similarly indicated significant diversity differences (Kruskal-
Wallis, p < 0.001), with the NC group again showing higher
diversity than the CD (Dunn’s Test, p < 0.001) and UC (Dunn’s
Test, p < 0.001) groups, and no significant diversity difference
between CD and UC (Dunn’s Test, p = 0.68).

Genus-level analysis of gut microbiota composition across the
NC, CD, and UC groups revealed significant enrichment and

depletion of specific genera (Figure 1d; Supplementary Figure S1,
Supplementary Table S3). The NC group was enriched with
beneficial genera such as Alistipes, Anaerostipes, Blautia, Collinsella,
Coprococcus, Dorea, Faecalibacterium, Parabacteroides, Roseburia,
Ruminococcus, and Simiaoa, while Escherichia and Klebsiella were
notably reduced. In the CD group, Akkermansia showed significant
enrichment, potentially linked to probiotic use in CD treatment.
Conversely, the UC group exhibited significant reductions in
Akkermansia, Alistipes, Phascolarctobacterium, and Staphylococcus.

A phylogenetic cladogram was constructed to further examine
microbial phylogenetic relationships (Figure 1e). This cladogram
visualized taxa across multiple levels, highlighting distinct
clusters for NC, CD, and UC groups, with taxa having a linear
discriminant analysis (LDA) score above 4 included. The NC
group was enriched with taxa including Metazoa, Actinomycetota,
Bacillota, Coriobacteriia, Clostridia, Eubacteriales, Lachnospiraceae,
Oscillospiraceae, Rikenellaceae, and Tannerellaceae. In the CD
group, Negativicutes, Veillonellales, and Veillonellaceae were
more abundant. The UC group was characterized by notable
enrichment in Fungi, Pseudomonadota,Ascomycota,Actinomycetes,
Saccharomycetes, Gammaproteobacteria, Enterobacterales,
Saccharomycetales, Lactobacillaceae, Streptococcaceae, and
Enterobacteriaceae.

These results underscore the complex, distinct microbial
landscapes of the NC, CD, and UC groups, suggesting that
microbiota composition differences may serve as biomarkers for
differentiating disease states.

Building diagnostic models using
microbiota data

The gut microbiota plays a pivotal role in human health,
with compositional dysbiosis closely associated with IBD.
Distinct microbial signatures linked to IBD suggest that gut
microbiota profiles could serve as effective non-invasive features in
diagnostic models.

To assess the diagnostic potential of gut microbiota for IBD,
four machine learning models—LR, SVM, NB, and FFNN—were
constructed and evaluated using 5-fold cross-validation to ensure
accuracy and generalizability. The outcome variable was simplified
to two binary classifications: IBD vs. NC and CD vs. UC.

For both the NC vs. IBD and CD vs. UC classifications,
LASSO regression was applied to select relevant features, and
dimensionality was reduced to 16 dimensions using PCA for model
construction (Supplementary Table S4). This process identified 23
features for the NC vs. IBD classification and 22 features for the CD
vs. UC classification.

In the NC vs. IBD classification (Figures 2a,c; Supplementary
Table S5), the FFNN model achieved the highest ROC AUC of
0.848, a Youden Index of 0.493, an MCC of 0.394, and a PR AUC
of 0.966. The ROC AUC values for LR, SVM, and NB were 0.832,
0.818, and 0.744, respectively, with corresponding Youden Index
values of 0.565, 0.565, and 0.392, MCC values of 0.503, 0.509, and
0.339, and PR AUC values of 0.949, 0.948, and 0.927. These results
highlight the potential of microbiota-based models for effectively
distinguishing IBD from healthy states.

In the CD vs. UC classification (Figures 2a,d; Supplementary
Table S5), the FFNN model achieved a ROC AUC of 0.810 and a
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Youden Index of 0.465, an MCC of 0.324, and a PR AUC of 0.960.
ROC AUC values for LR, SVM and NB were 0.695, 0.720 and 0.585,
respectively, with Youden Index values of 0.328, 0.367, and 0.171,
MCC values of 0.246, 0.263, and 0.119, and PR AUC values of 0.915,
0.921, and 0.885.

