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Domesticated Saccharomyces cerevisiae is one of the most significant microbial

populations in human civilization due to its remarkable diversity and high

adaptability to human environments. However, the adaptability mechanisms

underlying this population ecological behavior remain unclear. This study

explored the adaptive behaviors of S. cerevisiae strains from the Wine and

Mantou genetic lineages under both artificial stress conditions and natural or

near-natural environments. A total of 307 diploid S. cerevisiae strains were

analyzed, including 169 strains derived from grape sources and 138 from

sourdough sources. Various stress factors, including sodium chloride, tannins,

ethanol, pH, temperature, and sulfur dioxide (SO2), as well as different substrates

(natural grape juice, simulated grape juice, and simulated dough), were

applied to evaluate adaptability. The results demonstrated that Wine population

exhibited superior performance in grape juice environments, characterized by

higher CO2 production. The biomass of both the Wine and Mantou populations

in the simulated dough was significantly higher than that in the simulated

grape juice. In the simulated grape juice environment, the adaptability of the

Wine population was significantly superior to that of the Mantou population. In

contrast, in the simulated dough environment, the Mantou population exhibited

better adaptability than the Wine population. Furthermore, Wine population

displayed higher tolerance to ethanol, extreme temperatures, tannins, and

sodium chloride in YPD medium compared to Mantou population. Diploid

strains also exhibited greater stress tolerance than haploid strains. These findings

offer valuable insights into the distinct adaptive mechanisms of domesticated

S. cerevisiae lineages.
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1 Introduction

Recent research on the evolutionary phylogeny of S. cerevisiae populations has
identified two major groups: wild and domesticated (Duan et al., 2018). The domesticated
group is further classified into sub-lineages specifically adapted to liquid fermentation
environments (e.g., the Wine lineage) and those adapted to solid fermentation
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environments (e.g., the Mantou lineage) (Duan et al., 2018; Han
et al., 2021; Tellini et al., 2024). Domesticated S. cerevisiae is one of
the most important microbial populations for human civilization.
The domesticated population plays a crucial role in the production
of bread and wine, exhibiting extensive diversity and strong
adaptability to environments such as grape juice and wet dough.
Grape juice introduces a range of stress factors that challenge
S. cerevisiae survival, including high polyphenol content, acidity,
osmotic pressure, and sugar levels, as well as low pH, added sulfur
dioxide (SO2), controlled low temperatures, elevated temperatures
during natural fermentation, and high alcohol content (Gao et al.,
2022; García-Ríos and Guillamón, 2019; Gobert et al., 2019; Lin
et al., 2024). Despite these challenges, S. cerevisiae remains the
dominant microorganism in fermentation processes due to its
exceptional adaptability. In starch-rich environments, such as with
a nearly neutral pH, S. cerevisiae thrives by efficiently metabolizing
key nutrients like maltose (Aydın et al., 2022; Lahue et al., 2020).
This suggests that S. cerevisiae has developed distinct adaptive
strategies, enabling it to thrive in various ecological niches, which
has resulted in the formation of specialized lineages (Han et al.,
2021; Tellini et al., 2024; Wang et al., 2012). Based on the excellent
fermentation properties of indigenous S. cerevisiae in grape juice
and dough fermentation, many researchers have selected potential
strains from natural habitats for industrial applications (Mudoor
Sooresh et al., 2023; Parapouli et al., 2020; Zhang et al., 2021).
The application of individual strain fermentation and limited strain
combinations has significantly advanced the industrial production
of wine and bread (de Gioia et al., 2022; Ojeda-Linares et al., 2022;
Rădoi-Encea et al., 2023). However, this approach has limitations
to rich the quality of fermented foods, and to balance between
tradition and innovation in contemporary winemaking (Gardner
et al., 2023; Zampi and Ranfagni, 2024). Microbial populations,
compared to individual strains, demonstrate a greater capacity to
endure intense selective pressures (Swamy and Zhou, 2019). They
undergo adaptive selection, characterized by mutations that confer
a survival advantage in specific new environments (Heidenreich,
2007; Massoud and Zoghi, 2022; Tellini et al., 2024). These
mutations reflect stable evolutionary adaptations to environmental
changes. For example, in grape juice and dough, S. cerevisiae relies
on the collective behavior of its population to carry out enological
functions. Effectively managing this population during natural
fermentation has increasingly become a central focus of research
(Yi et al., 2024; Zhang et al., 2021).

