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depression
Hongyi Zhao 1, Xiongfeng Qiu 1, Shuyu Wang 2, Yi Wang 1, Li Xie 1, 
Xiuwen Xia 1 and Weihong Li 1,3*
1 School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, 
China, 2 School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese 
Medicine, Chengdu, China, 3 Sichuan College of Traditional Chinese Medicine, Mianyang, China

As a significant mental health disorder worldwide, the treatment of depression has 
long faced the challenges of a low treatment rate, significant drug side effects and a 
high relapse rate. Recent studies have revealed that the gut microbiota and neuronal 
mitochondrial dysfunction play central roles in the pathogenesis of depression: the 
gut microbiota influences the course of depression through multiple pathways, 
including immune regulation, HPA axis modulation and neurotransmitter metabolism. 
Mitochondrial function serves as a key hub that mediates mood disorders through 
mechanisms such as defective energy metabolism, impaired neuroplasticity and 
amplified neuroinflammation. Notably, a bidirectional regulatory network exists 
between the gut microbiota and mitochondria: the flora metabolite butyrate enhances 
mitochondrial biosynthesis through activation of the AMPK–PGC1α pathway, whereas 
reactive oxygen species produced by mitochondria counteract the flora composition 
by altering the intestinal epithelial microenvironment. In this study, we systematically 
revealed the potential pathways by which the gut microbiota improves neuronal 
mitochondrial function by regulating neurotransmitter synthesis, mitochondrial 
autophagy, and oxidative stress homeostasis and proposed the integration of probiotic 
supplementation, dietary fiber intervention, and fecal microbial transplantation to 
remodel the flora–mitochondrial axis, which provides a theoretical basis for the 
development of novel antidepressant therapies targeting gut–brain interactions.
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1 Introduction

Depression is a disorder that severely affects the mental health of the global population 
and is characterized by persistent low mood, loss of interest and cognitive dysfunction (GBD 
2017 Disease and Injury Incidence and Prevalence Collaborators, 2018; COVID-19 Mental 
Disorders Collaborators, 2021; Salari et al., 2020). Globally, depression is one of the leading 
causes of mental disability. According to the World Health Organization (WHO), the global 
prevalence of depression is approximately 4.4%, which means that more than 300 million 
people worldwide suffer from depression (Xu et al., 2024). In addition, depression is one of 
the major causes of suicide deaths, with nearly 800,000 people worldwide dying by suicide 
each year (World Health Organization, 2021). The current treatment of depression faces three 
core challenges: first, a severe undertreatment rate due to stigma, disease cognitive bias, and 
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insufficient healthcare resources; second, limitations of existing 
therapies, including erratic drug efficacy, significant side effects, and 
low accessibility to psychotherapies; and third, a high rate of 
recurrence, which exacerbates the risk of chronicity due to poor 
adherence and difficulties in the management of residual symptoms 
(Lassen et al., 2024; Kajumba et al., 2024; Alang and McAlpine, 2020). 
Its pathogenesis is more complex, with molecular mechanisms 
involving multiple factors, such as neurotransmitter imbalance, 
decreased neuroplasticity and the inflammatory response (Peng et al., 
2015). In recent years, an increasing number of studies have shown 
that the gut microbiota can influence the development of depression 
through immune and nervous system pathways, the HPA axis, and 
neurotransmitter pathways (Zhao et al., 2024). In particular, the gut 
microbiota regulating neuronal mitochondrial function has become a 
new research hotspot. As the energy factories of cells, mitochondria 
play crucial roles in neuronal survival, function and plasticity 
(Klemmensen et  al., 2024). Studies have shown that neuronal 
mitochondrial function is often impaired in depressed patients, which 
may be closely related to gut microbiota dysbiosis (Kunugi, 2021). The 
gut microbiota directly or indirectly affects the health of neuronal 
mitochondria through multiple mechanisms, such as regulating 
immune responses and producing neurotransmitters and various 
metabolites, which in turn affects the occurrence and symptomatic 
manifestations of depression (Qiao et al., 2024). The aim of this study 
was to investigate the mechanisms by which the gut microbiota 
modulates neuronal mitochondrial function through multiple 
pathways, which in turn affects depression, and to elucidate the 
connections between the gut microbiota and brain function. Through 
these studies, we hope to provide new ideas and strategies for the 
prevention, early diagnosis, and individualized treatment 
of depression.

2 Gut microbiota and depression

The gut microbiota is closely related to human health, and the 
effects of the gut microbiota can extend to the brain through a variety 
of pathways. Stress and emotions can affect gut physiology and alter 
the microbiota through the release of stress hormones or sympathetic 
neurotransmitters. Conversely, neurotransmitters secreted by the gut 
microbiota can influence brain-related functions through humoral 
and neuromodulation (Collins et  al., 2012; Young, 2017). Many 
studies at home and abroad have confirmed that the diversity of gut 
microbiota influences human metabolism, the gastrointestinal tract, 
and psychology and is closely related to neurological disorders such 
as depression, Parkinson’s disease, Alzheimer’s disease, and other 
neurological disorders (Flint et al., 2012; Cryan and O'Mahony, 2011; 
Lyte, 2014; De Palma et al., 2017; Bruce-Keller et al., 2015; O'Hara and 
Shanahan, 2006). The gut microbiota plays a very important role in 
the development of depression (Morais et al., 2021).