These findings underscore the challenge of distinguishing
CD from UC based solely on gut microbiota, as the microbial
differences between these conditions are subtle. To improve
predictive accuracy, an integrated model was implemented using
a weighted voting system, where each model’s vote was weighted
by its respective ROC AUC score. This ensemble approach aimed
to harness the strengths of the four models, designating a sample
as positive if the weighted votes for the positive class surpassed

those for the negative class. This method enhanced the reliability
and robustness of our diagnostic tool, achieving an ROC AUC of
0.868 for distinguishing NC from IBD and an ROC AUC of 0.809
for differentiating CD from UC (Figure 2a), with Youden Index
values of 0.621 and 0.411, MCC values of 0.563 and 0.293, and
PR AUC values of 0.965 and 0.963 (Figures 2c,d; Supplementary
Table S4), respectively, indicating significant improvements in
predictive accuracy and robustness.

Despite these advancements, the diagnostic models for CD vs.
UC differentiation fell short of expectations, with a ROC AUC of
0.809, Youden Index of 0.411, MCC values of 0.293, and PR AUC
values of 0.963 (Figure 2; Supplementary Table S4). This relatively
lower performance likely reflects the minimal microbial differences

FIGURE 2

Classification performance of microbiota models in different disease status. (a) Receiver Operating Characteristic (ROC) curves for various
classification models used to distinguish between normal control (NC) and inflammatory bowel disease (IBD), as well as Crohn’s disease (CD) and
ulcerative colitis (UC), based on microbiota data. The models applied include logistic regression (LR), support vector machine (SVM), naïve Bayes
(NB), feed-forward neural network (FFNN), and an integrated model. (b) Precision-Recall Curve for various classification models used to distinguish
between NC and IBD, as well as CD and UC, based on microbiota data. The models applied include LR, SVM, NB, FFNN, and an integrated model. (c)
Confusion matrices showing the performance of different models in distinguishing between NC and IBD based on microbiota data. (d) Confusion
matrices showing the performance of different models in distinguishing between CD and UC based on microbiota data.
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between CD and UC. To address these limitations, future work will
explore new approaches, such as the k-mer method, which focuses
on gene sequence variations. By capturing subtle genetic differences
between CD and UC at the sequence level, the k-mer approach
has the potential to uncover more informative features for model
construction, ultimately enhancing diagnostic accuracy.

Diagnostic potential of k-mer
metagenomic data

To address the challenge of low AUC and Youden Index
in models distinguishing between CD and UC, which fall
below clinical standards, a novel approach was developed
to significantly enhance these metrics. Traditionally, microbial
abundance feature tables derived from metagenomic data require
host sequence removal and classification. However, the absence of
a comprehensive reference database results in considerable data
loss. For instance, even advanced classifiers like Kraken2 leave 56%
of reads unclassified when using the standard database (Hiseni
et al., 2021). This unclassified microbial content, often referred to
as “dark matter,” holds vast untapped potential.

To maximize data utilization, a bold approach was adopted
by directly analyzing raw sequencing data without removing host
sequences or performing classification. Instead, a sliding window
(k-mer) approach was applied, calculating the frequency of each
k-mer within DNA sequences obtained from sequencing. By
leveraging the four nucleotides (ATCG), 4k unique k-mer features
were generated and normalized to relative abundances, forming our
final feature table.

This method circumvents traditional annotation limitations,
allowing the direct use of gene fragments for diagnostic model
construction, ensuring minimal data loss. Leveraging this
comprehensive k-mer feature table enabled the development
of more efficient diagnostic methods, reducing run time
and enhancing throughput. These advancements not only
improve processing speed but also enable more accurate and
robust predictions.

Initially, diagnostic models were constructed using 3-mer, 5-
mer, and 7-mer features, resulting in feature tables containing 64,
1,024, and 16,384 features, respectively. For each k-mer model,
LASSO regression was applied to select relevant features, followed
by PCA to reduce dimensionality to 16 dimensions for model
construction. In the NC vs. IBD classification, 21, 22, and 22
features were selected for the 3-mer, 5-mer, and 7-mer models,
respectively. For the CD vs. UC classification, 23, 19, and 24 features
were selected for the respective k-mer models (Supplementary
Table S4).