Currently, research on the adaptability of S. cerevisiae
populations derived from limited ancestors’ strains is primarily
conducted in laboratory evolution (Caspeta and Nielsen, 2015;
Godara and Kao, 2021; Randez-Gil et al., 2020). Through serial
propagation, the resulting populations exhibit genetic variations,
phenotypic changes, and alterations in survival capabilities as
they adapt to the predefined environment (Betlej et al., 2020;
Godara and Kao, 2021; Zheng and Wang, 2015). There are also
many studies that focus on single strains or a limited number
of strains cultivated under specific artificial conditions (Lázari
et al., 2022; Mudoor Sooresh et al., 2023). This approach seeks
to elucidate the mechanisms by which microorganisms adapt
to specific natural environments. However, it may inadequately
represent the adaptability of natural S. cerevisiae populations under
actual conditions, potentially leading to discrepancies.

The complexity of natural environments, such as grape juice
ecosystems, has led many scholars to propose that S. cerevisiae
populations from different regions display distinct “terroir
characteristics” (Alexandre, 2020; Pretorius, 2020; Rădoi-Encea
et al., 2023). However, some researchers contend that this
assumption is unfounded (Marsit and Dequin, 2015; Šuranská et al.,
2016). In nature, S. cerevisiae exhibits both haploid and diploid life
forms (i.e., MAT-a and MAT-α mating types, with diploid forms
being predominant) (Zhang et al., 2017). Although the molecular
mechanisms driving the adaptive evolution of various evolutionary
lineages and ploidy types of S. cerevisiae are well studied, our
understanding of population-level adaptive behaviors under real or
near-real environmental conditions remains limited.

This study examined the population-level adaptive behaviors of
S. cerevisiae in 169 Wine strains and 138 Mantou strains collected
from regions along the Silk Road (within China) under multi-stress
conditions in both native and non-native habitats. The findings
reveal the adaptability of domesticated populations, shedding light
on potential intrinsic patterns and providing novel strategies and
perspectives for industrial applications.

2 Materials and methods

2.1 Experimental strains

This study utilized a total of 310 yeast strains, including
307 wild strains. Among these, 169 strains of S. cerevisiae were
from the Wine population of grapes (SCP), and 138 strains were
from the Mantou population of sourdough (SCJ). Specifically,
149 strains originated from Xinjiang (XJ), while 158 strains were
sourced from regions outside Xinjiang (NXJ). The phylogenetic
analysis revealed that these strains belonged to various lineages,
including CHN-VI/VII, Daqu/Baijiu, CHN-VIII, Mantou 3, West
African cocoa, Milk/Cheese Milk, European Wine, Mantou 5,
Huangjiu, Mantou 7, and Mosaic lineages (e.g., Ecuador Beer
8. Mixed origin, Belgium Human/Clinical 8. Mixed origin,
France Human/Clinical 8. Mixed origin, Ethiopia Honey Wine
ADY/Mixed, China Plant 8. Mixed origin, China Commercial
ADY, Slovakia Water 19. Mixed origin, China Mantou ADY).
All wild strains were confirmed to be diploid through ploidy
analysis (Supplementary Table 1) (Xiao et al., 2004; Xue et al.,
2012). From each lineage, 2–3 S. cerevisiae strains with distinct
geographical origins were selected, resulting in a total of 25 strains

FIGURE 1

CO2 weight loss of SCP and SCJ population in grape juice. ∗∗∗p <
0.001.
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FIGURE 2

Biomass (OD600) of SCP and SCJ population in SG (A) and SF (B) medium. ∗∗∗p < 0.001.

FIGURE 3

Biomass (OD600) of XJ (Xinjiang) and NXJ (no Xinjiang) S. cerevisiae populations. SCP populations from XJ and NXJ in SG medium (A); SCJ
populations from XJ and NXJ in SG medium (B); SCP populations from XJ and NXJ in SF medium (C); SCJ populations from XJ and NXJ in SF
medium (D). ∗p < 0.05, ∗∗∗p < 0.001.