2.1 The gut microbiota influences the 
development of depression through 
multiple pathways

The gut microbiota affects the occurrence and development of 
depression by regulating the immune system, the HPA axis 

(hypothalamic–pituitary–adrenal axis), and the metabolism of 
neurotransmitters, revealing the key role of the gut-brain axis in the 
regulation of mood and behavior.

2.1.1 Immune and nervous system pathways
Short-chain fatty acids (SCFAs), metabolites of the gut microbiota, 

alleviate neuroinflammation by enhancing intestinal barrier function, 
inhibiting the release of proinflammatory factors, and modulating 
microglial cell activity (Cryan and Dinan, 2012; Silva et al., 2020; 
Parada Venegas et al., 2019); the leaky gut effect triggered by dysbiosis 
allows endotoxins to enter the bloodstream, which triggers brain 
dysfunction via vagal nerve and cytokine infiltration (Feng et al., 2018; 
Macpherson et al., 2012; Alcocer-Gómez et al., 2014; Slyepchenko 
et  al., 2015; Wong et  al., 2016). Moreover, specific strains (e.g., 
Bifidobacterium bifidum and Lactobacillus) improve neuroplasticity 
by upregulating BDNF expression (Sarkar et al., 2016). Mucinophilic 
Ackermannia, whose metabolites enhance intestinal barrier function, 
reduce the release of inflammatory factors (IL-6, TNF-α), and 
ameliorate neuroinflammation by activating mitochondrial energy 
metabolism (Ghaffari et  al., 2023). In addition, the flora affects 
neurotransmitter homeostasis by regulating the tryptophan-5-HT 
metabolic axis, and its metabolic imbalance may lead to the 
accumulation of neurotoxic products, forming a multilayered 
regulatory network from the gut to the brain and ultimately triggering 
abnormalities in depression-related neural circuits.

2.1.2 HPA axis pathway
Stress (stress) exposure is an important factor that triggers or 

aggravates depression (He et al., 2024). The HPA (hypothalamic–
pituitary–adrenal axis) axis has been shown to alter brain function and 
cognitive behavior by affecting the gut microbiota. Depressed patients 
often exhibit hyperactivation of the HPA axis, resulting in elevated 
cortisol levels. During stress, the cerebral cortex activates the HPA 
axis, increasing serum cortisol and CRH levels in the cerebrospinal 
fluid. CRH and its receptors in the colonic mucosa affect intestinal 
epithelial cells, impairing intestinal barrier function, which in turn 
affects the immune and nervous systems through the intestines, 
leading to abnormalities in brain function and cognitive behavior 
(Foster and McVey Neufeld, 2013). Treatment of rats separated from 
their mothers with probiotics (Lactobacillus spp.) during early stress 
was found to normalize basal CORT levels and prevent the associated 
hyperreactivity of the HPA axis (Luna and Foster, 2015).

2.1.3 Neurotransmitter pathways
Recently, the neurotransmitter signaling interference hypothesis 

has been shown to exist between the gut microbiota and depression. 
Lactobacillus can secrete acetylcholine; Bacillus and Serratia 
marcescens can secrete dopamine (Averina et  al., 2020). Synthetic 
pathways for tyrosine, epinephrine, and catecholamine cofactors have 
been reported in E. coli and other bacteria (Pellegrini et al., 2020). 
5-HT, a neurotransmitter that is particularly critical in depression, is 
one of the key metabolites derived from tryptophan by the metabolism 
of the gut microbiota, and tryptophan is the only precursor for the 
synthesis of 5-HT (Xue et al., 2023). In turn, the main sites of 5-HT 
synthesis are enterochromaffin cells in the gut and the nucleus 
accumbens in the brainstem. 5-HT released into the synaptic gap is 
rapidly carried back to presynaptic neurons by the 
5-hydroxytryptamine transporter protein (SERT) (Gao et al., 2020; 
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Pourhamzeh et al., 2022). Other studies have shown that probiotics 
are also capable of producing a variety of neurotransmitters, such as 
GABA and NE (Dinan et  al., 2013), and Prof. Jeroen Raes’ team 
investigated the correlation of microbiome profiles with host quality 
of life and depression, which revealed that gut–brain module analysis 
of fecal macrogenomes revealed a positive correlation between the 
microbial synthesis potential of the dopamine metabolite 
3,4-dihydroxyphenylacetic acid and psychological quality of life and 
suggested a potential role for γ-aminobutyric acid produced by the gut 
microbiota in depression (Valles-Colomer et al., 2019). All of these 
transmitters are active compounds that potentially interact with the 
host and influence brain function (Figure 1).

