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Biosynthesis of bimetallic
silver—copper oxide
nanoparticles using endophytic
Clonostachys rosea ZMS36 and
their biomedical applications

Zhijiang Chen', Tianyu Lv', Yuxing Zhang, Weitao Kong, Xixian Li,
Siyun Xie, Jiaqi Li, Yu Long, Liging Chen, Jiarong Liu, Zhiqi Li,
Xingda Zeng* and Zujun Deng*

Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic
Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China

Bimetallic nanoparticles (BMNPs) have garnered significant interest owing to
their exceptional physicochemical properties. However, there have been few
reports of the biosynthesis of BMNPs using endophytic fungi from medicinal
plants. The objectives of this study were to isolate endophytic fungi from
medicinal plant Anemarrhena asphodeloides to synthesize bimetallic Ag-CuO
nanoparticles (Ag-CuO NPs), characterize the biosynthesized Ag-CuO NPs and
assess their bioactivity and biosafety. The endophytic fungus ZMS36 capable of
biosynthesizing Ag-CuO NPs was isolated from medicinal plant A. asphodeloides
and identified as Clonostachys rosea. The Ag-CuO NPs were biosynthesized
using endophytic C. rosea ZMS36 and characterized by UV-visible, SEM, TEM,
EDS, XRD, and FTIR. The Ag-CuO NPs exhibited good antibacterial activity
against Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli,
Staphylococcus epidermidis, Salmonella typhimurium, and Shigella dysenteriae.
They also significantly inhibited the growth of MRSA and the expression of
mecA gene, especially in conjunction with vancomycin, the preferred antibiotic
for clinical treatment of MRSA infections. The Ag-CuO NPs showed promising
anticancer activity in antiproliferative assays on the tumor cell lines Hela,
PDSF, and A549. Furthermore, the Ag-CuO NPs inhibited the migration of Hela
cells as well as angiogenesis in chicken embryos, helping to inhibit tumor
metastasis. Interestingly, the Ag-CuO NPs showed low cytotoxicity, indicating
good biocompatibility. This study revealed the potential of endophytic fungi
from medicinal plants to synthesize BMNPs and highlighted biosynthetic Ag-CuO
NPs as promising novel antibacterial and anticancer nanodrugs for future
biomedical applications.

KEYWORDS
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1 Introduction

Metallic nanoparticles (MNPs) have attracted significant interest from researchers
because of their promising applications in biomedicine, biopesticide, electronics, optics,
and catalysis, which are attributed to their unique physical and chemical properties (Jiang
et al., 2020; Jamil et al., 2024). In most cases, bimetallic nanoparticles (BMNPs) typically
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FIGURE 5

The XRD pattern (A) and FTIR spectrum (B) of Ag-CuO NPs.

level of the MRSA resistance gene mecA was significantly lower in
the Ag-CuO NP treatment group compared to the control group
(p < 0.01). Furthermore, the combination treatment of vancomycin
and Ag-CuO NPs led to a 5.92-fold downregulation of mecA
gene expression compared to treatment with Ag-CuO NPs alone
(p < 0.0001; Figure 9).

3.4 The antitumor and the anti-angiogenic
activities of the Ag-CuO NPs

As shown in Figure10A, the Ag-CuO NPs exhibited
pronounced antiproliferative activity against three tumor
cells. The ICsq values for the HelLa, PDSE, and A549 cells were
7.53, 35.03, and 14.93 pg/mL, respectively (Figure 10B). Among
them, Ag-CuO NPs showed the most pronounced antiproliferative
activity against HeLa cells. The in vitro scratch assay revealed that,
following a 48-h treatment with Ag-CuO NPs, the scratch area
was 71.36% larger than that of the control group (p < 0.0001),
indicating their potent capacity to inhibit the migration of HeLa
cell (Figure 11). The inhibition rates of angiogenesis after 2h of

Frontiers in Microbiology

10.3389/fmicb.2025.1581486

TABLE 1 The MICs and MBCs of Ag-CuO NPs against pathogenic bacteria.

Bacteria Drug

MIC (png/mL)

MBC (png/mL)

P. aeruginosa Ag-CuO NPs 8 64%
Gentamicin 1b 20
S. aureus Ag-CuO NPs 8 64%
Tigecycline 0.125° 4b
E. coli Ag-CuO NPs 4 16*
Gentamicin 0.125 0.5
S. paratyphi Ag-CuO NPs 4 16*
Gentamicin 0.25° 0.5
S. dysenteriae Ag-CuO NPs 4 322
Gentamicin 0.25° 0.5
S. epidermidis Ag-CuO NPs 1° 16°
Tigecycline 0.25" 1°

Different lowercase letters indicated significant difference in MIC/MBC values among
different drugs against the same bacteria (p < 0.05).

