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The John Paul II Catholic University of
Lublin, Poland

REVIEWED BY

Ees Ahmad,
National Bureau of Agriculturally Important
Microorganisms (ICAR), India
Mariantonietta Colagiero,
National Research Council (CNR), Italy

*CORRESPONDENCE

Wilton Mwema Mbinda
wilton.mbinda@gmail.com;
w.mbinda@pu.ac.ke

RECEIVED 24 February 2025
ACCEPTED 09 May 2025
PUBLISHED 30 May 2025

CITATION

Muzami EM, Kitundu G, Muriithi OM,
Kavoo AM, Gichuru VG and Mbinda WM
(2025) Metagenomic insights to bacterial
communities, functional traits, and soil health
in banana smallholder agroecosystems of
Kenya. Front. Microbiol. 16:1582271.
doi: 10.3389/fmicb.2025.1582271

COPYRIGHT

© 2025 Muzami, Kitundu, Muriithi, Kavoo,
Gichuru and Mbinda. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Metagenomic insights to
bacterial communities,
functional traits, and soil health
in banana smallholder
agroecosystems of Kenya

Eugene Mwanza Muzami1, George Kitundu1,

Oscar Mwaura Muriithi2, Agnes Mumo Kavoo3,

Virginia Gathoni Gichuru2 and Wilton Mwema Mbinda1,4*

1Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya, 2Department of
Biological Sciences, Pwani University, Kilifi, Kenya, 3Department of Horticulture, Jomo Kenyatta
University of Agriculture and Technology, Juja, Kenya, 4Pwani University Biosciences Research Centre
(PUBReC), Pwani University, Kilifi, Kenya

Microbes inhabiting the banana rhizosphere are varied and mediate essential
functions that enhance plant growth and increase crop productivity. Their
abundance in soil habitats is a potential indicator of soil health and
quality. Despite the well-known benefits of rhizosphere microorganisms in
banana cultivation, their genomic and functional diversity remains largely
unexplored within smallholder agroecosystems. In this study, we characterized
the community composition and functional potential of bacteria in banana
rhizospheric soils from Gituamba, Mangu and Ngenda constituencies in Kiambu
County, Kenya. Using Illumina Novaseq sequencing, we analyzed 16S rRNA
gene amplicons and shotgun metagenomic profiles to explore these microbial
communities. Variations of soil physicochemical parameters across the study
siteswere assessed. The parameters varied across the sites, with soils in Gituamba
and Ngenda depicting better soil fertility characteristics than Mangu. Amplicon
sequencing profiles revealed higher bacterial diversity in Gituamba compared
to Mangu, while the single sample from Ngenda exhibited moderate diversity.
The dominant phyla across the study sites were Proteobacteria, Actinobacteria,
and Cyanobacteria. Functional profiling of 16S rRNA gene amplicons showed
a higher enrichment in Gituamba compared to Mangu. Overall, the functional
profiling indicated that predictedmetabolic pathways across the study sites were
linked to genes encoded by themembers of themost abundant bacterial phyla in
the soil environments, majorly contributing to beneficial roles for soil health and
crop yield. This study o�ers methods to reveal the banana rhizosphere as a rich
reservoir for potential microbes of agricultural and biotechnological significance,
which can promote sustainable agriculture.
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Introduction

Banana (Musa paradisiaca) is a key crop in the global

food industry, ranking among the top fruit crops in terms of

both production and economic value across the world (Alemu,

2017). It is a vital staple food with high nutritional benefits

attributed to its richness in potassium, carbohydrates and vitamin

A (Muthee et al., 2019). Bananas serve as a staple food for

both rural and urban populations in Kenya (Wahome et al.,

2021). Banana cultivation is an important economic activity in

Kenya. However, small-scale farmers’ production does not meet

the current market demand (Wahome et al., 2023). The low

production is due to numerous challenges such as agronomic

practices, poor soil quality and the impact of pests and diseases

(Rossmann et al., 2012). Numerous studies suggest that factors

impacting soil biodiversity, including changes in land use, depletion

of soil organic matter, and land degradation, have contributed to

the decline of both aboveground and belowground microbiome

abundance (Dixit et al., 2024). These factors directly affect

banana production and have led to increased attention to assess

soil health, particularly bacterial composition in rhizosphere soil

habitats. This reflects the understanding that soil bacteria are

essential for improving the overall soil and plant production (Giri

and Varma, 2020). A diverse array of microbes is crucial for

soil functions, as these communities significantly contribute to

sustainable agricultural practices. Therefore, soil microorganisms

are recognized as mediators of numerous processes that enhance

agricultural productivity.