In summary, the gut microbiota affects depression by modulating 
immune and nervous system pathways, stress response pathways 
(including hyperactivation of the HPA axis), and neurotransmitter 
pathways. These findings provide possible avenues for the development 
of new therapeutic strategies for depression, including probiotics, 
dietary modifications, and fecal microbial transplantation (Qiao 
et al., 2024).

2.2 Bidirectional mitochondria–microbiota 
regulation

Bidirectional mitochondria–microbiota regulation refers to 
mutually influencing and regulating relationships that exist between 
mitochondria and the gut microbiota. Mitochondrial dysfunction can 
alter the composition of the gut microbiota, and changes in the gut 
microbiota can in turn affect mitochondrial function (Wu et al., 2021).

On the one hand, mitochondrial dysfunction directly alters the 
intestinal microenvironment: abnormal mitochondrial energy 
metabolism can lead to hypoxia and oxidative stress in intestinal 

epithelial cells, contributing to the proliferation of pathogenic bacteria 
and inhibiting the colonization of commensal SCFA-producing 
bacteria, exacerbating the imbalance of the flora (Mafra et al., 2019). 
On the other hand, gut microbial metabolites modulate mitochondrial 
function through multiple pathways; for example, butyrate enhances 
mitochondrial biosynthesis and improves neuronal energy 
metabolism through activation of the AMPK-PGC1α pathway, 
whereas tryptophan derivatives protect neuronal cells from oxidative 
damage by scavenging mitochondrial ROS through activation of the 
Nrf2 pathway (Rekha et al., 2024; Dinkova-Kostova and Abramov, 
2015). In addition, eosinophilic Ackermannia can regulate host 
mitochondrial autophagy and maintain cellular homeostasis by 
secreting outer membrane vesicles (Macchione et  al., 2019). This 
bidirectional interaction suggests that targeting mitochondrial–
microbial interactions may be a novel strategy for depression treatment.

3 Mitochondria and depression

In the brains of healthy individuals, mitochondria play 
important physiological roles by maintaining BBB permeability 
(Liu et al., 2024), maintaining hippocampal neuronal homeostasis 
and stabilizing glial cell function, in addition to functions such as 
adenosine triphosphate (ATP) generation, reactive oxygen species 
(ROS) production and ionic homeostasis maintenance (Yang et al., 
2023). In contrast, reduced neurogenesis, impaired synaptic 
plasticity and abnormal neuronal network function are common 
in the hippocampus of patients with depression (MDD) (Allen 
et al., 2018). ATP consumption is high in the brain (Caruso et al., 
2019), and mitochondria are the providers of ATP within the brain, 
which is found mainly in the dendrites and synaptic terminals of 
neurons (Du et al., 2008; Song et al., 2024). Decreased bioenergetic 

FIGURE 1

Multiple pathways through which the gut microbiota influences depression.
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function and mitochondrial dysfunction during times of increased 
metabolic demand are important risk factors for psychiatric 
disorders (Manji et al., 2012; Gardner and Boles, 2011; Klinedinst 
and Regenold, 2015). Mitochondrial dysfunction leads to ATP 
deficiency, increased reactive oxygen species (ROS), and oxidative 
stress (Murphy and Hartley, 2018), which affects neurobiological 
processes, alters synapses, increases apoptosis, and may trigger 
mood disorders (Andreazza and Young, 2014; Caruso et al., 2019). 
Therefore, mitochondrial dysfunction is closely related to the 
development and treatment of mood disorders as well as disease 
progression and is an important target for potential treatment of 
mood disorders (Andreazza and Young, 2014; Kato, 2017; Bansal 
and Kuhad, 2016). Mitochondria play crucial roles in neurogenesis; 
they are not only the main source of neuronal energy but also 
regulate apoptosis, neuroinflammation, oxidative stress, free 
radical production, and calcium ion homeostasis (Johri and Beal, 
2012). Mitochondrial dysfunction also includes the deletion of 
coenzymes and cofactors and changes in membrane potential, 
apoptosis, and inflammatory molecules, all of which disrupt 
mitochondrial structure and function, which in turn affects 
autophagic processes, leading to impaired interneuronal signaling 
and diminished synaptic growth and plasticity, all of which are key 
mechanisms in the pathogenesis of depression (Ben-Shachar and 
Laifenfeld, 2004).

