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Arbuscular mycorrhizal fungi (AMF) communities are influenced by soil nutrients

and plant and litter traits during forest ecosystem development. However,

the extent to which these factors influence AMF communities in Xanthoceras

sorbifolium plantations is unclear. In this study, rhizosphere soil samples were

collected from 5-, 13-, 24-, 35-, 47-, and 56-year-old X. sorbifolium plantations.

The AMF community was analyzed using Illumina MiSeq sequencing, and AMF

spores were isolated and identified by wet sieving. The results showed that

X. sorbifolium can establish a symbiotic relationship with AMF at different forest

ages. In total, 5,876 AMF amplicon sequence variant (ASVs) were obtained from

the soil samples and classified into 1 phylum, 4 classes, 6 orders, 12 families,

and 15 genera. Glomus was the dominant genus. In addition, the diversity of

AMF communities increased and then decreased with the age of X. sorbifolium,

with no significant changes observed between 35-, 47-, and 56-year-old

plantations. AMF community variance was primarily determined by soil-specific

factors, with soil pH and root C content being the most influential. The results

revealed the factors that drive AMF communities during the development of

X. sorbifolium and provide valuable information for future conservation and

planting management.
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Xanthoceras sorbifolium, stand age, forest management, arbuscular mycorrhizal fungi,
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1 Introduction

Mycorrhizal symbiosis is a common form of mutually beneficial relationship between
fungi and plants in nature. Arbuscular mycorrhiza (AM) is a type of mycorrhiza, which
is formed by the symbiosis between arbuscular mycorrhiza fungi (AMF) and host plants
(Fei et al., 2022). AMF are non-specific beneficial microorganisms that can establish
a symbiotic relationship with most higher terrestrial plants; thus, they are important
components of natural ecosystems. AMF have an important role in the formation of stable
soil aggregates, soil carbon and nitrogen cycling processes, and plant community succession
ecological processes, with potentially valuable implications for sustainable ecosystems (Gui
et al., 2017; Mohammadi et al., 2019). Changes in the structure and diversity of AMF
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communities affect plant performance and ecosystem stability
(Wagg et al., 2011) and improve plant growth by increasing
nutrient intake (Shao et al., 2021). Numerous studies have
demonstrated that AMF communities are closely related to external
environmental conditions such as soil physicochemical properties,
vegetation type and altitude (Liu et al., 2023). However, for a
single target plant, the age of the stand may be an important
determinant affecting the AMF community (Zhang et al., 2022;
Pereira et al., 2014).

During plant growth, tissues and organs such as leaves and
root systems interact with each other and jointly regulate the
functional traits of plants. Leaves, as an important organ for plant
photosynthesis, have elemental contents that not only indicate
the nutrient supply capacity of the soil but also characterize the
response and adaptation to environmental changes (Wright et al.,
2001). The plant root system is an important organ connecting
the plant and the soil, and fine roots, as the most sensitive and
active part of the root system, are an important source of soil
nutrient pools, with the total global fine root C pool being more
than 5% of the atmospheric C pool. Moreover, the fine roots are the
main organ by which plants expand the soil space, thereby shaping
the physical environment of the soil and allowing the transport
of nutrients and C elements to the surrounding microorganisms
(Nadelhoffer, 2000). The morphology and nutrient content of plant
leaves and root systems change as the stand develops (Vergutz et al.,
2012), and plants can adjust their resource acquisition strategies
by adjusting the changes in leaves and root systems to adapt to
the eco-physiological processes of the tree during development.
AMF are closely related to plant leaf and root traits (Chen et al.,
2022; Kong et al., 2016), and plants can influence soil AMF
communities at a regional scale by providing different quantities
and qualities of litter and root inputs to AMF communities
(Korenblum et al., 2020). As the stand age increases, changes in
stand structure and tree biomass directly affect litter quality and
decomposition rates; moreover, changes in litter traits can alter
nutrient availability, fundamentally affecting AMF communities
(Li et al., 2019). Soil physicochemical conditions can indirectly
influence forest development through plant function and changes
in litter traits. Soil nutrients, physical structure, and pH have been
shown in a large body of literature to have important effects on
AMF communities (Bai et al., 2022; Bonfim et al., 2016). Thus,
AMF communities may be determined by interactions among soil,
plant, and litter traits, and these interactions may be related to
stand development. Although the effects of stand development
on AMF community composition and diversity have been noted
(Bennett and Groten, 2022; Zhu et al., 2024), the effects of relevant
factors on AMF community composition and diversity during
stand development require further investigation.

