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Introduction: Acute stroke (AS) is a major public health issue globally,

exhibiting high morbidity, disability rate, and mortality. Emerging research

has demonstrated the critical roles of gut microbiota and its metabolites in

pathogenesis, recovery, and prognosis of AS.

Methods: In this study, we investigated alterations in gutmicrobiota composition

and metabolomic profiles in AS patients using 16S rRNA sequencing and

untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics

technology.

Results: The results revealed significant changes in gut microbiota diversity and

community structure in AS patients compared with healthy controls. Notably,

the abundance of anti-inflammatory microbiota was increased significantly,

accompanied by elevated levels of certain metabolites, such as 6,9,12,15,18,21-

tetracosahexaenoic acid and bufadienolide, while levels of urobilin and andrenid

acid were significantly reduced. Network analysis further uncovered the

significant diferences in microbiota-metabolite interactions between AS patients

and healthy controls, indicating gut ecosystem disruption and functional

dysfunction in AS.

Discussion: This study sheds light on the mechanisms of brain-gut axis in

AS, suggesting potential microbial and metabolite biomarkers, thus providing

valuable insights into AS prediction and treatment.
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1 Introduction

Acute stroke (AS) is a type of acute cerebrovascular disease that ranks the second

leading cause of death and the third leading cause of disability worldwide, with an

annual incidence of 24.9 million cases globally. It is characterized by high incidence, high

disability rates, and mortality rates (Parr et al., 2017; Benjamin et al., 2018; Chidambaram

et al., 2022). AS commonly occurs in elderly patients and can impair the central nervous

system to varying degrees, resulting in dysfunction of autonomic nervous regulation (Kuo

et al., 2020; Liu et al., 2024). Moreover, the resulting inflammatory response further

aggravates brain tissue damage (Mozaffarian et al., 2015; Lee et al., 2023; Luo et al.,

2024). Beyond the brain, stroke also induces systemic alterations, particularly affecting the

gastrointestinal system.Many stroke patients experience varying degrees of injury to one or

more peripheral organs, including the lung, heart, kidney, spleen, and gastrointestinal tract.

Among these, gastrointestinal bleeding is a frequent and serious complication, particularly

in patients with AS (Tuz et al., 2022; Wang et al., 2022).
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The gut microbiota, as an essential component of host

metabolism, is increasingly recognized as a vital “organ.” Emerging

evidence has highlighted its involvement in the onset, progression

and prognosis of AS, with gut dysbiosis contributing to elevated

cerebrovascular risk and stroke pathogenesis (Peh et al., 2022;

Battaglini et al., 2020; Yamashiro et al., 2021). Moreover, studies

have identified a bidirectional communication system between

the gut and the brain, known as the gut–brain axis. Within this

framework, AS can lead to gut dysbiosis, while the composition

of the gut microbiota may, in turn, influence the severity and

progression of stroke (Zhai et al., 2023; Zhou et al., 2023; Shen

and Mu, 2024; Shen et al., 2023). In stroke patients, gut microbiota

dysbiosis is often characterized by an increased abundance of pro-

inflammatory bacteria, such as Prevotella and Enterobacteriaceae,

which can activate the Toll-like receptor 4 (TLR4) and nuclear

factor kappa B (NF-κB) signaling pathways. This activation

promotes the release of pro-inflammatory cytokines, including

TNF-α, IL-6, and IL-1β, ultimately aggravating neuroinflammation

and cerebral injury (Cryan et al., 2019; Arya and Hu, 2018;

Wang X. et al., 2025). Concurrently, there is often a reduction

in beneficial, anti-inflammatory bacteria such as Faecalibacterium

prausnitzii and Bifidobacterium, which impairs the production

of short-chain fatty acids (SCFAs) like butyrate and propionate.

This reduction may decrease the activity of regulatory T cells

(Tregs), leading to the overactivation of pro-inflammatory Th17

cells and exacerbating post-stroke inflammatory damage (Sun et al.,

2020). Additionally, a decline in Lactobacillus may disrupt the

synthesis of γ-aminobutyric acid (GABA), thereby compromising

neuroprotective mechanisms (Henry et al., 2022; Durgan et al.,

2019). Consistent with these findings, stroke-induced gut dysbiosis

has also been observed in animal models, including mice and crab-

eating macaques, where an overgrowth of Enterobacteriaceae and a

decline in Faecalibacterium and Lactobacillus were associated with

worsened neuroinflammation (Xu et al., 2021; Chen et al., 2019).

Metabolomics is a widely applied approach for profiling

metabolites and offers unique advantages in identifying disease-

specific mechanistic biomarkers (Bujak et al., 2016; Huang D.

et al., 2023; Johnson et al., 2016). Changes in metabolites have

been associated with dynamic alterations in gut microbiota (Wu

et al., 2021; Fang et al., 2023). For example, gut microbiota can

synthesize several nutritionally essential amino acids de novo,

serving as a potential regulatory factor in maintaining amino

acid homeostasis (Lin et al., 2017). Microbiota-derived metabolites

have been shown to cross the intestinal mucosal barrier and

enter the bloodstream, where they can traverse the blood–brain

barrier and modulate microglial function (Del Rio et al., 2017;

Erny et al., 2015). Compounds such as GABA, norepinephrine,

dopamine, serotonin, tyramine, and tryptophan, produced by the

gut microbiota, can directly influence brain cells or act on nerve

fibers to facilitate gut–brain communication (Peh et al., 2022).