In the NC vs. IBD classification (Figure 3; Supplementary
Figures S2, S4), the FFNN consistently yielded the highest ROC
AUC across all k-mer models on the test set. For the 3-mer model,
the FFNN achieved a ROC AUC of 0.965, Youden Index of 0.755,
MCC values of 0.708, and PR AUC of 0.995. The ROC AUCs for
LR, SVM, NB, and the integrated model were 0.892, 0.896, 0.753,
and 0.855, with corresponding Youden Indexes of 0.691, 0.708,
0.438, and 0.662, MCC values of 0.617, 0.658, 0.363 and 0.597, and
PR AUC values of 0.971, 0.976, 0.936, and 0.956 (Supplementary
Table S6). In the 5-mer model, the FFNN reached a ROC AUC

of 0.963 and a Youden Index of 0.718, MCC values of 0.697,
and PR AUC of 0.992, while LR, SVM, NB, and the integrated
models produced ROC AUCs of 0.933, 0.941, 0.785, and 0.912, with
corresponding Youden Indexes of 0.745, 0.708, 0.444, and 0.684,
MCC values of 0.658, 0.659, 0.354, and 0.635, and PR AUC values
of 0.983, 0.989, 0.942, and 0.977 (Supplementary Table S7). For
the 7-mer model, the FFNN recorded a ROC AUC of 0.966 and a
Youden Index of 0.777, MCC values of 0.657, and PR AUC of 0.994,
with LR, SVM, NB, and integrated models showing ROC AUCs of
0.920, 0.914, 0.794, and 0.911, and Youden Indexes of 0.707, 0.736,
0.282, and 0.664, MCC values of 0.622, 0.640, 0.205 and 0.520, and
PR AUC values of 0.977, 0.977, 0.949, and 0.978 (Supplementary
Table S8).

In the CD vs. UC classification (Figure 3; Supplementary
Figures S3, S4), top-performing models varied based on the k-mer
model. For the 3-mer model, the FFNN demonstrated excellent
performance with a ROC AUC of 0.951 and a Youden Index of
0.868, MCC values of 0.769, and PR AUC of 0.992. The ROC AUCs
for LR, SVM, NB, and the integrated model were 0.942, 0.944, 0.875,
and 0.946, with Youden Indexes of 0.816, 0.793, 0.629, and 0.760,
MCC values of 0.667, 0.662, 0.521, and 0.641, and PR AUC values
of 0.991, 0.992, 0.965, and 0.992 (Supplementary Table S6). In the 5-
mer model, the NB model achieved the highest ROC AUC of 0.953
and a Youden Index of 0.573, MCC values of 0.480, and PR AUC
of 0.993, while LR, SVM, FFNN, and integrated models achieved
ROC AUCs of 0.936, 0.930, 0.909, and 0.965, with Youden Indexes
of 0.724, 0.701, 0.691, and 0.793, MCC values of 0.568, 0.562, 0.630,
and 0.657, and PR AUC values of 0.990, 0.990, 0.979, and 0.992
(Supplementary Table S7). For the 7-mer model, the FFNN again
delivered the highest performance with a ROC AUC of 0.925 and a
Youden Index of 0.633, MCC values of 0.503, and PR AUC of 0.988,
while LR, SVM, NB, and the integrated models had ROC AUCs of
0.919, 0.857, 0.955, and 0.905, with Youden Indexes of 0.620, 0.602,
0.326, and 0.593, MCC values of 0.499, 0.502, 0.244, and 0.425, and
PR AUC values of 0.987, 0.969, 0.993, and 0.985 (Supplementary
Table S8).

Diagnostic potential of k-mer amplicon
data

To address the high cost of metagenomic sequencing, which
can impose a financial burden on patients, diagnostic models
were constructed based on k-mer features derived from amplicon
sequencing data.