Xanthoceras sorbifolium is a rare woody oil tree species endemic
to northern China that can be used as biodiesel feedstock. It has
strong ecological adaptability and resistance to adversity and is an
excellent tree species for wind and sand control, soil and water
conservation, and desertification control (Wang et al., 2021). As the
national energy strategy changes, the X. sorbifolium industry has
received increasing attention and the area of artificial planting has
been expanding. Thus, large areas ofX. sorbifolium-producing areas
have been established in Ningxia and Inner Mongolia in China,
and the mode of operation is mainly pure forest (Xie et al., 2010).
However, pure forests are prone to soil degradation, community

decline, and reduced productivity (Wang, 2023), which ultimately
limit the sustainable management of plantation forests and the
ecological benefits of vegetation restoration. The X. sorbifolium
industry is in its infancy, and current research is mainly focused
on medicinal value, nutrient composition, and breeding for rapid
propagation (Lang et al., 2020; Ji et al., 2020). Moreover, studies
on X. sorbifolium mycorrhizal material are extremely limited. Zhu
et al. (2015) found that the diversity of the rhizosphere fungal
community of X. sorbifolium in different forest ages (5–10 a) was
significantly correlated with soil environmental factors. Scholars
have also identified Vesicular-Arbuscular (VA) mycorrhizal fungal
structures in 10–12 a X. sorbifolium root systems (Zheng,
2017). Compared to the singularity of X. sorbifolium mycorrhizal
studies by previous scholars, the present study was conducted in
Wengniute Banner, Chifeng City, Inner Mongolia Autonomous
Region, China, where X. sorbifolium plantation forests of different
forest ages (5, 13, 24, 35, 47, and 56 years old) were selected,
and AMF leaf blades, roots, litter, and rhizosphere soils were
collected from AMFs of different forest ages. The objectives of
this study were (1) to elucidate the patterns of changes in AMF
community diversity, soil physicochemical properties, plant and
litter characteristics with stand age in X. sorbifolium plantation
forests. (2) Quantified the relative contributions of soil, plant,
and litter properties and explored key drivers affecting AMF
community change during X. sorbifolium development. A good
understanding of the differences in soil microbial community
composition and diversity in different stand stages of X. sorbifolium
plantation forests, and in particular the magnitude of structuring
effects, driven by changes in plant, root, or soil properties, which
can provided reference for us to devise management strategies that
regulate below-ground organisms in order to improve the nutrient
sustainability of low-productivity X. sorbifolium plantation forests.

2 Materials and methods

2.1 Study area

This study was conducted at a forest farm in Wudan Town
(119◦45′48′′-120◦43′58′′E, 42◦27′26′′-42◦38′33′′N) (Figure 1),
Wengnute Banner, Chifeng City, Inner Mongolia Autonomous
Region, China. The area has a typical temperate continental
climate, with an average annual temperature of 5.9◦C, average
annual precipitation of 300–330 mm, and a soil type of mainly
sandy chestnut-calcium soil.

2.2 Experimental design and plant and
soil sampling

X. sorbifolium began to develop in the early 1960s and was
planted on a large scale in the 1970s (Feng et al., 2022). The
largest area of X. sorbifolium plantation forests in China was
created in the study region, and the ideal chronological order of
X. sorbifolium plantation forests with different developmental years
was established, with the oldest being 56a. In August 2023, 5, 13,
24, 35, 47, and 56 years X. sorbifolium plantations (abbreviated as
YF, MAF, NMF, MFI, MFII, and OMF, respectively) with similar
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FIGURE 1

Location and sampling sites of forest farms in Udan Township, Wengniute Banner, Chifeng City, Inner Mongolia Autonomous Region, China.

stand conditions were selected. Three sample plots of 20 × 20
m were established in each stand, and the information of the
sample plots is shown in Supplementary Table 1. In each sample
plot, three X. sorbifolium with similar diameter at breast height
(DBH) were randomly selected, and leaves, litter, rhizosphere soil,
and fine roots (≤ 2 mm in diameter) were collected from each
tree (see the Supplementary file for details on the sampling and
measurement methods). Statistical results of plant and litter traits
and soil properties are presented in Supplementary Tables 3–5, and
specific variables and abbreviations are presented in Supplementary
Table 2. All samples were taken back to the laboratory in a 4◦C
sampling box. The soil was divided into three portions, with one
portion stored in a refrigerator at −80◦C for soil DNA analysis,
another portion of fresh soil was stored at 4◦C for nitrate nitrogen
(N-NO3

−) and ammonium nitrogen (N-NH4
+) analysis, and the

remaining soil air-dried and passed through a 2 mm sieve for
chemical analysis.

2.3 AMF colonization rate

The roots were cut into 1 cm pieces, decolorized in a KOH
solution at 90◦C for 60 min, and then rinsed. These root samples
were softened with alkaline H2O2 (the softening time was adjusted
according to the hardness of the roots), placed in 1% HCI solution
for acidification, stained with Trypan blue dye solution containing
0.12% (w/v) at 80◦C for 30 min, decolorized in lactic acid glycerol
solution, washed with distilled water, sampled for microscopic

examination, and photographed using an optical microscope (XSP-
17C, ZSISS, Shanghai, China). Finally, the samples were observed
and counted using the grid crossover method (McGonigle et al.,
1990), and the AMF colonization rate was calculated. The AMF
colonization rate (%) was calculated as the number of colonized
root segments divided by the total number of tested root segments.