3.1 Mitochondrial dysfunction affects 
neurogenesis

Mitochondria provide energy support for neurogenesis through 
oxidative phosphorylation, which is particularly critical in energy-
intensive processes such as synapse formation, axon extension and 
synaptic transmission (Shabbir et  al., 2021; Guo et  al., 2021). 
Mitochondrial dysfunction (e.g., abnormal oxidative phosphorylation) 
directly leads to insufficient ATP production, interferes with the 
metabolic activities of neural progenitor cells, disrupts neurogenesis, 
and ultimately triggers dysfunctional mood regulation (Princz et al., 
2018; Brunetti et al., 2021; Kausar et al., 2018). Mitochondrial division 
and fusion are necessary to maintain functional and morphological 
stability, and abnormal mitochondrial dynamics affect neuronal 
growth, synaptic plasticity, and network formation (Cagalinec et al., 
2016). Elevated levels of Drp1 phosphorylation lead to excessive 
mitochondrial division, generating fragmented mitochondria, which 
weakens the synaptic terminal energy supply and calcium buffering, 
triggering aberrant presynaptic vesicle release and long-term 
potentiation (LTP) impairment (Grel et al., 2023); moreover, chronic 
stress downregulates Mfn2 expression to inhibit mitochondrial fusion, 
disrupting the functional synergism of the mitochondrial network and 
leading to reduced dendritic complexity and abnormal synaptic 
pruning, which are associated with hippocampal memory deficits and 
depressive-like behaviors (Filadi et al., 2018). Notably, mitochondrial 
transport in neurons is bidirectional. If the reverse transport 
mechanism is disturbed, it may block intersynaptic signaling and 
further weaken the adaptability of neural networks (Kim et al., 2022; 
Fukumitsu et al., 2016). Studies have shown that targeting kinetic 
homeostasis restores synaptic plasticity and improves depressive 
symptoms, suggesting its potential as a new strategy for treatment (Xu 
et al., 2023).

3.2 Mitochondrial dysfunction affects 
neuroapoptosis

Mitochondrial dysfunction has a significant effect on neuronal 
apoptosis (Lopriore et  al., 2022). When mitochondrial damage is 
excessive and unrepairable, cells initiate apoptotic mechanisms that 
disrupt neural homeostasis and health (Wu et al., 2019). Inadequate 
energy supply, oxidative stress, and dysregulation of calcium 
homeostasis due to mitochondrial dysfunction further exacerbate 
neuronal damage (Song et al., 2021). Excessive reactive oxygen species 
(ROS) generated by oxidative stress can induce mitochondrial 
dysfunction, further exacerbating energy metabolism disorders and 
imbalances in intracellular redox homeostasis, which ultimately leads 
to neuronal apoptosis or necrosis and neuronal damage (Moris et al., 
2017). Mitochondria play an important role in Ca2+ signaling. They 
not only regulate the intracellular Ca2+ concentration but also act as 
buffers and sensors involved in the regulation of neuronal excitability 
and cellular physiological functions. Mitochondria regulate energy 
production and neuronal excitability through Ca2+ uptake, and once 
mitochondrial function is impaired, excessive accumulation of Ca2+ 
disrupts Ca2+ homeostasis, ultimately leading to apoptosis (Pinto et al., 
2015). In addition, mitochondrial dynamics are critical for neuronal 
development. Mitochondrial division and fusion are necessary to 
maintain functional and morphological stability, and abnormal 
mitochondrial dynamics affect neuronal growth, synaptic plasticity, 
and network formation.

In summary, mitochondrial dysfunction significantly affects 
neuron generation, development, and synaptic plasticity through 
mechanisms such as insufficient energy supply, oxidative stress, and 
dysregulation of calcium homeostasis, leading to neuronal damage 
and death. These mechanisms play important roles in the pathogenesis 
of depression and may lead to mood regulation and 
cognitive dysfunction.

3.3 Mitochondrial dysfunction affects 
neuroinflammation

Mitochondria are not only the energy factories of neurons but 
also involved in the regulation of immune responses. Through 
interactions with pattern recognition receptors (e.g., NLRP3 
inflammatory vesicles), mitochondria can regulate 
neuroinflammatory responses and influence the immune 
environment of the nervous system (Zhong et al., 2016; Gong et al., 
2020; Zhou et al., 2011). Damaged mitochondria are also capable of 
releasing multiple molecular patterns that activate inflammatory 
responses and trigger neuronal cell damage (Casaril et al., 2021). 
Activated microglia transmit inflammatory signals to astrocytes and 
neurons by releasing fragmented mitochondria, which may lead to 
impaired ATP synthesis within neurons and reduced inner 
mitochondrial membrane potential, thereby affecting normal 
neuronal function (Joshi et al., 2019). Mitochondria play a key role 
in maintaining intracellular calcium homeostasis (Bravo-Sagua 
et  al., 2017). In the presence of mitochondrial dysfunction, 
intracellular calcium ion levels may increase, which contributes to 
the activation of microglia and astrocytes, further exacerbating 
neuroinflammation (Singh, 2022). Mitochondrial DNA (mtDNA) is 
an important signaling molecule in the inflammatory response 
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(West and Shadel, 2017). When mitochondrial function is impaired 
or ruptured, mtDNA can be released into the extracellular space or 
cytoplasm. These exogenous mitochondrial DNAs can activate 
immune responses and trigger neuroinflammation through 
pathways such as the Toll-like receptor (TLR9) (Oka et al., 2012). In 
addition, mitochondrial DNA can induce inflammatory cytokines 
through the cGAS–STING signaling pathway, further exacerbating 
symptoms of depression (Qing et  al., 2020). In summary, 
mitochondria further exacerbate neuroinflammation by interacting 
with pattern recognition receptors, increasing Ca2+ concentrations, 
releasing mitochondrial DNA (mtDNA), and inducing inflammatory 
factors to activate the immune response, which in turn affects 
neuronal function and promotes the activation of microglia 
and astrocytes.