Using this approach, this study developed models with 3-mer,
5-mer, and 7-mer features, applying LASSO regression for feature
selection and PCA for dimensionality reduction (Supplementary
Table S4). Specifically, for NC vs. IBD classification, 21, 19, and
19 features were selected for the 3-mer, 5-mer, and 7-mer models,
respectively. For the CD vs. UC classification, 21, 17, and 33 features
were selected for the corresponding k-mer models.

In the NC vs. IBD classification (Figure 4; Supplementary
Figures S5, S7), the FFNN consistently achieved the highest ROC
AUC across all k-mer models. For the 3-mer model, the FFNN
attained a ROC AUC of 0.823 and a Youden Index of 0.466, MCC
values of 0.390, and PR AUC of 0.956. The ROC AUCs for LR, SVM,
NB, and the integrated model were 0.769, 0.767, 0.728, and 0.763,

Frontiers in Microbiology 07 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1578005
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-16-1578005 June 25, 2025 Time: 12:37 # 8

Li et al. 10.3389/fmicb.2025.1578005

FIGURE 3

ROC curve comparison for different disease status classification models constructed By k-mer metagenome. (a) ROC curves for various models
classifying IBD vs. NC and CD vs. UC using 3-mer metagenome data. (b) ROC curves for models using 5-mer metagenome data. (c) ROC curves for
models using 7-mer metagenome data.
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FIGURE 4

ROC curve comparison for different disease status classification models constructed by k-mer amplicon. (a) ROC curves for various models
classifying IBD vs. NC and CD vs. UC using 3-mer amplicon data. (b) ROC curves for models using 5-mer amplicon data. (c) ROC curves for models
using 7-mer amplicon data.
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with Youden Index values of 0.390, 0.389, 0.350, and 0.414, MCC
values of 0.308, 0.308, 0.267, and 0.336, and PR AUC values of 0.940,
0.939, 0.920, and 0.936, respectively (Supplementary Table S9). In
the 5-mer model, the FFNN achieved a ROC AUC of 0.831 and
a Youden Index of 0.476, MCC values of 0.414, and PR AUC of
0.958, while the LR, SVM, NB, and integrated models yielded ROC
AUCs of 0.787, 0.791, 0.721, and 0.796, with Youden Indexes of
0.418, 0.438, 0.304, and 0.410, MCC values of 0.329, 0.344, 0.230
and 0.344, and PR AUC values of 0.949, 0.950, 0.918, and 0.950,
respectively (Supplementary Table S10). For the 7-mer model, the
FFNN reached a ROC AUC of 0.830 and a Youden Index of 0.529,
MCC values of 0.413, and PR AUC of 0.962, whereas the LR,
SVM, NB, and integrated models showed ROC AUCs of 0.797,
0.788, 0.706, and 0.773, with Youden Indexes of 0.494, 0.439,
0.264, and 0.418, MCC values of 0.395, 0.352, 0.208, and 0.346,
and PR AUC values of 0.949, 0.945, 0.903, and 0.941, respectively
(Supplementary Table S11).

In the CD vs. UC classification (Figure 4; Supplementary
Figures S6, S7), the FFNN demonstrated the highest performance
across all k-mer models. For the 3-mer model, the FFNN achieved
a ROC AUC of 0.884 and a Youden Index of 0.601, MCC values of
0.545, and PR AUC of 0.955, while the ROC AUCs for LR, SVM,
NB, and the integrated model were 0.839, 0.835, 0.800, and 0.838,
with Youden Index values of 0.503, 0.521, 0.371, and 0.404, MCC
values of 0.458, 0.476, 0.375 and 0.409, and PR AUC values of 0.938,
0.936, 0.918, and 0.935, respectively (Supplementary Table S9). In
the 5-mer model, the FFNN achieved the highest performance with
an ROC AUC of 0.900 and a Youden Index of 0.601, MCC values
of 0.565, and PR AUC of 0.961. The LR, SVM, NB, and integrated
models had ROC AUCs of 0.855, 0.853, 0.795, and 0.848, with
Youden Indexes of 0.521, 0.556, 0.440, and 0.544, MCC values of
0.474, 0.506, 0.425 and 0.493, and PR AUC values of 0.944, 0.942,
0.899, and 0.941, respectively (Supplementary Table S10). For the 7-
mer model, the LR demonstrated the best performance with a ROC
AUC of 0.903 and a Youden Index of 0.622, MCC values of 0.567,
and PR AUC of 0.960, whereas the SVM, NB, FFNN and integrated
models attained ROC AUCs of 0.894, 0.824, 0.871, and 0.891, with
Youden Indexes of 0.608, 0.455, 0.638, and 0.581, MCC values of
0.555, 0.441, 0.581, and 0.537, and PR AUC values of 0.957, 0.927,
0.954, and 0.957, respectively (Supplementary Table S11).