2.4 AMF spore identification

AMF spores were isolated using the wet sieve decantation-
sucrose centrifugation method (Ianson and Allen, 1986). The
morphology, color, and other characteristics of the AMF spores
were observed using a microscope (XSP-17C, ZSISS, Shanghai,
China), and descriptions and photographs for each species were
obtained from the “Manual of Identification of Mycorrhizal Fungi
of VA” (Wilson et al., 1983) and the International Center for
the Preservation of Arbuscular Mycorrhizal Fungi (INVAM).1

The spore density (SD), separation frequency (F), and relative
abundance (RA) of AMF spores were also determined at each
sampling site. The formulas for these indicators are as follows:

SD = total number of AMF spores in the soil/soil mass (g)

× 100% (1)

1 http://invam.wvu.edu/the-fungi/species-descriptions
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F = occurrence frequency of a certain species/total

sample number× 100% (2)

RA = spore number of a certain species/total quantity of

AMF spores × 100% (3)

Importance value (IV) = (F + RA)/2 × 100% (4)

2.5 DNA extraction and Illumina MiSeq

DNA was extracted using a Soil DNA Kit (M5635-02;
Omega Bio-Tek, Norcross, GA, United States). The quantity
and quality of DNA were measured using a NanoDrop NC2000
spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
United States). The following PCR amplification primers were
used to amplify the DNA samples: forward AMV4.5NF (5′-
AAGCTCGTAGTTGAATTTCG-3′) and reverse AMDGR (5′-
CCCAACTATCCCTATTAATCAT-3′). The PCR mixture consisted
of 5 µl buffer (5 × ), 0.25 µl Fast pfu DNA polymerase (5
U/µl), 2 µl (2.5 mM) dNTPs, 1 µl (10 µM) forward and reverse
primers, 1 µl DNA template, and 14.75 µl ddH2O. Thermal
cycling began with an initial denaturation at 98◦C for 5 min;
followed by 25 cycles of 98◦C for 30 s, 53◦C for 30 s, and 72◦C
for 45 s; and a final cycle of 72◦C for 5 min. The amplification
products were subjected to 2% agarose gel electrophoresis, the
target fragments were recovered using an Axygen Gel Recovery
Kit (Thermo Scientific, Waltham, MA, United States), and paired-
end sequencing was performed using an Illumina Miseq PE300
platform (Meiji Biomedical Technology Co., Shanghai, China).

Data de-duplication and quality filtering of the raw sequences
were performed using FLASH (version 1.2.11) (Mago and Salzberg,
2011) and Fastp (version 0.20.0) (Chen et al., 2018). The sequences
were then subjected to noise reduction and chimera removal using
DADA2 in QIIME2 software (version 2019.4) to obtain Amplicon
sequence variants (ASVs) (Callahan et al., 2016). The RDA
Classifier Bayesian algorithm (version 2.11) was used to annotate
the ASV taxonomy compared to the Maarj AM database, with a
confidence threshold of 70%, and the community composition of
each sample was counted at different species classification levels.
The α-diversity index was calculated using the software QIIME2
(version 2019.4) (Bolyen et al., 2019).

2.6 Data analysis

One-way analysis of variance (ANOVA) was performed to
assess the AMF spore density, mycorrhizal colonization rate,
soil physical and chemical properties, and plant and litter
characteristics of X. sorbifolium. The significance of differences
was tested via multiple comparisons using the least significant
difference (LSD) method. The similarity of AMF communities
in X. sorbifolium plantations of different ages was evaluated
using non-metric multidimensional scaling (NMDS) analyses
based on Bray-Curtis distance calculations. Pearson’s correlation
coefficient was used to analyze the relationships between the

relative abundance of AMF genera and soil nutrients, plant
characteristics, and apomictic traits. Variance partitioning analyses
(VPA) were conducted using the vegan package in R to
quantify the independent contributions of soil, plant, and litter
traits to AMF community structure and their interactions. To
avoid multicollinearity, only variables with a variance inflation
factor (VIF) less than 10 were included. Redundancy analysis
(RDA) was performed on the selected variables in the VPA
(Supplementary Table 7) using R 4.22 software to assess the
relationship between soil, plant, and litter traits and AMF
communities. Detrended correspondence analysis (DCA) of AMF
species data prior to RDA indicated that RDA was more
appropriate for inferring relationships between AMF communities
and environmental factors. Monte Carlo permutation tests
were used to identify significant environmental factors affecting
AMF communities.