FIGURE 6

The MICs and MBCs of Ag-CuO NPs against MRSA. The vertical line
on each bar shows the standard deviation (n = 3). Different
lowercase letters indicated significant difference in MIC/MBC values
among different drugs against the same bacteria (p < 0.05).

treatment with Ag-CuO NPs at concentrations of 100, 200, and 300
mg/mL were 21.74%, 25.24%, and 25.91% (p < 0.05), respectively.
After 18 h of treatment, the inhibition rates increased to 68.81%,
69.26%, and 79.18% (p < 0.0001), respectively (Figure 12).

3.5 Biosafety analysis of Ag-CuO NPs

The cytotoxicity of Ag-CuO NPs to the HaCat cells was
determined using the CCK-8 assay. The viability of the HaCat
cells decreased with increasing concentrations of NPs. There was
no significant cytotoxicity to the HaCat cells at concentrations
not exceeding 16 pg/mL (Figure 13). The effect of Ag-CuO NPs
on the hemolysis of sheep erythrocytes was also evaluated. The
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SEM images of MRSA treated with Ag-CuO NPs. (A) The untreated control. (B) The treatment with Ag-CuO NPs.
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The effects of Ag-CuO NPs on the synthesis of MRSA biofilm. The
vertical line on each bar shows the standard deviation (n = 3).
**p < 0.01.

results showed the hemolysis rates of Ag-CuO NPs at 1/4 MIC
(4 g/mL), 1/2 MIC (8 ug/mL), and MIC (16 jug/mL) values against
MRSA were 0.85%, 1.61% and 10.54% (p < 0.0001), respectively.
The results indicated that the Ag-CuO NPs within the MIC ranges
demonstrated a markedly low degree of cytotoxicity compared with
the positive control (100% hemolysis rate; Figure 14).

4 Discussion

To date, the synthesis of BMNPs has primarily relied on
chemical methods, with limited applications of plant- and
microbial-based approaches. This study presents the first report on
the biosynthesis of BMNPs using endophytic fungi isolated from
medicinal plants. The fungal-synthesized BMNPs demonstrated
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The effects of Ag-CuO NPs on the expression of the MRSA
resistance gene mecA. The vertical line on each bar shows the
standard deviation (n = 3). **p < 0.01, ***p < 0.001, and

****p < 0.0001.

significant antibacterial and antitumor activities while maintaining
excellent biocompatibility. Notably, this biological synthesis
method offers distinct advantages over conventional approaches,
including environmental sustainability and cost-effectiveness.
These findings establish medicinal plant endophytic fungi as a novel
and valuable biological resource for producing functional BMNPs
with potential biomedical applications.

The easy availability and rapid proliferation of microorganisms
make them a highly promising strategy for the biosynthesis of NPs
(Rahman et al.,, 2019). During synthesis, UV-visible spectroscopic
analysis of the solution of Ag-CuO NPs revealed the presence of a
distinct absorption peak at 467 nm, accompanied by an observation
of the color change. Previous studies found that the absorption
peaks of Ag—Cu NPs were located within the range of 400-500 nm

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1581486
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Chen et al.
100 4 —— HelLa cells
—~— PDSF cells
—O0— A549 cells
80
S
2
= 60
i}
>
3 40
204
0 T T T T T T T T T - -
0 025 05 1 2 4 8 16 32 64 128
Concentration(pg/mL)
(B) 4
a
30
=)
E
%} 20
2
O b
10 4 c
0
PDSF A549 HeLa
FIGURE 10
The antiproliferative activity (A) and ICsg values (B) of Ag-CuO NPs
against tumor cell lines. The vertical line on each bar shows the
standard deviation (n = 3). Different lowercase letters indicate
statistically significant differences in ICsg values (p < 0.05) among
cancer cell lines.

(Manikandan et al., 2023; Sharma et al., 2021) and the absorption
peak of Ag-CuO NPs synthesized by ZMS36 was also in this range.
The Ag-CuO NPs were irregularly spherical. The size distribution
of the NPs ranged from 11.11 to 69.10 nm, with an average size of
36.63nm. In previous studies, Ag-CuO NPs synthesized by plant
and fungal-mediated methods were also mainly spherical, with
particle sizes ranging from 12 to 68 nm (Ameen, 2022; Javid-Naderi
etal,, 2025; Parvathiraja and Shailajha, 2021; Prashanth et al., 2022).
Therefore, our results were consistent with these previous results.
The TEM image showed the presence of Ag lattice regions, Cu
lattice regions and Ag-Cu alloy regions in the biosynthesized Ag-
CuO NPs, which was similar to the Ag-Cu NPs synthesized by
Zhu et al. (2021). Fungal-mediated biosynthesis of NPs involves the
secretion of various biomolecules, including oxidoreductases and
organic acids, which catalyze the reduction of metal ions to their
metallic forms (Sebesta et al., 2022; Gudikandula et al., 2017). The
fungal-derived proteins and other organic compounds can serve
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as effective stabilizers by forming capping layers on the surfaces
of NPs (Metuku et al., 2014; Roy et al., 2012). Based on the FTIR
spectroscopy results, it can be inferred that secondary metabolites
such as proteins, polysaccharides, and organic acids, secreted by the
endophytic C. rosea ZMS36, may serve as reducing and capping
agents, thereby facilitating the formation of Ag—CuO NPs.