Frontiers in Microbiology 03 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1581370
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-16-1581370 April 8, 2025 Time: 19:7 # 4

Su et al. 10.3389/fmicb.2025.1581370

FIGURE 4

Growth (OD600) of different lineages of S. cerevisiae. SCP population in SG medium (A); SCJ population in SG medium (B); SCP population in SF
medium (C); SCJ population in SF medium (D). a, b, c, d, and e indicate significant differences between groups, the same letters indicate insignificant
differences, and different letters indicate significant differences.

for the construction of wild-type haploid strains (Xiao et al., 2004;
Xue et al., 2012). Additionally, haploid strains BY4741 (MAT-a)
and BY4742 (MAT-α) (obtained from the Institute of Microbiology,
Chinese Academy of Sciences), as well as the reference strain S288C
(purchased from Biosune Biotechnology), were used as reference
strains.

2.2 Reagents and medium

Reagents: Sterile 30% glycerol, sodium chloride, tannic acid,
sodium thiosulfate, and snail enzyme (100 mg/mL).

YPD liquid medium was prepared by dissolving 10 g of yeast
extract, 20 g of glucose, and 20 g of peptone in distilled water. The
solution was sterilized at 121◦C for 30 min.

Grape juice was freshly pressed and stored at −20◦C
for subsequent use.

Synthetic grape juice (SG) medium composition:
The SG medium was prepared with the following components

(per liter): glucose (60 g), fructose (60 g), dipotassium
hydrogen phosphate (1.14 g), magnesium sulfate heptahydrate
(MgSO4·7H2O, 1.23 g), calcium chloride dihydrate (CaCl2·2H2O,

0.44 g), potassium bitartrate (cream of tartar, 2.5 g), malonic
acid (3 g), citric acid (0.2 g), ammonium hydrogen phosphate
[(NH4)2HPO4, 0.4 g], vitamin solution (10 mL), amino
acid solution (10 mL), trace element solution (1 mL), and
ergosterol (12.5 mg).

Vitamin solution (mg/L): the vitamin solution contained
inositol (100 mg), pyridoxine hydrochloride (Vitamin B6,
2 mg), niacin (2 mg), calcium pantothenate (1 mg), thiamine
hydrochloride (Vitamin B1, 0.5 mg), para-aminobenzoic acid
(0.2 mg), riboflavin (Vitamin B2, 0.2 mg), biotin (0.125 mg), and
folic acid (0.2 mg).

Amino acid solution (mg/L): the amino acid solution
included alanine (5.9 mg), arginine (137.3 mg), asparagine
(36.5 mg), aspartic acid (23.1 mg), glutamine (48.7 mg),
glutamic acid (30.8 mg), glycine (4.1 mg), histidine (45.8 mg),
isoleucine (24.1 mg), lysine (61.5 mg), methionine (20 mg),
phenylalanine (11.6 mg), serine (48.2 mg), threonine
(42.2 mg), tryptophan (12.1 mg), tyrosine (2.4 mg), and
valine (24.1 mg).

Trace element solution (µg/L): the trace element solution
comprised manganese chloride tetrahydrate (MnCl2·4H2O,
200 µg), zinc chloride (ZnCl2, 135 µg), iron chloride tetrahydrate
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FIGURE 5

Biomass (OD600) of the SCP and SCJ populations under NaCl stress. Biomass of the two groups under NaCl stress (A); Biomass of the two groups
under tannin stress (B); Biomass of the two groups under ethanol stress (C); Biomass of the two groups under pH stress (D); Biomass of the two
groups under temperature stress (E); Biomass of the two groups under SO2 stress (F). ∗p < 0.05, ∗∗∗p < 0.001.

(FeCl2·4H2O, 30 µg), copper chloride dihydrate (CuCl2·2H2O,
15 µg), boric acid (H3BO3, 5 µg), cobalt nitrate hexahydrate
[Co(NO3)2·6H2O, 30 µg], sodium molybdate dihydrate
(Na2MoO4·2H2O, 25 µg), and potassium iodate (KIO3, 10 µg).

The medium was prepared by adding 1,000 mL of distilled
water, thoroughly mixing all components, and sterilizing at 121◦C
for 30 min (Camesasca et al., 2018).