Dysregulation of the gut–brain axis is increasingly recognized as

a contributing factor to stroke risk and clinical outcomes, with

specific microbiota-derived metabolites playing a critical role in

stroke pathophysiology. However, the relationship between the gut

microbiota and its metabolites in AS remains poorly understood,

especially with respect to the identification of reliable biomarkers

and elucidation of relevant metabolic pathways. In this study,

a total of 20 patients with AS and 20 healthy controls were

recruited. Fecal samples were collected and analyzed using 16S

rRNA gene sequencing and untargeted liquid chromatography–

mass spectrometry (LC-MS)-based metabolomics. This approach

enabled us to characterize the gut microbiota and metabolite

profiles in AS patients and explore their potential association with

stroke onset. Our findings provide new insights into the gut–brain

axis and suggest potential microbial and metabolomic biomarkers

for the prevention, prediction, and treatment of stroke.

2 Materials and methods

2.1 Participant recruitment and samples

A total of 20 participants with AS were recruited from the

Department of Neurology Central Affiliated Hospital of Shenyang

Medical College between July to September 2022, aged 65.7 ± 8.4.

Inclusion criteria were as follows: (a) Clinical presentation: patients

exhibited one or more acute-onset of neurological symptoms, such

as limb or facial weakness or numbness, sensory disturbances,

dizziness, aphasia, dysarthria, dysphagia, ataxia, visual field defects

or neglect, and cognitive impairment; (b) Neuroimaging: diagnosis

was confirmed by a neurologist, based on the presence of

acute lesions on diffusion-weighted imaging (DWI) via magnetic

resonance imaging (MRI) or newly developed hypodense lesions

on computed tomography (CT); (c) Time window: patients met

the diagnostic criteria for AS and were admitted within 72 h of

symptom onset (Neurology and Society, 2018; Liu et al., 2023).

Meanwhile, a total of 20 healthy participants (mean age: 61.5

± 8.1 years) were recruited during the same period to serve as

healthy controls. The inclusion criteria were: (a) Recent blood

and biochemical tests within normal ranges; (b) No history of

hypertension, diabetes, nephropathy, or cancer; (c) No recent use

of medications, supplements, or dietary products known to alter

gut microbiota or immune function; and (d) No clinical signs or

history of inflammatory or infectious diseases.

The exclusion criteria for both groups were as follows:

(a) Incomplete medical history or physical examination data;

(b) Presence of conditions known to significantly alter the

composition of gut microbiota or inflammatory status, such

as hyperlipidemia or diabetes; (c) Recent use of medications,

antibiotics, microecological agents, or health supplements known

to affect gut microbiota composition or systemic inflammation;

(d) Administration of ursodeoxycholic acid (UDCA) or bile

acid chelators (e.g., cholestyreamine and cholestyrepo) within the

previousmonth; and (e) Patients with cancer, mental illness, history

of gastrointestinal surgery, hepatitis, liver cirrhosis, acute infection

or acute cholecystitis/cholangitis within the last week.

To ensure the validity of the fecal sample collection and

minimize potential confounding factors, all participants underwent

thorough screening through clinical interviews and medical record

reviews. Only those who met all inclusion criteria and were free

from known interfering conditions were enrolled in the study.

The fecal samples of AS patient group (T) were collected within

30min of the patient’s arrival at the emergency department. For
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the healthy group (C), fasting fecal samples were obtained at 8–

10 a.m. following an overnight fast. All samples were immediately

snap-frozen in liquid nitrogen and stored at −80 ◦C until

further analysis.

This study was approved by the Ethics Committee of

Central Affiliated Hospital of Shenyang Medical College [Sci-

2024-008(01)]. Written informed consent was obtained from all

participants prior to sample collection.

2.2 DNA extraction and 16S rRNA
sequencing

Fecal samples from both groups were subjected to total

microbiota genomic DNA extraction using FastPure Stool

DNA Isolation Kit (MJYH, shanghai, China), following the

manufacturer’s instructions. The integrity of the extracted

DNA was assessed by 1% agarose gel electrophoresis. DNA

concentration and purity were determined using a NanoDrop2000

spectrophotometer (Thermo Scientific, USA). Qualified DNA

was used as a template for PCR amplification of V3–V4 variable

region of 16S rRNA gene, using upstream primer 338F (5′-

ACTCCTACGGGAGGCAGCAG-3′) and downstream primer

806R (5′-GGACTACHVGGGTWTCTAAT-3′). The amplified PCR

products were recovered and purified, and then quantified using

Synergy HTX (Biotek, USA). A library was constructed using the

NEXTFLEX Rapid DNA-Seq Kit (Bioo Scientific, Texas, USA)

with the purified PCR products. Sequencing was performed on

the Illumina NextSeq 2000 PE300 platform (Shanghai Majorbio

Bio-Pharm Technology Co., Ltd., Shanghai, China).

2.3 Data analysis of 16S rRNA genomic
sequencing

Paired-end raw sequencing data of the 16S rRNA

gene were processed using qiime2 (v2024.5.0). Primer

sequences 338F (ACTCCTACGGGAGGCAGCA) and 806R

(GGACTACHVGGGTWTCTAAT) were removed from the

forward and reverse ends using the qiime cutadapt trim-paired

plugin. Subsequently, the primer-trimmed sequences were

denoised, quality filtered, and processed to construct an amplicon

sequence variant (ASV) feature table and representative sequences

using the dada2 plugin in qiime2. The parameters used for

denoising and quality control were –p-trim-left-f 0, –p-trim-left-r

0, –p-trunc-len-f 250, and –p-trunc-len-r 250.

The representative sequences obtained from the previous step

were clustered de novo using the qiime vsearch cluster-features-de-

novo plugin, with clustering performed at a 97% sequence similarity

threshold to generate a 97% feature table and representative

sequences. Taxonomic annotation of the filtered representative

sequences was conducted using the qiime feature-classifier classify-

sklearn classifier, aligning sequences to the SILVA v138 database.