Taken together, mitochondria significantly influence the course of 
neuroinflammation by interacting with pattern recognition receptors, 
increasing Ca2+ concentrations, releasing mitochondrial DNA, and 
activating immune responses, which promote the activation of 
microglia and astrocytes, further exacerbating neuroinflammatory 
responses. These studies reveal the important role of mitochondrial 
dysfunction in the pathogenesis of depression, particularly in the 
modulation of neuroinflammation and impairment of neuronal 
function (Figure 2).

3.4 Epigenetic regulation of mitochondrial 
genes

Epigenetic regulation of mitochondrial genes involves a variety of 
mechanisms, including DNA methylation, histone modification and 
the role of noncoding RNAs. Methylation levels of key mitochondrial 
DNA genes were found to be significantly elevated in the peripheral 
blood and brain tissues of depressed patients, which may exacerbate 
oxidative phosphorylation dysfunction and energy metabolism 
defects by inhibiting the transcription of NADH dehydrogenase and 
cytochrome C oxidase (FC Lopes, 2020). In addition, epigenetic 
modifications of nuclear-encoded mitochondria-related genes are also 
involved in regulation, as demonstrated by studies confirming that 
promoter hypermethylation of PGC-1α, a master regulator of 
mitochondrial biosynthesis, leads to downregulation of its expression, 
reduces mitochondrial production, and correlates with abnormal 
metabolism in the prefrontal cortex in depressed patients (Halling and 
Pilegaard, 2020) and that HDAC inhibitors activate SIRT3 by 
increasing the level of acetylation of histone H3K9, enhancing the 
antioxidant capacity and improving depressive-like behavior (He 
et al., 2023). These epigenetic changes may serve as a molecular bridge 
between environmental stress and mitochondrial dysfunction, 
providing new directions for targeting DNA demethylation or histone 

FIGURE 2

Mitochondrial dysfunction affects nerves.
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modification to treat depression (Yuan et al., 2023). 2.5 Antidepressant 
therapy targeting mitochondrial dysfunction.

Studies have shown that improving mitochondrial function can 
alleviate depressive symptoms through multiple pathways: 
mitochondrial transplantation alleviates neuroinflammation by 
increasing BDNF expression, increasing ATP synthesis, and 
decreasing oxidative stress (Wang et  al., 2019). Ketamine, an 
antagonist of the N-methyl-D-aspartate (NMDA) receptor, has been 
shown to have antidepressant properties, and its rapid treatment may 
be  achieved by decreasing ROS production and increasing the 
expression of OXPHOS-related enzymes (Corriger and Pickering, 
2019; Kawazoe et al., 2022). By increasing the number of autophagic 
vesicles and increasing the expression of mitochondrial endosomal 
membrane uncoupling protein 2 (UCP2), fluoxetine promotes 
mitochondrial autophagy, with reduced ROS production and the 
upregulation of mitochondrial biogenesis-related genes to alleviate 
depression (Zeb et al., 2022). Other drugs, such as lamotrigine, have 
also been shown to inhibit the toxic effects of rotenone (a cytotoxic 
agent that inhibits mitochondrial electron transport chain complex I), 
prevent the opening of the mitochondrial permeability transition 
pore, increase glutathione levels, and maintain the mitochondrial 
membrane potential (Giménez-Palomo et  al., 2021). In addition, 
repetitive transcranial magnetic stimulation significantly reduces 
synaptic loss and neuronal degeneration and inhibits the 
mitochondrial apoptotic pathway, effectively preserving the integrity 
of the mitochondrial membrane (Vucic et al., 2013). In summary, 
improving central mitochondrial energy metabolism disorders can 
effectively alleviate the mental and physical symptoms of depression 
and antioxidative stress, and scavenging ROS can reduce neuronal 
damage and apoptosis, protect neurons, and treat depression.

4 Multiple pathways regulated by the 
gut microbiota in neuronal 
mitochondria affect depression

In recent years, researchers have shown that the gut microbiota 
may regulate neuronal mitochondrial function to intervene in 
depression (Loh et al., 2024; Ribeiro et al., 2020; Yao et al., 2023), a 
finding that provides a new perspective on the prevention and 
treatment of depression.

4.1 There is a close association between 
the gut microbiota and mitochondria

In modern biology, bacteria and mitochondria may share the 
same phylogenetic history, and according to endosymbiotic theory, 
human mitochondria are descendants of microorganisms, and 
primitive mitochondria are believed to be  ancient bacterial 
endosymbionts from which all the mitochondria of eukaryotic 
cells originated (Bajpai et  al., 2018). The ability of host 
mitochondria to influence the diversity of the gut microbiota 
through the release of reactive oxygen species (ROS) suggests that 
the gut microbiota and mitochondria are indeed capable of 
generating biological “crosstalk” to influence health and disease 
(Yardeni et al., 2019). A recent study revealed that mitochondrial 
genotypes are associated with the composition of the mouse gut 

microbiota and that mitochondria, a genetically functional 
chimera thought to be  the ancestor of Methanobacterium, are 
sensitive to the antibiotic chloramphenicol as an operant inhibitor, 
suggesting that the gut microbiota and mitochondria exhibit 
adaptive interactions (Dantzer et al., 2008). A team of researchers 
demonstrated the mechanism of interaction between flora and 
mitochondria through reactomics, screened a total of 2,626 in vivo 
metabolites, and found that 325 out of 437 metabolites from 
mitochondria overlapped with the metabolites of the gut 
microbiota (Thiele et al., 2013).