Synthetic flour juice (SF) composition:
The SF medium was composed of the following

components (per liter): wheat oligopeptides (12 g), magnesium
sulfate heptahydrate (MgSO4·7H2O, 0.2 g), manganese

sulfate monohydrate (MnSO4·H2O, 0.05 g), potassium
dihydrogen phosphate (KH2PO4, 4 g), dipotassium hydrogen
phosphate (K2HPO4, 4 g), Tween 80 (1 mL), and a vitamin
solution (1 mL).

Vitamin solution (mg/L): the vitamin solution contained
cobalamin (200 mg), folic acid (200 mg), niacinamide (200 mg),
pantothenic acid (200 mg), pyridoxal phosphate (200 mg), and
thiamine (200 mg).

Carbohydrate solution (g/L): the carbohydrate solution
included glucose (0.5 g), maltose (10 g), fructose (0.5 g),
and sucrose (2 g).
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FIGURE 6

Biomass (OD600) of haploid SCP and SCJ population in SG and SF
medium.

The final medium was prepared by adding distilled
water to reach a total volume of 1,000 mL, thoroughly
mixing all components, and sterilizing at 121◦C for 30 min
(Vrancken et al., 2008).

2.3 Experimental methods

Fresh YPD cultures (1%) were inoculated into 10 mL of SG
and SF media. The cultures were incubated at 28◦C for 7 days.
On days 0 and 7, 200 µL of the cultures were transferred to a 96-
well microplate, and absorbance at 600 nm was measured using a
Synergy H1 multifunctional microplate reader (BioTek). The initial
absorbance (OD1) and post-incubation absorbance (OD2) were
recorded. Calculate fungal biomass 1OD = (OD2–OD1)/3 (Zhu
et al., 2017).

Tolerance behavior under stressful conditions:
Fresh YPD cultures were inoculated (1% v/v) into YPD media

under various stress conditions, including sodium chloride (NaCl),
tannin (TA), alcohol (AL), pH, temperature, and sulfur dioxide
(SO2). The specific stress conditions were as follows:

Sodium chloride (NaCl): 6, 8, and 10% in YPD.
Tannin (TA): 1 g/L, 1.5 g/L, and 2 g/L in YPD.
Alcohol (AL): 12, 14, and 16% in YPD.
pH levels: 3.0, 3.5, 4.0, 5.0, and 7.0 in YPD.
Sodium thiosulfate (S): 0.632 g/L (S-4), 0.1264 g/L (S-8), and

0.1896 g/L (S-12) in YPD.
Cultures were incubated at 28◦C for 48 h after inoculation into

YPD liquid medium. At both 0 h and 48 h, 200 µL of the culture
was transferred into a 96-well plate. Absorbance was measured at
600 nm using a multifunctional plate reader, recording the initial
optical density (OD1) and the optical density after 48 h (OD2).
The change in microbial density (1OD) was calculated using the
formula: (OD2–OD1)/3.

All experiments were performed in triplicate, and data analysis
was conducted using SPSS 26.0 software. One-way ANOVA was
employed to assess differences across various sources of isolation,
regions, lineages, and substrates, with statistical significance
defined as P < 0.05. Graphs were created using Origin 2021, while

data processing and heatmap generation were performed with
MetaboAnalyst.1

3 Results

3.1 Adaptability of diploid S. cerevisiae
populations

3.1.1 CO2 weight loss in SCP and SCJ populations
in grape juice

As illustrated in Figure 1, In grape juice, S. cerevisiae
populations exhibited relatively similar CO2 release patterns for
SCP or SCJ subpopulation. However, a significant difference was
observed between the two subpopulations. The CO2 release from
the 169-strain SCP population was significantly higher than that
from the 138-strain SCJ population (P < 0.001).

3.1.2 Adaptation behaviors of SCP and SCJ
populations in SG and SF medium

The adaptation behaviors of SCP and SCJ S. cerevisiae
populations differed significantly between the SG and SF
media (Figure 2). In SG medium, both populations exhibited
highly dispersed biomass distributions with lower mean values
(mean < 0.6), whereas in SF medium, the biomass was
more concentrated and displayed higher mean values (> 1.0).
Specifically, in SG medium, the SCP population demonstrated
significantly better growth compared to the SCJ population,
while in SF medium, the SCJ population outperformed the
SCP population (P < 0.001). The S288C model strain, isolated
from a spontaneous fermentation environment (Liu and Huang,
2022), exhibited superior growth in SF medium compared to SG
medium. These findings indicate that SF medium provides a more
favorable environment for the growth of S. cerevisiae, whereas the
simulated grape juice (SG) medium does not adequately support
its growth. Under native or near-native conditions, the SCJ and
SCP populations display distinct growth advantages within their
respective ecological niches.