3 Results

3.1 AMF colonization and spores

The AMF mycelium, vesicle and arbuscular structures were
clearly visible in the root system of X. sorbifolium of different
forest ages under the microscope, indicating that X. sorbifolium
of different forest ages had formed a stable symbiotic relationship
with AMF and formed an Arum-type arbuscular mycorrhizal
(Figure 2A). The main manifestation was that the mycelium
entered the plant root system and mostly grew longitudinally along
the root cells (Figure 2Aa), and the lateral bifurcated arbuscular
directly penetrated the cell wall of the cortex to form a typical
arbuscular structure (Figure 2Ab). And during the extension of the
mycelium, the end expanded and developed into the vesicles of
varying sizes and diverse morphologies (Figure 2Ac). Mycorrhizal
colonization rates ranged from 63 to 95%, with NMF stands
having the highest colonization rates, which were significantly
higher than MFI, MFII, OMF, and YF stands (P<0.05), but
were not significantly correlated with MAF stands (P > 0.05)
(Figure 3A).

The spore density was calculated using Equation 1. The spore
density first increased and then decreased with the increase in
plantation age. The spore density was calculated according to
Equation 1. A total of 48–135 spores were collected from the
rhizosphere soil of X. sorbifolium at different stand ages (Figure
1B). Spore density increased and then decreased with forest
age, and MFI stands had the highest spore density, which was
significantly higher than that of YF, MAF, NMF, and OMF (P <
0.05), but was not significantly correlated with the age of MFII
stands (P > 0.05). 18 species of spores, belonging to 7 genera
of AMF were identified by spore morphological methods. The
relative abundance, separation frequency and importance value of
spores were calculated by Equations 2–4. The results showed that
Glomus was the most abundant and was the dominant genus.
Glomus multiforum and Glomus melanosporum were detected
in different forest stands and were the dominant species in
the site (Supplementary Table 6). Figure 2B shows pictures
of spores with high importance values in the X. sorbifolium
AMF.
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FIGURE 2

(A) Structure of arbuscular mycorrhizal fungi (AMF) in the root systems of X. sorbifolium. V, vesicles; H, hypha; Ar, arbuscular; Eh, external hyphae;
(B) AMF spore morphotypes. (a) Glomus multiforum; (b) Glomus melanosporum; (c) Glomus reticulatum; (d) Glomus constrictum; (e) Paraglomus
occultum; (f) Glomus geosporum; (g) Claroideoglomus etunicatum; (h) Acaulospora lavis; and (i) Funneliformis mosseae.

3.2 Abundance and diversity of AMF in
Xanthoceras sorbifolium

Bioinformatic analysis identified 483,488 sequences from the 24
soil samples, with 82,837 for YF, 76,987 for NMF, 71,565 for MAF,
75,711 for MFI, 88,856 for MFII, and 87,532 for OMF. Similarity
clustering based on the 97% queue value yielded 4,523 AMF ASVs,
and the number of total ASVs was 47 (Supplementary Figure 1).

AMF community diversity varied substantially among different
stand ages, with similar trends in the Chao1 and observed_species
indexes. The highest index values were observed in the MAF, while
significant differences were not observed among the MFI, MFII,
and OMF stands. The Shannon and Simpson diversity indexes

reached their highest values in the NMF and lowest values in the
YF (Figure 4).

3.3 AMF compositions and structures

The obtained ASVs belonged to 1 phylum, 4 classes, 6 orders, 12
families, and 15 genera, and the AMF community was dominated
by Paraglomus and Glomus, which presented relative abundances
ranging from 15.13 to 47.3% and 12.03 to 58.74%, respectively
(Figure 5A). Bray-Curtis based NMDS analyses found significant
differences in soil microbial communities between stand ages
(R = 0.37, p = 0.04) (Figure 5A). Soil AMF communities were
closer in MAF and NMF stands, and MFI, MFII, and OMF stands,
indicating higher community similarity (Figure 5B).
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FIGURE 3

Mycorrhizal colonization rate (A) and spore density (B) of X. sorbifolium. Different lowercase letters indicate significant differences at p < 0.05. YF, 5
years; MAF, 13 years; NMF, 24 years; MFI, 35 years; MFII, 47 years; OMF, 56 years.