3-mer and 5-mer exhibit higher
processing speeds compared to the
traditional method

Processing times per gigabyte (GB) of data for feature table
generation using 3-mer, 5-mer, and 7-mer methods were compared
with the traditional Kneaddata + Kraken2 approach. Statistical
analysis using the Kruskal-Wallis test, followed by Dunn’s test with
Bonferroni correction for post-hoc analysis, revealed significant
differences among the methods (P < 0.05).

The 3-mer method achieved a mean processing
time of 456.37 ± 91.07 s/GB, significantly faster than
the Kneaddata + Kraken2 method, which averaged
2130.03 ± 1626.63 s/GB (Dunn’s test, p < 0.05; Supplementary
Figure S8). Similarly, the 5-mer method, averaging
1300.61 ± 376.85 s/GB, was significantly quicker than

Kneaddata + Kraken2 (P < 0.05). In contrast, the 7-mer method
had a mean processing time of 21,084.64 ± 7,873.43 s/GB,
which was significantly slower than Kneaddata + Kraken2
(P < 0.05). These results suggest that while the 3-mer and 5-mer
methods provide faster processing times than the traditional
Kneaddata + Kraken2 approach, the 7-mer method demands
substantially more time.

Discussion

The analysis of gut microbiota diversity and composition in this
study revealed significant differences between NC and patients with
IBD, highlighting the potential involvement of gut microbiota in
IBD pathogenesis and progression.

Significant clustering observed in PCoA indicates distinct
microbial community structures among NC, CD, and UC groups.
Consistent with previous findings (Clemente et al., 2018; Tian
et al., 2024), higher microbial diversity was observed in healthy
individuals compared to patients with IBD, reinforcing the
association between microbial diversity and disease status and
emphasizing the importance of considering geographic variability
in microbiome studies.

Distinct microbial features identified across disease states
facilitated the development of diagnostic models based on gut
microbiota (Baxter et al., 2016; Baxter et al., 2016; Wirbel
et al., 2019). While these microbiota-based models performed
well in distinguishing NC from IBD, they were less effective
at differentiating CD from UC. To address this, a k-mer-based
approach was introduced to capture subtle genetic variations at the
gene fragment level. This method demonstrated higher accuracy in
differentiating CD from UC and outperformed traditional models
in NC vs. IBD classification (Vervier et al., 2016).

Traditional microbiota analysis, which relies on microbial
abundance feature tables, has notable limitations (Knight et al.,
2018). Unannotated sequences or “dark matter” are often
discarded, resulting in the loss of potentially valuable information
(Iverson et al., 2012; Rinke et al., 2013). Additionally, reliance on
reference databases requires significant computational resources,
including memory and processing time, which limits clinical
practicality (Quince et al., 2017; Sczyrba et al., 2017). Although
these methods achieved strong ROC AUC scores for NC vs. IBD
classification, their performance in CD vs. UC differentiation was
comparatively poor.