3.1.3 Adaptive analysis of XJ and NXJ populations
in SG and SF medium

A total of 149 S. cerevisiae strains from the Xinjiang region
(XJ) and 158 strains from outside the Xinjiang region (NXJ) were
cultured in SG medium (Figures 3A, B). The SCP population
demonstrated significantly better growth in NXJ strains compared
to XJ strains (Figure 3A), with the average OD600 of the NXJ SCP
group (0.8) being markedly higher than that of the SCJ groups
from both regions (0.3–0.4) (Figure 3B). In SF medium, the SCP
population within Xinjiang exhibited significantly higher growth
compared to the SCP population outside Xinjiang (Figure 3C).
However, no significant difference was observed in the growth
characteristics of the SCJ population between the two regions
(Figure 3D). The average OD600 value of the SCP population within
Xinjiang was slightly higher than that of the SCP population outside
Xinjiang (Figure 3C).

1 https://www.metaboanalyst.ca
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FIGURE 7

Tolerances of representative haploid and diploid S. cerevisiae strains. Biomass of S. cerevisiae under NaCl stress (A); Biomass of S. cerevisiae under
tannin stress (B); Biomass of S. cerevisiae under ethanol stress (C); Biomass of S. cerevisiae under pH stress (D); Biomass of S. cerevisiae under
temperature stress (E); Biomass of S. cerevisiae under SO2 stress (F). In each graph, “a” represents haploid S. cerevisiae, and “b” represents diploid
S. cerevisiae. ∗p < 0.05, ∗∗∗p < 0.001.

3.1.4 Adaptation of different lineages of
S. cerevisiae in SG and SF media

In SG medium, significant differences in growth abilities were

observed among different lineages within the SCP population

(Figure 4A) and the SCJ population (Figure 4B) (P < 0.05). The

CHN-VIII lineage exhibited the highest growth ability, whereas the

CHN-VI/VII lineage showed the weakest adaptation. Within the

SCJ population, strains from the Mosaic lineage demonstrated the
strongest adaptation capacity.

In SF medium, notable differences in biomass (P < 0.05)
were also detected among lineages within the SCP population
(Figure 4C) and the SCJ population (Figure 4D). Overall,
lineages within the SCJ population showed stronger adaptation
abilities, with the Mosaic lineage achieving the highest
performance.
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FIGURE 8

Tolerance heatmap of haploid (A) and diploid (B) SCP and SCJ S. cerevisiae populations.

3.1.5 Tolerance of SCP and SCJ populations
under various stresses

Under stress conditions such as 6%–10% NaCl (Figure 5A),
1–1.5 g/L tannin (Figure 5B), 14%–16% ethanol (Figure 5C),
extreme temperatures (15◦C and 42◦C, Figure 5E), and 40–80 mg/L
SO2 (Figure 5F), the SCP population demonstrated significantly
higher adaptability compared to the SCJ population (P < 0.05).
In contrast, under high pH conditions (pH 5–7), the biomass
of the SCJ population was significantly higher than that of the
SCP population. However, under low pH conditions (pH 3–4,
Figure 5D) and high SO2 stress (120 mg/L, Figure 5F), the SCJ
population exhibited stronger inhibition. No significant differences
in adaptability were observed between the SCP and SCJ populations

under these conditions, nor under optimal growth conditions at
30◦C (Figure 5E).

3.2 Adaptability of representative haploid
strains

3.2.1 Adaptability of haploid SCP and SCJ
populations

In a comparison between SG and SF media, the biomass
accumulation of haploid SCP and SCJ populations was significantly
higher in SG medium than in SF medium (Figure 6). However,
within the same medium, no significant difference in biomass
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accumulation was observed between the haploid SCP and SCJ
populations (Figure 6).