3.4 Environmental variables driving AMF
composition and community structure

Correlation analysis showed that the soil characteristic variables
were strongly correlated with the AMF genus. Ten of the indicators
were correlated with soil AMF genus (Table 1). Among them,
Glomus was significantly and positively correlated with soil SOC,
TN, AP, pH (P < 0.05) and highly significantly and positively

correlated with soil N:P (P < 0.01). However, Paraglomus showed
highly significant negative correlation with SOC, TN and TP
(P < 0.01), and significant negative correlation with AP and
pH (P < 0.05). Diversispora showed highly significant negative
correlation with TN and TP (P < 0.01);significant positive
correlation with NH4

+, BD, and soil C: N (P < 0.05), and
highly significant positive correlation with soil C: P showed highly
significant positive correlation (P < 0.01). A total of 10 variables
in plant traits were correlated with AMF genus. Among them,
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FIGURE 4

Alpha diversity of X. sorbifolium. YF, 5 years; MAF, 13 years; NMF, 24 years; MFI, 35 years; MFII, 47 years; OMF, 56 years.

root-related variables were more strongly correlated with AMF
genus than leaf variables. Only 6 of the litter traits (ULB, SLB,
ULC, ULP, SL C:N, and SL C:P) were correlated with AMF
genus. Among them, all four variables, ULB, SLB, ULC, and
SL C:N, were significantly and positively correlated with Glomus
(P < 0.05). Diversispora was significantly negatively correlated with
ULB (P < 0.05) and highly significantly negatively correlated with
SLB (P < 0.01); Scytellospora was significantly negatively correlated
with ULB, ULC, and ULP (P < 0.05), highly significantly positively
correlated with SL C:N (P < 0.01), and significantly positively
correlated with SL C:P (P < 0.05).

The VPA results showed that soil, plant, and litter variables
together explained 60% of the variation in AMF communities,
and the selected variables are listed in Supplementary Table 7
(Figure 6A). The pure effects of soil, litter, and plant traits were 24,
6, and 13%, respectively. Soil properties and plant traits together
explained 12% of the variation in AMF communities, and soil and
litter traits together accounted for 3% of the variation in AMF. Soil,
plant, and litter traits all explained highly significant of the variance
in AMF communities (P < 0.001) (Table 2).

RDA showed that the first axis explained 43.73% and the
second axis explained 27.39%, with the two axes together explaining
71.12% of the total variance (Figure 6B). Monte Carlo tests further
indicated that soil pH, NH4

+, and SOC, plant RC and SRL,
and litter ULC were significant indicators and major contributors
affecting the AMF communities (Table 3).

4 Discussion

This study presents the first comprehensive analysis of
the AMF in X. sorbifolium plantations in Inner Mongolia,
China. The results indicate that X. sorbifolium root systems
form Arum-type structures (Figure 2A), with all showing high
colonization rates (Figure 3A), indicating a robust symbiotic
relationship with the AMF. In this experiment, a total of
7 genera and 18 species of AMF were identified from the
rhizosphere soil of X. sorbifolium by morphological identification
(Supplementary Table 6). Morphological identification of AMF has
obvious limitations due to the complexity of their morphological
characteristics, the fact that some physiological indicators and
morphological features are susceptible to change with the
developmental stages and habitat conditions, and the fact that
some AMF do not produce spores at all at certain times of the
year (Redecker et al., 2003). In order to improve the scientific
validity of the morphological identification results, the diversity of
X. sorbifolium AMF was further analyzed using Illumina MiSeq
sequencing techniques, which yielded a total of 51 species in 7
genera after annotation. However, studies using a combination
of traditional and molecular methods will further elucidate our
uncertain understanding of plant-associated mycorrhizal genera.
The results of the present study were the same for both
identifications, with Glomus being the dominant genus, a result that
is also consistent with the majority of studies, where Glomus has
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FIGURE 5

(A) Relative abundance of arbuscular mycorrhizal fungi (AMF) genera in X. sorbifolium. (B) Non-metric multi-dimensional scaling (NMDS) of the AMF
communities associated with X. sorbifolium. YF, 5 years; MAF, 13 years; NMF, 24 years; MFI, 35 years; MFII, 47 years; OMF, 56 years.
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TABLE 1 Spearman’s correlation analysis between the relative abundance of AMF genera and soil, plant, and litter variables.

Glomus Paraglomus Diversispora Claroideoglomus Ambispora Scutellospora Archaeospora