MRSA continues to be a major public health problem
worldwide and presents a therapeutic challenge due to the limited
and expensive antibacterial drugs available for treatment (Okwu
et al, 2019). The Ag-CuO NPs have been reported to possess
good antimicrobial, antitumor, and antioxidant activity (Ameen,
2022; Javid-Naderi et al., 2025; Parvathiraja and Shailajha, 2021;
Prashanth et al., 2022). However, no studies have been reported
on their activity against MRSA. In this study, Ag-CuO NPs
synthesized by strain ZMS36 showed good efficacy in inhibiting
the growth of MRSA. The anti-MRSA activity of Ag-CuO NPs
can be primarily ascribed to multiple mechanisms. These include
altering cell membrane permeability, generating reactive oxygen
species (ROS), and disrupting the structural integrity of both
the cell wall and membrane (Essghaier et al., 2022; Jalal et al,
2018; Zhou et al., 2021). Moreover, our biosynthesized BMNPs
exhibited greater MRSA inhibition activity than the monometallic
NPs (AgNPs or CuONPs) in previous studies (Ansari et al,
2015; Cherian et al,, 2020; Hamida et al., 2020). This may be
attributed to the synergistic effect of the two metals, which
enhance the antimicrobial properties of BMNPs (Medina-Cruz
et al,, 2020). Compared to individual use, the combination of
Ag-CuO NPs and vancomycin exhibited significantly enhanced
antibacterial efficacy. Similar biological effects have been previously
reported, where the combination of ampicillin with Ag-Cu NPs
has been shown to enhance the antibacterial effect against S.
pneumoniae and P. aeruginosa (Mujeeb et al., 2020). The observed
synergistic antibacterial effect can be attributed to the combined
mechanisms of NPs-mediated inhibition of bacterial efflux pumps
and biofilm disruption, as well as severe structural damage to
bacterial cell walls, which facilitates enhanced NPs penetration
(Agreles et al., 2022). This structural compromise facilitates the
accumulation of MNPs within the cells, leading to enhanced
ROS generation. The combined action of Ag-CuO NPs and
antibiotics ultimately restores susceptibility in antibiotic-resistant
pathogens and significantly enhances bactericidal efficacy through
these complementary pathways of action (Zhao et al, 2023).
Additionally, the expression of the MRSA resistance gene (mecA)
was inhibited by the Ag-CuO NPs. Penicillin-binding protein
2a (PBP2a), encoded by the mecA gene, is the primary factor
responsible for MRSA’s resistance to all B-lactam antimicrobials
(Goh et al,, 2015). Similarly, Nijil et al. (2024) demonstrated that
AgNPs are effective in reducing the expression of the mecA gene.

The Ag-CuO NPs demonstrated potent antibacterial activity
against a range of bacterial pathogens, including P. aeruginosa,
S. aureus, E. coli, S. epidermidis, S. typhimurium, S. dysenteriae.
The antibacterial activity of Ag-CuO NPs can be attributed to
multiple mechanisms, such as altering cell membrane permeability,
generating and accumulating ROS, disrupting the structural
integrity of the cell and eventually causing the leakage of
intracellular contents (Essghaier et al., 2022; Jalal et al., 2018;
Zhou et al, 2021). According to the MIC results of this study,
the NPs synthesized from endophytic fungi were more effective at
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inhibiting bacteria than those synthesized by the existing methods.
For example, the inhibitory effect of chemically synthesized Ag-
Cu NPs and plant-synthesized Ag-Cu NPs and Ag-CuO NPs on
P. aeruginosa, S. aureus was found to be significantly less potent
than the biosynthesized Ag-CuO NPs in this study (Zhu et al,
2021; Mujeeb et al,, 2020). The results may be attributable to the
binding of bioactive molecules secreted by the endophytic fungus
ZMS36 to the biosynthesized Ag-CuO NPs. Given that endophytic
fungi produce a diverse array of natural bioactive metabolites that
are identical to those of their host plants (Gupta et al., 2020), it is
plausible that the bioactive molecules attached to Ag-CuO NPs may
exhibit comparable antimicrobial pharmacological effects to those
observed in the alcohols and phenols produced by the medicinal
plant A. asphodeloides (Liu et al., 2023). The results of the FTIR
spectroscopy also confirmed the presence of the corresponding
substances on the Ag-CuO NPs.