Chloroplast and mitochondrial sequences were removed from all

samples during this process.

Alpha diversity indices, including evenness, faith_pd, observed

features, and Shannon, were calculated using the qiime diversity

core-metrics-phylogenetic plugin. Beta diversity was assessed

based on Bray-Curtis and Jaccard distance metrics. Furthermore,

functional features of the microbial communities were predicted

using the FAPROTAX database (v1.2.10; Yang et al., 2022) and

PICRUSt2 (v2.5.3; Ye and Doak, 2009).

2.4 Non-targeted metabolomics analysis
based on LC-MS

Based on ASV clustering analysis of 16S rRNA gene amplicon

sequencing (Supplementary Figure S1A) and inter-sample

correlation assessment (Supplementary Figure S1B), six highly

reproducible samples from both AS and healthy control groups

were carefully selected for downstream metabolite extraction

and profiling. A 50mg fecal sample was ground using a 6mm

grinding bead, and 400 µL of extraction solution (methanol:water

= 4:1, v:v) containing 0.02 mg/mL internal standard (L-2-

chlorophenylalanine) was added to extract the metabolites. The

samples were ground for 6min using a refrigerated tissue grinder

(−10 ◦C, 50Hz) and then subjected to low-temperature ultrasonic

extraction for 30min (5 ◦C, 40 kHz). The extracted samples were

left to stand at −20 ◦C for 30min and then centrifuged at 13,000 g

for 15min at 4 ◦C. The supernatant was transferred to injection

vials with inserts for LC-MS/MS analysis using the Thermo Fisher

Scientific UHPLC-Q Exactive HF-X system (Shanghai Majorbio

Bio-Pharm Technology Co., Ltd., Shanghai, China).

A quality control (QC) sample was prepared by pooling equal

volumes of metabolites from all samples. During the analysis

process, a QC sample was inserted every 5–15 samples to evaluate

the reproducibility of the entire procedure.

After instrument analysis, the raw LC-MS data were

imported into the metabolomics software Progenesis QI (Waters

Corporation, Milford, USA) for baseline filtering, peak detection,

integration, retention time correction, and peak alignment. This

produced a data matrix containing retention time, mass-to-charge

ratio (m/z), and peak intensity. Metabolite identification was

performed by matching the MS and MS/MS spectral data against

public metabolomics databases such as HMDB (http://www.hmdb.

ca/), Metlin (https://metlin.scripps.edu/), and Majorbio’s in-house

database to obtain metabolite information.

2.5 Statistical analysis

For fecal community α-diversity, significance was assessed

using the Kruskal-Wallis test. Principal coordinates analysis

(PCoA) for β-diversity was conducted using the stats package in

R (v4.4.1) to calculate explained variance, and visualized with the

ggplot2 package. Hierarchical clustering was performed using the

unweighted pair group method with arithmetic mean (UPGMA),

and phylogenetic trees were generated using the ape package.

LEfSe analysis was conducted using the microeco package.

LEfSe Cladograms, LDA score plots, and random forest analyses

were visualized with ggplot2. Microbial interaction networks were

constructed by calculating Spearman correlations using the Hmisc

package and visualized using igraph and Gephi (v0.10.0).
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Receiver operating characteristic (ROC) curves were generated

using the pROC package to calculate the area under the curve

(AUC) and the confidence intervals for AUC values. Anti-

inflammatory microbial network diagrams were visualized with

Cytoscape (v3.10.1). Differential analysis of microbial community

functions was performed with a threshold of |log2FC| > 0 and P <

0.05 (Kruskal-Wallis test).

Principal component analysis (PCA) was performed using

the prcomp function and visualized with ggplot2. Correlation

heatmaps for metabolite samples and their correlation with

microbiota were computed using Pearson correlation coefficients

via the Hmisc package and visualized using the pheatmap and

corrplot packages.

Orthogonal partial least squares discriminant analysis

(OPLS-DA) was conducted using the ropls package. Differential

metabolites were identified with thresholds of VIP > 1, |log2FC|

> 1, and P < 0.05. These metabolites were further subjected

to pathway enrichment analysis using the KEGG database via

MetaboAnalyst (https://dev.metaboanalyst.ca/MetaboAnalyst/

upload/EnrichUploadView.xhtml).

Canonical correspondence analysis (CCA) was performed
using the vegan package to evaluate the relationships between gut
microbiota and metabolites. Statistical significance was defined as
P < 0.05.

3 Results

3.1 Gut microbiota composition was
significantly altered in patients with AS

To investigate differences in gut microbiota structure between

AS patients and healthy individuals, 16S rRNA sequencing was

performed on the fecal samples of all participants. A total of 2,254

ASVs were identified, with 1,653 more ASVs detected in the T

group than in the C group. ASVs in the T group were mainly

derived from 29 phyla, 69 classes, 155 orders, 251 families, 471

genera, and 631 species, while in the C group, ASVs originated

from 13 phyla, 22 classes, 44 orders, 71 families, 139 genera, and 168

species (Figure 1A). At the phylum level, Firmicuses, Bacteroidota,

and Proteobacteria were dominant, with the relative abundance of

Firmicutes higher in the T group than in the C group (Figure 1B).

At the genus level, Bacteroides, Faecalibacterium, Escherichia-

Shigella, and Agathobacter were predominant. Similarly, we

observed that the relative abundances of Faecalibacterium and

Agathobacter were higher in the T group than in the C group

(Figure 1C).