3.2.2 Comparison of the tolerance characteristics
of haploid and diploid S. cerevisiae populations

Under stress conditions, including 6–10 g/L NaCl (Figure 7A),
1–2 g/L tannins (Figure 7B), 12%–14% ethanol (Figure 7C), pH
4–5 (Figure 7D), and low temperatures at 15◦C (Figure 7E),
diploid S. cerevisiae populations demonstrated significantly higher
tolerance compared to haploid populations (P < 0.05). In contrast,
under high-temperature stress at 42◦C, haploid populations
exhibited significantly greater tolerance than diploid populations
(P < 0.05) (Figure 7E). For SO2 tolerance (40 mg/L–120 mg/L),
haploid populations showed slightly higher tolerance than diploid
populations (Figure 7F).

The adaptive responses of S. cerevisiae populations varied
depending on the type of stress, irrespective of ploidy. Among the
tested stress factors, ethanol stress exerted the most pronounced
impact, with biomass values dropping below 1.0 (OD600) and mean
values falling below 0.6 (OD600) (Figure 7C). Under NaCl stress,
while some individual strains achieved biomass values exceeding
1.0, the population mean remained below 0.6 (Figure 7A). Tannin
stress resulted in biomass values below 1.0 (OD600), with mean
values ranging from 0.7 to 0.9 (Figure 7B). Under pH stress, the
population biomass mean was approximately 1.0, with relatively
low strain variation (Figure 7D). Compared to these stressors, both
temperature extremes (Figure 7E) and SO2 stress (Figure 7F) had
relatively minor effects on the growth of S. cerevisiae populations.

3.2.3 Tolerance of haploid and diploid SCP and
SCJ S. cerevisiae populations

A comparison of 25 representative haploid strains of
S. cerevisiae (Figure 8A) and 307 diploid strains (Figure 8B)
revealed significant differences in stress tolerance between the
SCP and SCJ populations under various stress conditions. Most
haploid SCP strains exhibited lower tolerance compared to haploid
SCJ strains (Figure 8A). In contrast, the diploid SCP population
demonstrated superior tolerance relative to the diploid SCJ
population under conditions of high ethanol, low tannins, extreme
temperatures (both high and low), high osmotic pressure, and low
pH (< 4) (Figure 8B). These results suggest that the diploid SCP
population exhibits significantly enhanced tolerance characteristics
compared to its haploid counterpart.

4 Discussion and conclusion

A comparison of biomass production between the two
populations in SG and SF media revealed significantly lower
biomass production in SG compared to SF. This suggests that
the simulated grape juice medium inhibits S. cerevisiae growth
and fails to provide an optimal environment for its development
(Bagheri et al., 2017; Raas and Dutheil, 2024). In both grape
juice and SG media, the SCP population exhibited significantly
better growth than the SCJ population. In contrast, the SCJ
population demonstrated significantly better adaptability in SF
medium than the SCP population. The model strain S288C
displayed markedly better growth characteristics in SF medium

compared to SG medium, suggesting that S. cerevisiae strains from
the Wine and Mantou lineages possess distinct growth advantages
in their respective native environments, reflecting clear ecological
adaptation (Bai et al., 2022). The differences in adaptability between
the two populations are associated with specific functional genes
and metabolic pathways (Chen and Zhang, 2024). In SG medium,
the carbon sources primarily come from glucose and fructose.
S. cerevisiae may adapt better to the SG medium by upregulating
genes related to sugar metabolism, such as the glucose transporter
HXT (Karri et al., 2024), the glucose kinase gene GLK1 (Zhang
et al., 2024), and the phosphofructokinase gene PFK1 (Zheng et al.,
2024), thereby enabling the SCP population to better thrive in this
medium. The simulated dough medium typically contains rich and
complex carbon sources. The SCP population may demonstrate
enhanced adaptability in such an environment by upregulating
genes associated with starch hydrolysis and sugar transport, such
as the STA gene, which is responsible for breaking down starch into
smaller fermentable sugars (Krogerus et al., 2019). genes such as
GPA1, SAG1, and MAL32, which are involved in starch degradation
and conversion, contribute to enhanced adaptability in starch-
rich environments (Dietvorst et al., 2007; Schlarmann et al., 2024;
Tamaki, 2007). S. cerevisiae adapts to varying environmental pH
levels by regulating genes such as the phosphate transporter gene
PHO84 and the proton pump gene PMA1 (Antunes and Sá-Correia,
2024; Eskes et al., 2018). Grape juice is typically weakly acidic,
whereas the pH of dough is closer to neutral or slightly acidic (Bovo
et al., 2018; Jayaram et al., 2013). The SCP population has already
adapted to this low-pH environment.