Cancer remains a major global health challenge, particularly
cervical and lung carcinomas. However, many traditional therapies
approaches have inherent limitations, including variable efficacy
across patients and toxic side effects such as anemia, organ
damage, hair loss and vomiting (Ramirez et al., 2009). In recent

Frontiers in Microbiology

years, nanomaterials have been employed in cancer therapy to
address issues of toxicity and enhance drug delivery efficacy
(Cheng et al, 2021). In this study, Ag-CuO NPs exhibited
significant antiproliferative activity against three different cancer
cell lines (A549 cells, PDSF cells, and HeLa cells). It may be
due to the elevated intracellular ROS production in tumor cells
by inducing oxidative stress. This in turn led to mitochondrial
membrane damage and cell cycle arrest, ultimately promoting
apoptosis and necrosis in cancer cells (Manikandan et al., 2023;
Al-Sheddi et al, 2018). Ag-CuO NPs also could significantly
inhibit the migration of HeLa cells and angiogenesis in chick
embryos, indicating the potential to inhibit tumor growth
and metastasis. The ability of Ag-CuO NPs to differentiate
between cancer cells and healthy cells offers a significant
advantage of nanotechnology in cancer treatment (Gmeiner
and Ghosh, 2014). In addition, Ag-CuO NPs in this study
exhibited better antiproliferative activity against HeLa cells than the
biosynthesized Ag-CuO NPs by plants (Javid-Naderi et al., 2025).
Therefore, the biosynthesized Ag-CuO NPs using endophytic
fungi possess great promise for biomedical applications in
cancer treatment.
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The biosynthesized Ag-CuO NPs in our study exhibited low
cytotoxicity toward HaCat cells, providing robust evidence for
their safe use. Biosynthesized AgNPs by Panax ginseng fresh
leaves were found to be non-toxic to HaCaT cell lines at a
concentration of 10 wg/mL (Singh et al., 2017). Red blood cells
play crucial roles in the human body. Hemolysis, or the rupture
of red blood cells, results in the release of hemoglobin, which
may lead to the development of anemia, nephrotoxicity and
pulmonary hypertension (Rother et al., 2005). Our results indicated
that the hemolytic activity of the Ag-CuO NPs was relatively
low, which was consistent with the results of other similar
studies (Kamli et al., 2021; Singh et al, 2017). The apparent
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low cytotoxicity of the Ag-Cu NPs against erythrocytes was
attributed to the specific modification process involved in their
synthesis. Although the evidence suggested that Ag-CuO NPs can
be safely utilized at low concentrations over short exposure periods,
the prolonged exposure may induce adverse pathological effects,
including the development of chronic interstitial pneumonitis and
renal accumulation potentially resulting in acute tubular necrosis.
The cytotoxic effects of accumulated MNPs in the body may
be mediated through multiple pathways, including disrupting
the structural integrity of cells, the induction of intracellular
inflammatory responses and the generation of ROS. This oxidative
stress cascade can subsequently cause DNA damage, ultimately
resulting in cellular and tissue injury (Cheng et al., 2021; Xu et al,,
2020). Therefore, the long-term biosafety of the Ag-CuO NPs
requires further investigation in future researches.

5 Conclusion

This study presents, for the first time, an efficient and
environmentally friendly synthesis of BMNPs utilizing endophytic
fungi isolated from the medicinal plant A. asphodeloides to produce
Ag-CuO NPs. Characterization analyses revealed that the Ag-
CuO NPs were spherical in shape, with an average diameter of
36.63nm, and were stabilized by a natural coating of bioactive
macromolecules secreted by the fungal strain. The synthesized
Ag-CuO NPs demonstrated good broad-spectrum antibacterial
activity against seven clinically relevant bacterial strains and
exhibited prominent dose-dependent anticancer effects against
three human tumor cell lines. Notably, the Ag-CuO NPs exhibited
low cytotoxicity and demonstrated excellent biocompatibility,
highlighting their potential as multifunctional therapeutic agents
for both antimicrobial and anticancer applications. These results
underscore the potential of medicinal plant endophytic fungi as
a sustainable and efficient biological resource for the synthesis
of BMNPs. However, it is essential to recognize that the particle
size and stability of BMNPs significantly impact their biological
activity and therapeutic efficacy. Thus, future research should focus
on optimizing synthesis parameters (metal ratios) to produce Ag-
CuO NPs with smaller sizes and improved long-term stability.
Additionally, investigating the in vivo antibacterial efficacy and
biosafety of Ag-CuO NPs will be crucial next steps in advancing
this research and ensuring their safe and effective application in
clinical settings.
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