Analysis of α-diversity revealed significantly higher

phylogenetic diversity and coverage in the AS group compared with

controls, while evenness was significantly lower (Kruskal-Wallis

test, P < 0.05; Figure 1D). PCoA demonstrated clear separation

between the C and T groups along the primary coordinate axes,

indicating significant differences in gut microbiota composition

between the two groups (Adonis test, P = 0.001). Hierarchical

clustering based on Bray-Curtis distance further validated

this distinction, with samples formed two distinct branches,

demonstrating consistent microbial differences between the

groups (Figure 1E). These findings collectively indicate that AS

significantly altered the overall structure and diversity of the

gut microbiota.

3.2 Marked gut microbiota dysbiosis
observed in AS patients

Diversity analysis confirmed significant differences in

microbiota between groups. To identify key microbial taxa,

LEfSe analysis was performed to determine potential biomarkers.

Healthy individuals exhibited a higher abundance of microbial

taxa belonging to Proteobacteria and Bacteroidota, whereas AS

patients showed a greater abundance of taxa concentrated in

Firmicutes (LEfSe, P < 0.05, LDA > 2.0; Figure 2A). LDA scores

highlighted the significance and importance of key microbial

taxa in each group. The T group was found to be enriched in

Firmicutes, including Faecalibacterium and Blautia (LEfSe, P <

0.05, LDA > 2.0). In contrast, healthy individuals were dominated

by Bacteroides and Escherichia-Shigella (LEfSe, P < 0.05, LDA >

2.0; Figure 2B). Similarly, random forest analysis indicated that

Escherichia-Shigella andMegamonas played a more significant role

in classification within the healthy group. Meanwhile, Barnesiella,

Faecalibacterium, and Agathobacter were key contributors in the

AS patients, showing significantly higher abundances (Figure 2C).

At the phylum level, gut microbiota interaction networks

revealed distinct topological differences. Healthy individuals

exhibited a more stable and efficient network, characterized by

fewer nodes (90) but a higher number of edges (1,760). Conversely,

AS patients displayed a looser, less connected network, with

more nodes (175) but fewer edges (1,525), indicating disrupted

microbial interactions. Additionally, the average degree was lower

in AS patients, indicating weaker interactions among microbial

taxa compared with healthy individuals. Notably, AS patients

exhibited additional interactions involving Nitrospirota, MBNT15,

Acidobacteriota,Gemmatimonadota, andMyxococcota (Figure 2D).

Collectively, these findings demonstrate that AS was associated

with significant dysregulation of the gut microbiota, characterized

by altered ecological structure and impaired microbial interactions.

3.3 Anti-inflammatory microbiota as
characteristic biomarkers in AS patients

Based on prior LEfSe analysis, Bacteroides and Escherichia-

Shigella were identified as key taxa in the healthy group, whereas

Faecalibacterium, Agathobacter, Dialister, and Ruminococcus—

recognized for their anti-inflammatory properties—were enriched

in the disease group. To gain deeper insights into these

microorganisms, further statistical and analytical evaluations were

conducted to characterize their abundance patterns and potential

functional implications in both groups. ROC curves and AUC

values demonstrated strong discriminative power of all six potential

microbial biomarkers in distinguishing the healthy and AS groups

(Figure 3A). Additionally, the composite ROC curve constructed

from the biomarkers showed high diagnostic sensitivity and
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FIGURE 1

Microbial community structure analysis. (A) Distribution of amplicon sequence variant (ASVs) across di�erent groups. (B) Phylum-level and (C)

Genus-level species composition analysis. (D) α-diversity, including evenness, faith_pd, observed, and Shannon indices from left to right,

Kruskal-Wallis test, *P < 0.05, **P < 0.01, ***P < 0.001, ns represents no significance. (E) β-diversity analysis, principal coordinate analysis (left) based

on Jaccard distance (Adonis test: R² = 0.182, P = 0.001) and hierarchical clustering (right) based on Bray-Curtis distance.
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FIGURE 2

Signature species analysis. (A) Evolutionary tree diagram based on LEfSe analysis, where the circles radiating from the inner to the outer represent the

taxonomic levels from phylum to species. Each small circle at di�erent taxonomic levels represents a classification at that level, and the diameter of

the circle is proportional to its relative abundance. (B) LDA scores for di�erent species. (C) Random forest analysis at the genus level. (D) Species

interaction analysis at the phylum level, based on Spearman correlation analysis. Species with |r| > 0.8 and P < 0.05 were selected for plotting. In the

network diagram, blue lines represent negative correlations, red lines represent positive correlations, and di�erent colored nodes represent di�erent

species. The size of the node represents the degree, indicating the number of interactions with other species.
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FIGURE 3

Biomarker statistics and interactions. (A) Receiver operating characteristic (ROC) curve analysis based on six signature genera to assess their ability to

distinguish between the C group and T group. Each line of the same color represents a di�erent species. (B) ROC curve analysis of signature genera

between the C group (biomarkers, n = 4) and T group (biomarkers, n = 2). (C) Statistical di�erences in the relative abundance of biomarkers,

evaluated using a t-test, with P < 0.05. (D) Associations between biomarkers and other genera (upper: C group; lower: T group), based on Spearman

correlation analysis, with |r| > 0.8 and P < 0.05. In the network diagram, blue lines represent negative correlations, red lines represent positive

correlations, red squares represent ASVs of biomarkers in the C group, purple squares represent ASVs of biomarkers in the T group, and blue boxes

represent ASVs of other genera.
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specificity, reinforcing their potential as microbial indicators for

distinguishing AS patients from healthy individuals (Figure 3B).