4.2 Multiple pathways regulation of 
neuronal mitochondria by the gut 
microbiota

4.2.1 Metabolite pathways
The gut microbiota metabolize SCFAs (Koh et al., 2016) (e.g., 

butyric acid, acetic acid, and propionic acid) through fermentation of 
dietary fibers and undigested carbohydrates, and SCFAs can enter the 
brain through the blood–brain barrier. Butyric acid, the most 
important short-chain fatty acid, is an important energy substrate for 
neuronal mitochondria, which increases the efficiency of oxidative 
phosphorylation, regulates mitochondrial autophagy (mitophagy), 
and scavenges damaged mitochondria (Tang et al., 2011), which in 
turn increases the energy supply of neurons. Sodium butyrate is able 
to regulate intracellular signaling pathways by binding to G protein-
coupled receptors, thereby affecting mitochondrial function and 
autophagy (Zhou et al., 2021; Caetano et al., 2023). Table 1 summarizes 
the major derived metabolites of the microbiota and their 
mitochondrial targets.

4.2.2 Neurotransmitter pathways
The gut microbiota activates the vagus nerve through the 

production of neuroactive substances such as γ-aminobutyric acid 
(GABA) and 5-hydroxytryptamine (5-HT), which affect the activity 
of brain neurons and their mitochondrial function (Cryan and Dinan, 
2012). Bifidobacteria and Lactobacillus can directly synthesize GABA 
and norepinephrine, and GABA crosses the mitochondrial membrane 
and regulates the citric acid cycle (Zhu et  al., 2022). In addition, 
GABA regulates the calcium ion concentration in the mitochondria, 
which in turn affects oxidative phosphorylation and energy 
production (Sittipo et  al., 2022). In addition, norepinephrine is 
involved in the stress response and increases energy metabolism, and 
it also crosses the blood–brain barrier into the brain, where it regulates 
the redox state within neuronal mitochondria (O'Donnell et al., 2012). 
5-HT produced by the gut microbiota can affect the central nervous 
system via the vagus nerve, further regulating neuronal activity and 
the mitochondrial membrane potential (Wang et  al., 2023). 
Approximately 95% of 5-HT is produced by the gut microbiota (Terry 
and Margolis, 2017), and 5-HT is an upstream regulator of 
mitochondrial biogenesis and function in cortical neurons (Fanibunda 
et  al., 2019). In addition, 5-HT receptor activation can regulate 
mitochondrial endosomal function and increase the efficiency of 
oxidative phosphorylation via the cAMP pathway (Chen et al., 2007). 
The gut microbiota can generate dopamine by metabolizing tyrosine 
(Strandwitz, 2018). High dopamine concentrations induce 
mitochondrial dysfunction in the brain through reduced 
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mitochondrial respiratory control and loss of membrane potential 
(Czerniczyniec et al., 2010).

4.2.3 Immune pathways
An imbalance of the gut microbiota (e.g., dysbiosis) may lead to 

increased intestinal permeability (i.e., leaky gut phenomenon), 
allowing endotoxins (e.g., lipopolysaccharides, LPS) to enter the brain 
through the blood circulation and activate microglia and astrocytes, 
leading to neuroinflammation (Di Vincenzo et  al., 2024), which 
disrupts neuronal mitochondrial function, leading to oxidative stress 
and energy metabolism disorders (Harland et al., 2020). Moreover, 
chronic inflammation increases the production of reactive oxygen 
species (ROS), which directly damage mitochondrial DNA and 
proteins (Noren Hooten and Evans, 2021; Boyapati et  al., 2017). 
Certain probiotics are able to reduce oxidative stress damage to 
mitochondria by increasing the levels of antioxidant molecules, such 
as glutathione (Xu et  al., 2017). The gut microbiota produces 
inflammatory factors (e.g., tumor necrosis factor alpha (TNF-α), 
interleukin 6 (IL-6), etc.), and the upregulation of inflammatory 
factors can trigger mitochondrial damage in neurons (Feng et al., 
2018; Sun et al., 2022). The stimulation of inflammatory factors also 
enhances neuronal mitochondrial oxidative stress (Semenova et al., 
2024), generating excessive free radicals, which directly damage 
mitochondrial membranes, DNA and proteins and reduce 
mitochondrial function (Figure 3).

In summary, the gut microbiota regulates neuronal mitochondria 
through multiple pathways and signaling mechanisms. This regulation 
is inextricably linked to mechanisms such as immunoinflammatory, 
energy metabolism, mitochondrial autophagy, and oxidative stress.