Soil SOC 0.463* −0.602** −0.518 0.130 −0.026 0.137 0.024

TN 0.483* −0.655** −0.864** 0.085 0.257 −0.110 −0.046

NH4
+

−0.143 0.101 0.530* −0.139 −0.058 0.026 0.009

BD −0.227 0.298 0.509* 0.211 −0.045 0.400 0.162

AP 0.475* −0.472* −0.420 0.117 0.460 −0.049 −0.073

pH 0.487* −0.476* −0.427 −0.105 0.432 −0.242 −0.264

TP 0.211 −0.475** −0.764** 0.015 0.162 −0.201 −0.216

Soil C:N −0.334 0.441 0.898* −0.138 −0.183 0.393 0.208

Soil C:P 0.131 0.123 0.600** −0.211 −0.407 −0.402 0.414

Soil N:P 0.614** −0.352 −0.181 −0.240 −0.314 0.083 0.242

Plant RL 0.114 0.050 0.067 0.042 0.077 0.791** −0.146

SRL 0.103 0.047 0.040 0.040 −0.209 0.807** 0.006

RSA −0.486* 0.605** 0.737** 0.115 0.026 0.239 0.187

RB −0.487* 0.571* 0.093 0.107 −0.386 0.040 0.204

RP −0.484* 0.354 0.486* 0.289 −0.368 −0.140 0.033

Root
N:P

0.491* −0.505* −0.483* −0.221 0.117 −0.175 0.187

LC 0.541* −0.382 −0.190 −0.146 −0.340 −0.134 0.140

LB 0.213 −0.278 −0.453 −0.124 −0.040 −0.497* 0.185

Litter ULB 0.481* −0.356 −0.566* 0.110 0.016 −0.511* −0.248

SLB 0.567* −0.254 −0.599** 0.290 −0.231 −0.211 −0.283

ULC 0.451* −0.168 −0.278 −0.008 −0.146 −0.525* −0.076

ULP 0.032 −0.151 −0.300 0.003 −0.122 −0.538* −0.073

SL C:N 0.448* 0.002 0.020 0.073 −0.057 0.800** −0.020

SL C:P −0.029 0.048 0.017 0.123 −0.025 0.522* −0.087

∗ , ∗∗Significant at P < 0.05 and P < 0.01, respectively.

shown a high level of adaptability in different habitat environments
in symbiosis with different host plants (Bonfim et al., 2016;
Coutinho et al., 2015).

With the development of the stand, Glomus and Paraglomus
maintained a high abundance (Figure 5A). This is partly related
to the fact that they have high spore production and a unique
reproductive strategy that allows them to reproduce directly
through mycelium and mycorrhizae and partly due to their high
resistance to adverse environments and ability to adapt to highly
cyclical and disturbed environments (Gu et al., 2022; Fall et al.,
2022). This finding is in line with Marinho et al. (2004), who
suggested that dominant taxa are more capable of adapting to
new and constantly changing environments. In the present study,
Glomus abundance was found to increase gradually with the
number of years of cultivation, which may be related to the growth
and reproduction characteristics of this genus of AMF. Glomus
easily survives and spreads by mycelium, mycospores or fragments,
and they are more resistant and resilient to ecological disturbances.
Consequently, Glomus colonization became more stable and its
abundance gradually increased with years of cultivation. However,
Paraglomus abundance and Glomus abundance presented opposite
change trends and gradually decreased as the forest age increased,

which was due to the competitive relationship between Paraglomus
abundance and Glomus (Michael et al., 2010).

The results of this experiment showed that AMF α-diversity
in X. sorbifolium did not change regularly with increasing stand
age but showed an overall increasing and then decreasing trend
(Figure 4). This is consistent with the results of previous studies
on Pinus massoniana plantations (Pan et al., 2021). However, Dong
et al. (2021) pointed out that the AMF diversity index decreased
and then increased with the development of Pinus massoniana,
while Gao et al. (2023) showed that the diversity index of Chinese
fir plantations gradually increased with the age of the forest.
Consistent conclusions have not been reached about the change
rule of AMF community diversity in forest soil with stand age,
indicating that the successional pattern of AMF communities is
very complex and difficult to predict based on the long-term
development of the forest stand (Robin et al., 2019). Changes in
AMF community diversity due to different stand ages are not only
influenced by metabolic activities and reproduction, but also by
soil physicochemical properties, plant, and litter characteristics. In
addition, changes in soil enzyme activities can affect AMF growth
and diversity. Studies have shown that soil enzyme activity may
decrease with increasing stand age, which may indirectly affect
AMF diversity (Li et al., 2024).
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FIGURE 6

(A) VPA describes the proportion of AMF community variation explained by three sets of predictors: soil nutrients, plant and litter traits. Each shaded
section indicates the individual contributions of the identified factors to the changes in soil properties, and the overlapping circles indicate common
effects. Explained variance scores are corrected R2-values. (B) RDA of the relationship between Bray-Curtis dissimilarity of AMF communities and
variables selected for VPA results. ∗, ∗∗Significant at P< 0.05 and P< 0.01, respectively. RC, Root carbon; SRL, Specific root length; RSA, Root surface
area; AP, available phosphorus; SLB, semi-decomposed litter biomass; SOC, soil organic carbon; WC, water content; LC, leaf carbon; LN, leaf
nitrogen; ULC, Undecomposed litter C; BD, bulk density; NH4+: NH4+-N; LP, Leaf phosphorus; TP, total phosphorus. YF, 5 years; MAF, 13 years; NMF,
24 years; MFI, 35 years; MFII, 47 years; OMF, 56 years.