Notably, biomarkers in the healthy group were significantly

enriched in Escherichia–Shigella and Bacteroides, whereas the

abundances of Faecalibacterium, Agathobacter, Dialister, and

Ruminococcus were significantly elevated in AS patients (T-test,

P < 0.05; Figure 3C). Subsequent interaction network analysis

revealed distinct patterns between groups. In healthy individuals,

microbiota interactions were predominantly negatively correlated,

with 14 biomarker-associated nodes, only two of which belonged

to T-group-specific taxa. Conversely, in AS patients, microbiota

interactions shifted toward predominantly positive correlations,

with 23 biomarker-associated nodes, including seven from T-

group-specific taxa (Figure 3D). These findings suggest that

the enrichment of anti-inflammatory microbiota may reflect a

significant ecological shift in the gut microbiota of patients

with AS.

3.4 AS may disrupt gut microbial ecology

To comprehensively assess microbial functional alterations

in AS, we employed both FAPROTAX and PICRUSt2 for

predictive functional profiling. PCA based on FAPROTAX-

annotated functions showed a clear separation between AS

patients and healthy controls (Figure 4A). A total of 48 functional

groups were annotated, primarily involving chemoheterotrophy,

fermentation, anaerobic chemoheterotrophy, animal parasites or

symbionts, and human-associated functions. The gut microbiota

of AS patients had 14 additional functional groups compared

with healthy individuals (Figures 4B, C). Compared with the

healthy group, the AS group showed a significant increase

in the proportion of functions related to human pathogens

(human_pathogens_all) and chemoheterotrophy. In contrast, the

proportion of 39 functional groups associated with human gut,

human-associated, and mammalian gut were significantly reduced

in AS patients (Figures 4D, E). These findings suggest that

AS may affect the gut ecology and host health by altering

the functional composition of the gut microbiota. To further

validate these findings, PICRUSt2 was used to predict KEGG-

based metabolic pathways. Consistent with the FAPROTAX results,

PCA based on these predicted metabolic pathways also revealed

clear clustering between AS and control groups (Figure 4F). OPLS-

DA identified 142 significantly altered pathways, among which 43

were significantly downregulated (VIP > 1, FDR < 0.05, FC < 2)

and 99 upregulated (VIP > 1, FDR < 0.05, FC > 2) in the AS

group (Figure 4G; see also Supplementary Table S1). Among the

top 30most abundant pathways, heatmap analysis showed a general

trend of downregulation in the AS group, primarily involving

carbohydrate metabolism (e.g., D-galacturonate degradation, TCA

cycle variants), nucleotide biosynthesis, amino acid synthesis (e.g.,

L-methionine, L-arginine), and short-chain fatty acid production

(Figure 4H). These results suggest that AS not only alters the

taxonomic composition of gut microbiota but also profoundly

disrupts its functional potential, particularly in energy metabolism

and biosynthetic capabilities.

3.5 AS altered the composition and
distribution of intestinal metabolites

To investigate whether fecal metabolite composition was

altered in AS patients, we conducted a comprehensive analysis

of metabolite profiles. The evaluation of distribution patterns of

all metabolites revealed that samples from the C group clustered

closely together, showing high similarity (Pearson correlation, r

> 0.8). Similarly, samples from the AS group (T group) also

exhibited high similarity within their cluster (Pearson correlation, r

> 0.8). This indicates a clear separation in metabolite distribution

between healthy individuals and AS patients (Figures 5A–C).

Across all samples, a total of 8,276 metabolites were detected. The

C group contained 813 more metabolites than the T group, with

1,110 unique to the C group. In contrast, only 297 metabolites

were unique to the T group. Additionally, heatmap visualization

further highlighted the differential abundance of metabolites

between groups (Figures 5D, E). These findings suggest that AS

patients exhibited a distinct fecal metabolite profile compared with

healthy individuals.

3.6 AS altered the composition of intestinal
metabolites

To investigate metabolic differences between healthy

individuals and AS patients, OPLS-DA was performed on

all detected metabolites. OPLS-DA revealed that, t1 and to1,

accounted for 40.8% and 49.3% of the total variance, respectively.

Clear separation between the C and T groups was observed,

indicating that the model effectively captured and distinguished

the group-specific metabolic profiles (Figure 6A). The reliability

of the OPLS-DA model was validated using 200 permutation

tests, yielding a Q2 value of 0.772 and an R2 value of 0.929,

indicating strong predictive performance and explanatory capacity

(Figure 6B). Differential metabolites were identified using the

criteria |log2FC| > 1, VIP > 1, and P < 0.05. Compared with

the C group, 122 metabolites were significantly upregulated in

the T group, such as 6,9,12,15,18,21-tetracosahexaenoic acid,

bufadienolide, and cucurbitacin D, while 514 metabolites were

significantly downregulated, including urobilin, adrenic acid, and

choldienic acid (Figure 6C, Supplementary Table S2). Enrichment

analysis of the differential metabolites revealed that they were

mainly enriched in pathways such as nitrogen metabolism,

glutathione metabolism, glyoxylate and dicarboxylate metabolism,

and phenylalanine metabolism (Figure 6D).

3.7 AS a�ected the interaction between gut
microbiota and metabolites

We further investigated the interactions between gut

microbiota and metabolites in healthy individuals and AS patients.

Interaction network analysis based on Spearman correlations (P <

0.05, r > 0.8) revealed distinct differences between the two groups.