4.3 Gut microbiota modulation of neuronal 
mitochondria affects depression

The mechanisms underlying the correlations among mitochondria, 
the gut microbiota and depression are complex and multilayered. 
Mitochondria act as the energy factories of neurons and are responsible 

for ATP production. Their dysfunction may lead to energy deficits that 
affect neuronal health and are involved in the regulation of apoptosis 
and oxidative stress, processes that are closely associated with 
depression (Wu et  al., 2021). The gut microbiota enter the brain 
through their metabolites (e.g., short-chain fatty acids, bile acids, 
amino acids, etc.) to affect neuronal and thus mitochondrial function 
(Cheng et al., 2024; Portincasa et al., 2022), and a deficiency of short-
chain fatty acids may lead to impaired mitochondrial function, which 
in turn is able to affect metabolic and neurological function in the brain 
and exacerbate depressive symptoms. Imbalances in the gut microbiota 
(e.g., a decrease in probiotics and an increase in pathogenic bacteria) 
may lead to impaired mitochondrial function in neurons, which 
further affects energy metabolism in the nervous system, increases 
oxidative stress, and in turn promotes the development of depression 
(Irum et  al., 2023). Depression is often accompanied by 
neuroinflammation, which causes nerve damage affecting 
mitochondrial function, and mitochondrial dysfunction exacerbates 
this inflammatory response, which in turn affects the functioning of 
brain regions (e.g., the hippocampus and prefrontal lobes), leading to 
the development of depression (Sittipo et al., 2022). Imbalances in the 
gut microbiota may increase intestinal permeability, contributing to the 
entry of endogenous inflammatory factors into the circulation, which 
further affects neuroinflammation in the brain (Sampson and 
Mazmanian, 2015). Oxidative stress is also an important factor, of 
which mitochondria are a major source, and excessive reactive oxygen 
species (ROS) generated by mitochondrial dysfunction within nerves 
can damage neurons and lead to neuronal dysfunction, whereas the gut 
microbiota can influence the level of oxidative stress by regulating the 
expression of antioxidant enzymes (Liu et al., 2023). The gut microbiota 
can influence neurotransmitter synthesis and metabolism through 
their metabolites, such as 5-HT (serotonin) synthesis, by regulating 
tryptophan metabolism. Mitochondria play important roles in the 
synthesis and metabolism of neurotransmitters, and mitochondrial 
dysfunction may further affect mood regulation by altering these 
metabolic pathways and has been associated with the development of 
depression (Cryan and Dinan, 2012; Bano et al., 2024). Intervention 
with the gut microbiota to modulate neuronal mitochondria is highly 

TABLE 1 Microbiota-derived metabolites and their mitochondrial targets.

Metabolite Mitochondrial action

Butyrate Inhibition of histone deacetylase (HDAC) enhances mitochondrial bioenergetics and oxidative phosphorylation (OXPHOS) (Simão 

et al., 2024); modulation of mitochondrial metabolism in immune cells via GPR109A receptor (Nikolova et al., 2021).

Kynurenine The metabolite quinolinic acid (QUIN) induces mitochondrial ROS accumulation and impairs mitochondrial membrane potential 

through activation of NMDA receptors; kynurenic acid (KYNA) antagonizes glutamate receptors and reduces oxygen chemical 

stress (Fries et al., 2023).

Secondary bile acids (DCA/LCA) Interferes with mitochondrial membrane stability, induces ROS generation and mtDNA damage; inhibits mitochondrial complex 

I activity and reduces ATP synthesis (Simão et al., 2024).

Tryptophan derivatives (5-HT 

precursors)

Tryptophan is metabolized by microorganisms to produce 5-hydroxytryptamine (5-HT), which regulates neurotransmitter release via 

mitochondrial calcium signaling; 5-HT deficiency is associated with impaired mitochondrial energy metabolism (Hoban et al., 2017).

Short-chain fatty acids (SCFAs) Participates in the TCA cycle as a mitochondrial substrate to generate ATP; propionate inhibits HDAC via GPR41 and promotes 

PGC-1α-mediated mitochondrial biogenesis (Nikolova et al., 2021).

Gamma-aminobutyric acid (GABA) Regulation of neuronal excitability via mitochondrial glutamate-GABA shuttle; inhibition of mitochondrial ROS production and 

maintenance of synaptic stability (Fries et al., 2023).

Lipopolysaccharide (LPS) Activation of TLR4 signaling induces mitochondrial ROS release and mtDNA leakage and activates NLRP3 inflammatory vesicles 

(Simão et al., 2024).
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likely to be a target for certain brain-protective drugs (Stoccoro and 
Coppedè, 2021; Franco-Obregón and Gilbert, 2017) (Figure 4).

In summary, there is a close link between the gut microbiota 
and mitochondrial function, which regulates mitochondrial 
function and neuroinflammatory responses through metabolites, 
affecting energy metabolism and neurotransmitter synthesis in 
the brain, which in turn affects mood and behavior. Conversely, 
mitochondrial dysfunction can alter the composition of the gut 
microbiota. Therefore, the ability of the gut microbiota to regulate 
neuronal mitochondria through multiple pathways may provide 
new directions for the treatment of depression.