In diploid populations, variations in adaptive behavior are
observed between different regions and lineages, suggesting that
both genetic and environmental factors play a significant role in
shaping the adaptive behaviors of S. cerevisiae populations (Bai
et al., 2022; Legras et al., 2018). Brewing yeasts are classified
into distinct phylogenetic lineages based on their geographical
origins, including Malaysian, North American, West African,
and Wine/European lineages. This classification highlights the
combined effects of genetic and geographical factors on the
adaptive behavior of brewing yeast populations (Bai et al.,
2023). S. cerevisiae strains with higher ploidy exhibit improved
adaptability (Lahue et al., 2020). Diploid S. cerevisiae exhibited
greater tolerance and stability compared to haploid populations,
consistent with findings from numerous related studies (Harari
et al., 2018; Liang and Wang, 2022; Yona et al., 2012). Diploid
strains of brewing yeast possess a repertoire of stress tolerance
genes, such as Th2CysPrx, which significantly enhance their ability
to tolerate multiple stressors (Wang et al., 2022), The stress
tolerance of diploid S. cerevisiae populations under multiple
stress factors was found to be stable in the study. Moreover, in
the same habitat, diploid yeast populations from SCP habitats
demonstrated superior tolerance traits compared to haploid
populations. In contrast, haploid populations exhibited instability
in their tolerance characteristics, this highlights the key rationale
for the widespread distribution of diploid S. cerevisiae populations
in natural ecosystems.

In stressful environments, the SCP population demonstrates
greater tolerance to NaCl, tannin, alcohol, and both low and
high temperatures, while the SCJ population exhibits significantly
higher biomass in near-neutral environments compared to the
SCP population. This is associated with stress acclimatization in
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their native habitats, driving adaptive evolution in gene expression,
metabolic pathways, and stress response mechanisms (Bai et al.,
2022). When S. cerevisiae is exposed to high osmotic pressure
environments (e.g., high salt, high alcohol), the expression of the
GPD1 gene is typically upregulated to help the yeast synthesize
more glycerol (Eriksson et al., 2000), maintaining osmotic balance
inside and outside the cell. The SCP population enhances its
tolerance to low temperatures by upregulating cold-response genes
(e.g., HSP30) (Sahana et al., 2024), which helps maintain the fluidity
and activity of the yeast cell membrane. Additionally, S. cerevisiae
may upregulate genes such as alcohol dehydrogenase (ADH1) and
boost lipid metabolism and membrane stability to mitigate alcohol-
induced damage to the cell membrane and enzymes (Gutiérrez-
Lomelí et al., 2008). In response to tannin stress, the expression
of the antioxidant gene SOD1 may be regulated to mitigate
oxidative damage caused by tannin in near-neutral environments
(Subramaniyan et al., 2019), the SCJ population outperforms the
SCP population, which is related to the slightly acidic nature of the
dough, further demonstrating that, under favorable environmental
conditions, the best growth environment for S. cerevisiae is still its
native habitat.

From a laboratory perspective, the phenomena described
above clearly indicate that S. cerevisiae populations from different
habitats exhibit similar population characteristics and demonstrate
distinct growth advantages in their native environments. This
observation provides theoretical support for the selection of
superior strains within populations and offers valuable insights into
the development of applications utilizing populations composed of
different strains of the same species. Further research is necessary to
investigate the relationship between multidimensional stress testing
at the strain level and the metabolic activities of these populations,
with the goal of optimizing the potential of limited strains in
ecological environments.

Current assessments of S. cerevisiae adaptability primarily
focus on strain selection and practical applications, such as
evaluating the fermentation tolerance of S. cerevisiae strains
isolated from orchards to identify those with superior fermentation
performance. Furthermore, individual strains are often evaluated
for their adaptability and differentiation potential through
laboratory passages. In contrast, this paper adopts a population-
level perspective, investigating the ecological adaptive behavior of
S. cerevisiae. The objective is to provide direct evidence of the
species’ remarkable adaptability in ecological environments, while
also offering insights from an ecological population perspective to
inform the development and application of S. cerevisiae strains.
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