The C group exhibited 47 edges, 55 nodes, and an average degree
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FIGURE 4

Functional prediction analysis of gut microbial communities using FAPROTAX and PICRUSt2. (A) Principal component analysis (PCA) of community

functions based on FAPROTAX annotations. (B) Abundance statistics of all annotated community functions. (C) Analysis of shared and unique

community functions between the C and T groups. (D) Volcano plot analysis of di�erential community functions (OPLS-DA analysis). (E) Heatmap

analysis of di�erential community functions. (F) PCA of predicted metabolic pathways based on PICRUSt2 annotations. (G) Volcano plot based on

OPLS-DA of predicted metabolic pathways using PICRUSt2. Pathways with VIP > 1 and FDR < 0.05 were considered significantly altered. Among

them, pathways with an FC < 0.5 were defined as downregulated, while those with FC > 2 were considered upregulated. (H) Heatmap of the top 30

most abundant di�erentially expressed metabolic pathways.
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FIGURE 5

Metabolite composition analysis. (A) PCA of metabolite concentrations. (B) Clustering of samples based on the average clustering algorithm. (C)

Correlation heatmap between samples (Pearson correlation). (D) Analysis of shared and unique metabolites between the C and T groups. (E)

Heatmap analysis of the concentrations of all metabolites.

of 1.709, whereas the T group exhibited a denser network with

124 edges, 138 nodes, and an average degree of 1.797, indicating

more extensive microbe–metabolite interactions. Additionally, the

central nodes in the interaction networks also differed between

groups. Specifically, in healthy individuals, Faecalitalea and

Erysipelatoclostridium emerged as key microbial hubs, with notable

interactions involving metabolites such as Pitavastatin. In AS

patients, microbial taxa such as Family_XIII_AD3011_group and

Weissella displayed more associations with metabolites; however,

the average node degree of metabolites was lower compared

with that in the healthy group, indicating a more fragmented or

specialized pattern of metabolite–microbe interactions (Figure 7A).

A correlation heatmap depicting the relationships between

the top 10 differential metabolites and the top 10 abundant

microbial genera showed significant patterns. Anti-inflammatory

microbes, such as Faecalibacterium and Agathobacter, were

positively correlated with metabolites such as 6,9,12,15,18,21-

tetracosahexaenoic acid, bufadienolide, and cucurbitacin D

(Pearson correlation, r > 0.9, P < 0.05). Conversely, these

microbes were negatively correlated with metabolites like urobilin,

adrenic acid, and 2-hydroxy-6-pentadecylbenzoic acid (Pearson

correlation, r < −0.9, P < 0.05). These findings suggest that

the metabolites may either be produced or modulated by these

microbes, indicating the presence of potential symbiotic or

mutualistic relationships between the gut microbiota and specific

metabolites (Figure 7B). CCA of the top 10 differential metabolites

and differential genera revealed a clear separation between the

healthy and AS groups within the CCA space, reflecting significant

shifts in the associations between microbial communities and

metabolic profiles. Metabolites such as epsilon-caroten-9′,1′-olide

3-acetate and bufadienolide were closely associated with the AS

group, suggesting that these metabolites were associated with

stroke-specific microbial communities. Conversely, metabolites

like choldienic acid and urobilin were linked to distinct microbial

taxa in the healthy group (Figure 7C).

4 Discussion

Extensive research has demonstrated that AS leads to gut

microbiota dysbiosis, and that the gut microbiota can modulate

host physiology through the production of metabolites, thereby

altering the composition and levels of gut metabolites (Zhao

et al., 2023). Our study revealed significant changes in the

gut microbiota and metabolites of patients with AS. The

results indicated substantial alterations in the fecal microbiota

community structure andmetabolites in these patients. Specifically,

the phylogenetic diversity and coverage of gut microbiota

were significantly increased in AS patients. Anti-inflammatory

microbes, such as Faecalibacterium, Agathobacter, Dialister, and

Ruminococcus, which are key constituents of the gut ecosystem,

were significantly more abundant than healthy participants.
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FIGURE 6

Di�erential metabolite analysis. (A) OPLS-DA plot based on the metabolic profiles of di�erent groups. (B) Evaluation of the OPLS-DA model with 200

permutations. (C) Di�erential metabolite analysis between C and T groups (|log2FC| > 1, VIP > 1, and P < 0.05). (D) Enriched pathways of di�erential

metabolites.

Previous research have identified Faecalibacterium as a core

genus in the gut microbiota, notable for its production of

SCFAs such as butyrate and propionate, which exhibit anti-

inflammatory properties (Martín et al., 2023). Additionally,

122 metabolites, including 6,9,12,15,18,21-tetracosahexaenoic acid,

bufadienolide, and cucurbitacin D, were significantly upregulated,

whereas metabolites such as urobilin, adrenic acid, and choldienic

acid were significantly downregulated. Notably, the abundances

Faecalibacterium and Agathobacter were strongly linked to the

upregulated metabolites.

AS induces significant alterations in the composition of gut

microbiota (Singh et al., 2016). This dysbiosis may develop

as a result of stroke-induced physiological and immunological

changes, and in turn, altered gut microbiota can influence post-

stroke inflammation and immune responses. Reduced diversity of

Bacteroidota species and bacterial overgrowth have been identified

as key features of post-stroke dysbiosis (Chen et al., 2019; Singh

et al., 2016). In our study, the abundance of Bacteroidota was

significantly reduced in stroke patients compared with healthy

controls, while the abundance of Firmicutes was significantly

increased. At the phylum level, such shifts in the overall gut

microbiota have been implicated in providing neuroprotection

during brain injury (Benakis et al., 2016). In a case-control

clinical study on patients with large artery atherosclerotic ischemic

stroke and transient ischemic attack, a reduced abundance of

Bacteroidota was observed, accompanied by significant increases

in microbial species richness, observed coverage, and phylogenetic

diversity (α-diversity). The Shannon index showed a similar

trend, but without significant differences (Yin et al., 2015). Our

findings are consistent with these previous reports, reinforcing

the notion that AS markedly alters gut microbiota composition

and diversity.