5 Summary

Depression, a major mental health disorder worldwide, places a 
heavy burden on patients and society. Current treatments face many 
challenges, including inadequate treatment rates, limitations of 
existing therapies, and high relapse rates. In recent years, the roles of 
the gut microbiota and mitochondrial dysfunction in the development 
of depression have gained increasing attention.

In this study, we  systematically elucidated the molecular 
mechanisms by which the gut microbiota affects depression by 
regulating neuronal mitochondrial function through multiple 
pathways, revealing the important role of the gut 

microbe–mitochondrion–brain axis in the development of 
depression. The gut microbiota directly affects energy metabolism, 
the autophagy process, the oxidative stress balance, and the 
epigenetic modification of neuronal mitochondria through 
metabolites (e.g., short-chain fatty acids, neurotransmitters), 
immunomodulation, HPA axis regulation, and neurotransmitter 
metabolism. Among them, short-chain fatty acids such as butyric 
acid enhance mitochondrial biosynthesis through activation of the 
AMPK-PGC1α pathway while regulating mitochondrial 
autophagy to remove damaged organelles; colony-derived 
neurotransmitters such as GABA and 5-HT maintain neuronal 
function by regulating mitochondrial calcium homeostasis and 
oxidative phosphorylation efficiency; and endotoxemia and 
neuroinflammation triggered by imbalance of the gut microbiota 
are generated through ROS overproduction, mitochondrial DNA 
leakage and NLRP3 inflammasome activation exacerbating 
mitochondrial dysfunction. These findings provide a theoretical 
framework for the pathogenesis of depression from a “gut-brain-
mitochondrial” perspective. Regulating the gut microbiota and 
thus neuronal mitochondrial function may provide a new strategy 
for the treatment of depression, and this mechanism of regulating 
neuronal mitochondria via multiple pathways provides new 
targets for the prevention and treatment of depression. Current 
therapeutic strategies for depression have expanded from 
traditional pharmacological interventions to multitargeted 

FIGURE 3

The gut microbiota regulates neuronal mitochondria via multiple pathways.
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modulation of the gut microbiota–mitochondrial axis. In terms of 
treatment, emerging therapies such as phage therapy, engineered 
bacteria, and mitochondrion-targeted antioxidants (e.g., MitoQ) 
have also demonstrated great potential, in addition to probiotic, 
dietary, fecal transplantation, and mitochondrial transplantation 
approaches (Jiao et  al., 2024; Mu et  al., 2025). Phage therapy 
utilizes phages to lyse pathogenic bacteria and reduce infection 
density for the purpose of treating and preventing disease, which 
is especially important in dealing with antibiotic-resistant 
infections (Gordillo Altamirano and Barr, 2019). Engineered 
bacteria can be  genetically engineered to perform special 
functions to overcome the shortcomings of traditional therapies 
and enhance therapeutic effects (Riglar and Silver, 2018). MitoQ, 
a mitochondrion-targeted antioxidant, can effectively reduce the 
amount of ROS produced by mitochondria and alleviate oxidative 
stress and has shown promising results in improving spatial 
memory function and mitochondrial respiratory function in 
disease models such as AD and ALS (Escribano-Lopez et  al., 
2019). However, the translation of mitochondrial transplantation 
and ketamine into clinical practice still faces several challenges; 
for example, the delivery method of mitochondrial transplantation 
needs to be optimized to ensure that exogenous mitochondria can 
effectively reach target tissues and perform their functions, and in 
terms of safety, the immune response and long-term effects 
triggered by mitochondrial transplantation need to be  further 
investigated to ensure its safety and efficacy in clinical applications.

Although current studies have revealed the important role of 
the gut microbiota and mitochondrial dysfunction in depression, 
several limitations and knowledge gaps remain. Most of these 
studies are cross-sectional and do not reflect the dynamic changes 

in mitochondrial autophagy disorders, and the small number of 
clinical samples, mostly basic studies and different modalities of 
depression modeling, have led to inconsistent findings. In addition, 
few studies related to antidepressants and mitochondrial autophagy 
exist, and the specific molecular mechanisms of gut microbiota–
mitochondrial interactions have not been fully clarified, especially 
in humans, where the long-term effects are unknown. In the future, 
longitudinal studies should be conducted to track the changes in 
the composition of the gut microbiota and mitochondrial function 
of patients with depression at different stages of the disease; 
individualized therapeutic targets should be  clarified through 
clinical multi-omic cohort studies; multitargeted strategies 
integrating metabolic interventions and synergism between 
traditional Chinese and Western medicines should be developed; 
and the temporal and spatial dynamics of the bacterial–
mitochondrial interaction should be  analyzed with the help of 
organoid models, synthetic biology, and interdisciplinary 
technologies to break through the existing paradigm. This will 
break through the existing research paradigm and promote the 
transformation of depression treatment from “symptom control” 
to “mechanism repair” in precision medicine.
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