The VPA results were consistent with our second hypothesis
that AMF community variation with stand development was due
to the combined effects of soil, plant, and litter characteristics.
Of these, the soil variable independently accounted for the largest
proportion of the total variance in AMF community composition,
suggesting that soil properties had a significant effect on soil AMF

composition (Table 1) and represented the most important driver
of AMF communities (Figure 6A). Substantial evidence has shown
that soil properties are the main drivers of AMF community
structure and diversity (Cusack et al., 2011; Liu et al., 2020). Of
the soil variables, pH, NH4

+, and SOC were identified as important
parameters affecting AMF communities (Figure 6B and Table 3).
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Soil pH, as a key soil property, is extremely important in the
shaping of AMF communities in natural and plantation forest
ecosystems, and soil pH ultimately affects AMF colonization in host
plants and AMF communities by influencing AMF extraradical
mycelial growth, spore density, and abundance (Adenan et al.,
2021; Ma et al., 2021). The results of this study showed that pH
is significantly positively correlated with Glomus and significantly
negatively correlated with Paraglomus (Supplementary Table 8).
The results also suggested that Glomus is more effective at
colonizing neutral and alkaline soils, whereas the production
of Paraglomus is associated with acidic soils. These results are
consistent with those of Jiang et al. (2020), who showed that
different AMF taxa have different preferences for soil pH. However,
Yang (2022) reported that pH was positively correlated with AMF
abundance, which is inconsistent with the results of our study
showing that soil pH was significantly negatively correlated with
α-diversity (Supplementary Table 8). These contrasting results are
likely related to the differences in soil acidity, as the soil samples
analyzed by Yang (2022) were alkaline, whereas the soil samples
analyzed in this study were neutral or weakly acidic. Plants can
directly utilize NO3

− and NH4
+, which are mainly produced by

decomposition of soil microorganisms decomposition, and AMF
plays a very important role in the nitrogen cycle because they
can directly take up and transfer NH4

+ and NO3
− in the soil,

which is the basis for maintaining the nitrogen balance of the
ecosystem (Hodge and Storer, 2015). In this study, NH4

+ had
a significant effect on the AMF community while NO3

− had
no significant effect. The reason may be that compared AMF
absorbed NH4

+ faster than NO3
− and the cost of NH4

+ uptake
and assimilation by AMF extraradical mycelia was less than that of
NO3

− (Wei et al., 2016). Because NH4
+ is more readily emitted

by NH3 and N2O, this may affect the survival and activities
of AMF, which in turn affects its symbiotic relationship with
plants (Li S. J. et al., 2020). SOC was significantly and positively
correlated with AMF diversity in the present study, which is
consistent with the results of the study on the effects of geographic
distance on AMF fungal communities in fruit trees (Jiang et al.,
2018). Most scholars believe that an increase in soil SOC will
promote AMF to decompose more organic compounds, which
can improve the water retention capacity and increase nutrient
supply of the soil, and further have a direct positive effect on
the AMF community (Jiang et al., 2020). In this study, soil SOC
was also found to be significantly positively correlated with the
dominant genus of X. sorbifolium, Glomus, which taxonomically
belongs to Glomerales. In addition, soil AMF under this order
establish symbiotic relationships with host plants through vesicles
and tend to use the vesicles to store lipids and SOC as energy
(Brands et al., 2018). The study by Souza and Freitas (2017)
similarly demonstrated the strong association of Glomerales with
SOC.

In this study, plant traits were also identified as important
drivers of AMF communities (Figure 6A), with root C and
SRL identified as important influencing factors (Figure 6B and
Table 3). Soil substrate is the basic condition for plant growth,
and the necessary elements and nutrients required to support
plant growth originate from root uptake in the soil, and plant
root traits and root nutrients may also drive AMF communities.
C input from fine roots is a major input to soil organic carbon
stocks (McCormack et al., 2015), and C constitutes the basic
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TABLE 3 RDA of the variables and AMF compositions in soil, plant, and litter samples.

Variable Explains (%) Contribution (%) Adjusted R2 P-value

Soil pH 18.2 26.5 0.34 0.007**

NH4
+ 5.9 8.8 0.28 0.026*

SOC 5.2 7.6 0.26 0.042*

WC 2.3 3.1 0.21 0.137

TN 3.7 4.3 0.19 0.248

BD 1.9 2.7 0.16 0.659

TP 0.8 1.1 0.13 0.647

AP 1.2 1.5 0.31 0.553

Plant RC 15.3 22.7 0.32 0.010**

SRL 4.0 5.2 0.25 0.046*

RSA 1.6 2.4 0.19 0.416

LC 0.9 1.2 0.13 0.664

LN 1.1 1.4 0.10 0.583

LP 1.3 1.9 0.22 0.431

Litter ULC 5.3 8.7 0.27 0.039*

SLB 0.6 0.8 0.16 0.643

∗ , ∗∗Significant at P < 0.05 and P < 0.01, respectively.