In this study, compared with healthy individuals, the levels of

gut microbiota such as Faecalibacterium, Agathobacter, Dialister,
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FIGURE 7

Correlation analysis of metabolites and prokaryotes. (A) Interaction network analysis of di�erential metabolites and all ASVs in C group (left) and T

group (right), based on Spearman correlation analysis. Metabolites and species with r > 0.8 and P < 0.05 were selected for network construction. (B)

Pearson correlation analysis between the top 10 metabolites by concentration and the top 10 species by relative abundance at the genus level. (C)

Canonical correspondence analysis of genus-level di�erential species and the top 10 di�erential metabolites. Red arrows represent metabolites, blue

points represent di�erent species.

and Ruminococcus were significantly elevated in patients with

AS, while the abundance of Bacteroides and Escherichia-Shigella

was markedly reduced. Previous research has demonstrated that

Faecalibacterium (Lopez-Siles et al., 2017), Agathobacter (Lv et al.,

2024), Dialister (Downes et al., 2003), and Ruminococcus (Pal et al.,

2021) produce butyrate and other SCFAs, which are involved in

regulating glucose and fatty acid metabolism and exhibit anti-

inflammatory properties (Parada Venegas et al., 2019). According

to Huang et al., the gut microbiota profile of stroke patients showed

significantly elevated levels of Firmicutes and Ruminococcaceae

(Huang X. et al., 2023), which aligns with our findings. However,

several other studies have reported a substantial reduction in

anti-inflammatory genera such as Anaerostipes, Ruminococcus, and

Faecalibacterium, alongside an enrichment of pro-inflammatory

taxa such as Enterococcus and Escherichia-Shigella in stroke patients

(Haak et al., 2021; Yamashiro et al., 2021; Li et al., 2019; Bonnechère

et al., 2022), which contradict our observations. This discrepancy

may be due to the acute-phase compensatory mechanism, where

the body attempts to counteract the inflammatory response

following a stroke. However, this hypothesis lacks direct supporting

evidence. To address this, future studies should incorporate the

analysis of inflammation markers, such as serum or fecal IL-6
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and TNF-α, to validate the potential anti-inflammatory effects of

the observed changes in gut microbiota. And longitudinal studies,

either in animal models or clinical settings, are needed to track

the dynamics of gut microbiota changes over time following a

stroke. This will help to better understand the temporal relationship

between gut microbiota changes and inflammatory responses, and

to validate the proposed acute-phase compensatory mechanism.

These inconsistencies likely reflect the complexity and

context-dependency of host–microbiome interactions, where

the inflammatory potential of a specific microbial taxa may vary

depending on host factors, microbial strain composition, and

environmental influences. In the context of AS, this dynamic

interaction may be particularly pronounced. AS represents the

early phase of stroke, characterized by a sudden onset of symptoms

within minutes to hours, requiring urgent medical intervention

(Sacco et al., 2013). We hypothesize that such an abrupt event

may induce rapid shifts in the gut microbiota. In response to

the acute systemic inflammatory state, certain anti-inflammatory

bacteria may increase in abundance as part of a compensatory

mechanism to mitigate inflammation. Specifically, genera

such as Faecalibacterium and Agathobacter might proliferate

under stress to counteract systemic inflammation and maintain

gut homeostasis. This hypothesis, however, warrants further

investigation and experimental validation. It is also noteworthy

that this study employed 16S rRNA amplicon sequencing

targeting the V3–V4 regions, which typically provides taxonomic

resolution only at the genus level, making it difficult to accurately

distinguish species or strains (Tanes et al., 2024; Ames et al.,

2017; Wang M. et al., 2025). As a result, critical strain-level

differences may be overlooked, potentially limiting the depth of

insight into the relationships between the gut microbiota and

metabolic processes. Therefore, future studies should incorporate

metagenomic sequencing and pure culture approaches to achieve

higher-resolution identification and functional characterization of

microbial strains.

Numerous studies have shown that anti-inflammatory

biomarkers-derived SCFAs can penetrate the gut mucosal

barrier, enter the bloodstream, cross the blood-brain barrier,

and act directly on brain cells, inhibiting the production of

pro-inflammatory cytokines (Erny et al., 2015; Vinolo et al.,

2011). However, in our metabolomic analysis, SCFAs did not

differ significantly between healthy controls and stroke patients.

Instead, metabolites such as 6,9,12,15,18,21-tetracosahexaenoic

acid, bufadienolide, cucurbitacin D, urobilin, adrenic acid, and

choldienic acid exhibited significant alterations. These differential

metabolites were primarily enriched in the nitrogen metabolism,

glutathione metabolism, glyoxylate and dicarboxylate metabolism,

and phenylalanine metabolism pathways, all of which are closely

associated with oxidative stress, inflammatory responses, and

energy metabolism. During stroke onset, the interruption of

cerebral blood flow has been reported to result in insufficient

oxygen and glucose supply, leading to impaired energy metabolism

and exacerbated oxidative stress (Qin et al., 2022). Alterations

in nitrogen and glutathione metabolism likely reflect a defensive

response to oxidative damage. Meanwhile, dysregulation of

glutathione metabolism may paradoxically contribute to neuronal

injury (Shin et al., 2020; Pluta and Januszewski, 2023). In

addition, abnormalities in phenylalanine metabolism have been

associated with neuroinflammation and neurotoxicity, potentially

exacerbating post-stroke neurological dysfunction (Wang et al.,

2020, 2024). These shifts in gut-derived metabolites suggest that

the gut–brain axis plays a critical role in the pathophysiology of

AS, possibly through the modulation of systemic inflammation

and neuroprotective mechanisms (Yamashiro et al., 2017).