In contrast, the k-mer method retains the entire sequencing
dataset—including genomic “dark matter”—and therefore delivers
a more comprehensive view of the microbiome. The fine-
grained resolution afforded by k-mer profiling surpasses that of
traditional pipelines, enabling the detection of subtle taxonomic
and functional signals that illuminate novel metabolic pathways,
microbial adaptations, and host-microbe interactions. Because
k-mer analysis interrogates gene fragments directly, it pinpoints
genetic distinctions between disease states and consistently yields
higher ROC-AUC scores. Practically, shorter k-mers (e.g., 3-mers
or 5-mers) generate feature tables rapidly, whereas the feature
space for longer k-mers grows exponentially, markedly increasing
computation time without appreciable gains in predictive power;
thus, shorter k-mers provide the optimal balance between efficiency
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and performance for diagnostic modeling (Camarillo-Guerrero
et al., 2021). Each microbial species possesses a unique genomic
composition, so specific k-mers function as precise species-level
fingerprints (Unal et al., 2023). Moreover, k-merspecies possesses
a unique genomic composition, so specific k-mers function
as precise species-level fingerprints omprehensive view of the
mdeed, the discriminative k-mers we identified produced no
significant BLASTN hits in the NCBI nt database, underscoring
that our pipeline captures previously uncharacterized genomic
fragmentspecies poss “dark matter” that conventional, reference-
dependent methods would overlook—and demonstrating both the
sensitivity and discovery potential of this approach.

A key observation in this study was the performance
difference between metagenomic and amplicon sequencing data
when using the k-mer method. Although metagenomic data
achieved higher ROC AUC scores, this improvement came
with longer processing times and a greater financial burden on
patients. In our experience, metagenomic sequencing required
substantially more computational resources and incurred notably
higher costs compared to amplicon sequencing, potentially limiting
its widespread clinical use. Balancing the benefits of enhanced
diagnostic accuracy with the practical limitations of processing time
and cost is essential. Stool-based tests are inherently convenient
and non-invasive for patients, making them promising for large-
scale screening and follow-up monitoring. By capturing a broader
spectrum of microbial signals—including those not yet represented
in existing reference databases ("microbial dark matter")—the
k-mer approach can potentially offer improved diagnostic coverage
compared to traditional marker-based methods, which rely on
prior knowledge of specific microbial sequences. Although shorter
k-mers (such as 3-mers) may initially seem less specific, the
collective pattern of these short fragments, when analyzed via
modern computational and machine learning pipelines, can be
highly discriminative. Moreover, the length of k-mers can be
carefully selected to optimize both sensitivity and specificity for
particular clinical applications. Nevertheless, the high-dimensional
nature of k-mer data poses substantial computational challenges,
and robust validation across diverse patient cohorts is needed
before this method can be routinely integrated into clinical practice.
We also acknowledge the importance of regulatory approval and
cost-effectiveness studies to fully establish its feasibility and ensure
broad accessibility in healthcare settings.

This study has several limitations, including sample size and
the need for external validation. Future research should focus on
validating these models in larger and more diverse cohorts to
strengthen the evidence base and support the integration of these
diagnostic tools into clinical practice. Additionally, longitudinal
studies could provide insight into the models’ utility for monitoring
disease progression or treatment response (Palladino et al., 2016).

In conclusion, while metagenomic sequencing remains the
gold standard for microbiota analysis (Knight et al., 2018), its
high cost and computational demands may restrict its feasibility
in routine clinical settings. Amplicon sequencing offers a more
accessible alternative but may compromise diagnostic accuracy.
Selecting the appropriate sequencing method should consider
clinical requirements, resource availability, and the desired balance
between accuracy and feasibility. Tailoring the diagnostic approach
to specific contexts ensures optimal patient care within practical
constraints. These findings underscore the value of selecting

suitable methodologies based on clinical needs, paving the way for
advancements in microbiota diagnostics and contributing to more
accurate, timely diagnosis of diseases like IBD (Chiu and Miller,
2019).

Conclusion

This study highlights the promise of k-mer-based feature
extraction methods in creating diagnostic models for IBD. This
approach improves efficiency, fully leverages available data, and
enhances model performance over traditional microbiota analysis
techniques. However, overcoming the challenges posed by high-
dimensional feature tables and further optimizing computational
efficiency will be essential for successful clinical implementation.
Our findings emphasize the potential of k-mer-based approaches,
setting the stage for future innovations in microbiota diagnostics
that can lead to more accurate and timely disease diagnoses,
including for conditions such as IBD.
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