structure of plants, accounting for approximately 50% of plant
biomass. When soil nutrients are limiting factors, host plants
usually trade large amounts of their own carbon to mycorrhizal
symbionts, allowing more mycorrhizal fungal partners to compete
for carbohydrates thereby increasing nutrient uptake benefits.
Root C had a significant effect on AMF community structure in
X. sorbifolium, which may be functionally related to the density of
the root tissues (Wang et al., 2016), with the lower the density of
root tissues the lower their activity and nutrient The lower the root
tissue density the higher the activity and nutrient uptake capacity
and the higher the nitrogen content and lower the carbon content.
The growth of AMF requires a carbon source and other nutrients,
so it significantly affects the AMF community structure. SRL, a
functional strategy representing resource acquisition strategy, is
an important indicator of the efficiency of nutrient uptake by
fine roots. A significant relationship between root morphological
traits (SRL and RSA) and AMF composition and diversity was
found in this study (Table 1 and Supplementary Table 8), which
is consistent with a previous study (Prada-Salcedo et al., 2021).
Higher SRL and RSA provides more space for AMF survival. The
fine root is where AMF exchanges material with the host plant,
and AMF is more sensitive to changes in fine root traits. On the
other hand, it may be because SRL and RSA can directly reflect
the survival strategy of the species and the soil environmental
conditions. In addition, the morphological characteristics of the
root system are directly related to the nutrient uptake and carbon
allocation strategy of the plant, which determines the quantity
and quality of root litter and secretion and influences the changes
of the AMF community. Plant characteristics are not the main
driver of differences in AMF diversity. Plant investment in AMF
may be lower due to changes in soil fertility and tree nutrient
status along the stand age gradient. In addition, among plant leaf
traits, only the leaf biomass and leaf C content were significantly
correlated with AMF composition (Table 1), and AMF diversity
was correlated with leaf biomass (Supplementary Table 8). Our

findings are similar to the results of Li M. Y. et al. (2020), who
showed that the low correlation between leaf traits and AMF
composition and diversity was due to the indirect effect of leaf
traits on AMF communities and revealed that material exchange
between the two was subordinate to a large and complex interaction
system.

Litter is the material basis of natural ecosystems, and its
decomposition is a key process of nutrient cycling, which plays an
important role in productivity improvement in natural ecosystems
(Fang et al., 2020). In forest ecosystems, the majority of available
nutrients are concentrated in the litter layer, which is not directly
accessible to plant roots. Mycorrhizal fungi are crucial for releasing
nutrients from the litter, improving nutrient uptake by plants,
and promoting changes in loamy nutrient content. Although
AMF has no known saprophytic capacity and relies on plants
for carbohydrates (Smith et al., 2011), Kong et al. (2018) found
that AMF mycelia proliferate in decomposing organic matter.
In addition, Hodge et al. (2001) found that AMF favor the
colonization of soils with added plant litter rather than host
plants alone, suggesting that litter may represent a potential source
of carbon. Mei et al. (2021) concluded that AMF can alleviate
nutrient limitation in soil microorganisms and positively influence
litter decomposition. The results of this study showed that AMF
communities were correlated with undecomposed litter C content
and certain litter traits were significantly correlated with the relative
abundance of Glomus (Table 1). Glomus colonizes and proliferates
in leaf litter and is commonly found in a variety of ecosystems.
The mycelium of AMF in litter acquires litter-bound nutrients and
releases the nutrients to the associated host plants as well as nearby
soil microbes (Bunn et al., 2019). We found that litter N:P was
strongly correlated with AMF diversity (Supplementary Table 8),
which is because litter inputs can differentially regulate N and P
use efficiency across the stand age gradient, thereby affecting AMF
communities.
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5 Conclusion

Our results showed thatX. sorbifolium formed a good symbiotic
relationship with AMF in different stand ages and formed
Arum-type arbuscular mycorrhizal. Both Glomus and Paraglomus
were dominant genera in different stand ages, Glomus gradually
increased with stand age, and Paraglomus gradually decreased
with stand age. Chao1, Shannon, Simpson, and Observed_species
indices showed a tendency to first increase and then decrease with
stand age. AMF community changes were jointly influenced by soil,
plant and litter traits, and soil traits had a greater influence on AMF
communities than plant and litter traits. Among them, soil (SOC,
pH, NH4 +), root (SRL, C), and litter ULC variables were important
factors affecting AMF communities. These results suggest that
future management practices for X. sorbifolium plantation forests
should consider the unique responses of AMF communities to
soil properties, litter and plant traits. In the future, we should
further investigate the driving mechanisms behind rhizosphere
soil nutrient, litter, and plant-AMF community interactions in
X. sorbifolium, which is crucial for developing more targeted and
sustainable management strategies for X. sorbifolium plantations.
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