The observed elevation of long-chain polyunsaturated

fatty acids (PUFAs) in this study, such as 6,9,12,15,18,21-

tetracosahexaenoic acid, along with steroidal and triterpenoid

metabolites, may reflect a compensatory regulatory response to

inflammation and oxidative stress. This finding aligns with recent

reports highlighting the neuroprotective roles of lipid metabolism

in stroke (Shin et al., 2020; Wang et al., 2020; Peesh et al.,

2025). Notably, Faecalibacterium and agathobacter were found

correlated positively with 6,9,12,15,18,21-tetracosahexaenoic

acid, bufadienolide, and cucurbitacin D. 6,9,12,15,18,21-

tetracosahexaenoic acid, a long-chain PUFA, is closely linked

to lipid metabolism and inflammatory responses. It has been

shown to inhibit NF-κB and COX-2 signaling pathways, thereby

reducing the production of pro-inflammatory cytokines such

as TNF-α and IL-6 (Metherel et al., 2017; Lacombe et al.,

2018). Additionally, it promotes the generation of specialized

pro-resolving mediators (SPMs) like resolvins, which facilitate

the resolution of inflammation (Calder, 2013). Bufadienolide,

a steroidal endotoxin-like compound, participates in steroid

metabolism and inflammatory signaling pathways, such as TLR

signaling. It has been reported to inhibit the TLR4/NF-κB pathway,

reducing the release of pro-inflammatory cytokines like IL-1β

and TNF-α (Deng et al., 2020). Furthermore, bufadienolide can

induce apoptosis in overactivated immune cells, thereby mitigating

excessive inflammatory responses (Chen et al., 2023). Cucurbitacin

D, a triterpenoid compound, is involved in apoptosis and anti-

inflammatory pathways such as the MAPK/ERK pathway. It has

been shown to inhibit the MAPK/ERK signaling cascade, leading

to reduced expression of pro-inflammatory cytokines like IL-6 and

COX-2 (Song et al., 2013). Moreover, cucurbitacin D can induce

cell cycle arrest in rapidly proliferating immune cells, further

contributing to its anti-inflammatory effects (Mehdi Üremiş et al.,

2022).

Based on the above findings, we hypothesize that

anti-inflammatory gut microbiota in AS patients may

participate in the regulation of inflammatory responses by

modulating the production of specific metabolites such as

6,9,12,15,18,21-tetracosahexaenoic acid, bufadienolide, and

cucurbitacin D. These microbial–metabolite interactions may also

represent potential therapeutic targets for future interventions.

However, current research on the anti-inflammatory mechanisms

of commensal bacteria, particularly those involving SCFA

secretion, remains limited. Moreover, our study only provides

preliminary correlation analyses between gut microbiota and

metabolites. To further validate these initial observations, future

studies should integrate animal models to explore the causal roles

of Faecalibacterium and Agathobacter in regulating the production

of 6,9,12,15,18,21-tetracosahexaenoic acid, bufadienolide, and

cucurbitacin D, and their subsequent impact on inflammatory

responses. For example, fecal microbiota transplantation or

targeted bacterial interventions in AS animal models, combined

with metabolomics and inflammatory marker analyses, could help
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elucidate the causal mechanisms underlying microbe–metabolite–

inflammation interactions (Agus et al., 2021; Xu et al., 2022; Su

et al., 2025). Additionally, in vitro cell culture experiments may be

utilized to elucidate the specific inflammatory signaling pathways

modulated by these metabolites.

In addition to the aforementioned points, this study has

several general limitations. First, the sample size was relatively

small. Moreover, samples for metabolomics analysis were further

selected using stratified random sampling, which may have

introduced selection bias. Although efforts were made to ensure

representativeness, the limited sample size may still affect the

statistical power and generalizability of the findings. Second,

while the study integrated microbiota and metabolite data, it was

cross-sectional in design, preventing the establishment of causal

relationships. Third, medications such as antiplatelet and statin

drugs, commonly prescribed to stroke patients, have been reported

to influence gut microbiota (Yamashiro et al., 2017). Similarly,

post-stroke dietary changes, which often involve increased fiber

intake and reduced fat consumption, can also affect gut microbiota

composition (Sonnenburg and Bäckhed, 2016). However, a notable

limitation of this study is the lack of detailed pre-admission

medication and dietary information. To validate and expand upon

the current observations, future studies should employ larger, well-

controlled cohorts and longitudinal designs.

5 Conclusion

In this study, we employed 16S rRNA sequencing and

untargeted metabolomics to investigate alterations in the gut

microbiota and metabolite profiles of AS patients. Compared with

healthy individuals, AS patients exhibited a significantly increased

abundance of anti-inflammatory microbes. Notably, no significant

differences in SCFA levels were detected between the two groups.

Instead, metabolites such as 6,9,12,15,18,21-tetracosahexaenoic

acid, bufadienolide, and cucurbitacin D were markedly elevated

in AS patients and showed strong positive correlations with the

enriched anti-inflammatory microbiota. Our findings indicate that

gut dysbiosis in AS patients is closely associated with changes

in specific metabolites. This intricate microbe-metabolite-host

interaction likely reflects a unique gut metabolic adaptation

mechanism in stroke patients. These results provide new insights

into the role of the gut-brain axis in AS and propose potential

microbial and metabolic biomarkers for stroke diagnosis and

treatment. Future studies should further validate the biological

functions of these metabolites and their specific relationships with

stroke prognosis, thereby laying the groundwork for developing

microbiota-based precision therapeutic strategies.
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