Plants and their related microorganisms interact to create

communities of genotypes known as holobionts (Sarkar et al.,

2022). These microbes influence the health and functioning of the

plant by modifying the supply of essential nutrients and resisting

both biotic and abiotic stresses (Alawiye and Babalola, 2021).

Plant roots not only grant mechanical support, but also facilitate

absorption of water and nutrients, and exudate various chemical

substances that enhance plant-microbiome interactions (Molefe

et al., 2021). The rhizosphere is the narrow region that surrounds

the roots of plants and houses numerous microorganisms that

define variety of anabolic and catabolic activities within soils.

Plants release organic compounds into the rhizosphere through

root exudates, shaping complex metabolic interactions among

organisms. These interactions can support plant growth, remain

neutral, or even be detrimental, influencing the surrounding

microbial community (Omotayo et al., 2021).

Soil hosts a large community of microbes per gram of

soil which include fungi, bacteria, viruses and protozoa in the

rhizosphere. Among rhizobiomes, bacteria are the most abundant

and serve as key markers of soil health and productivity concerning

their swift responses to alternating environmental changes

(Enagbonma et al., 2020). Rhizospheric bacterial communities

promote growth through various mechanisms, both directly

and indirectly. Rhizosphere bacteria promote nitrogen fixation,

serve as biological control agents against pathogens in the

Abbreviations: ABC, ATP-binding cassette; ECF, extracytoplasmic function;

KOs, KEGG orthologs; OM, organic matter; SQM, sequence quality

monitoring; TOC, total organic carbon; TPM, transcripts per million.

soil, synthesize phytohormones and generate compounds like

siderophores, antibiotics, cyanides, and ammonia (Alawiye and

Babalola, 2019). The distribution of soil bacteria in various

agroecosystems is primarily influenced by soil parameters such

as soil texture, organic matter, organic carbon, soil nutrients and

pH. Given that rhizospheric bacteria are highly responsive to

alterations in the soil environment, shifts in their community

structure indicate variations in soil biological activity and overall

soil quality (He et al., 2023).

Although numerous studies have explored the banana

root microbiome (Birt et al., 2022; Kaushal et al., 2020a,b),

the relationship between soil microorganisms and soil health,

particularly within smallholder banana farming systems, remains

poorly understood. Identifying key microorganisms that shape the

rhizosphere and understanding their functional traits are essential

for advancing knowledge of soil-plant interactions in these

agroecosystems. Moreover, shifts in the abundance and functional

capabilities of soil bacterial communities under different farming

conditions are still not well-characterized. To address these gaps,

meta-omic approaches utilizing next-generation sequencing

technologies are increasingly applied to analyze environmental

metagenomes, allowing for the identification of microbial taxa

and the discovery of functionally important genes and bioactive

compounds (Nwachukwu and Babalola, 2022). In this study, we

employed Illumina NovaSeq high throughput 16S rRNA gene

amplicon and shotgun metagenomic sequencing to characterize

the taxonomic composition and functional potential of bacterial

communities in rhizosphere soils from smallholder banana farms

in Kiambu County, Kenya. We also assessed variations in soil

physicochemical properties across the study sites. We hypothesized

that differences in soil physicochemical properties among sites

would be associated with distinct bacterial community structures

and functional profiles in the banana rhizosphere.

Materials and methods

Study site

The study was conducted in Kiambu County (36◦49′0.0′′E

and 1◦10′0.0′′S) located in Kenya’s central region (Figure 1) and

covers a total area of 2,543.5 km2 (Kutwa et al., 2016). It has

four broad topographical zones: upper highland, lower highland,

upper midland and lower midland zones (Njiru, 2019). Three study

sites were investigated within the lower highland zone: Gituamba

and Mangu wards in Gatundu North sub-County and Ngenda

ward in Gatundu South sub-County. The County is characterized

by an annual average rainfall of 1,200mm and an annual mean

temperature of 26◦C with temperatures ranging from 7◦C in the

upper highland areas to 34◦C in the lower midland zone. The

altitude of the County lies between 1,500 and 1,800m above sea

level and is generally a tea and dairy zone with agricultural activities

like maize, horticultural crops and sheep farming. The average

relative humidity ranges from 54% in the dry months and 300% in

the wet months of March up to August. A bi-modal type of rainfall:

short rains (mid-October to November) and long rains (mid-March

toMay) are experienced in the County. Themajor categories of soils

in the County are high-level upland soils, plateau soils and volcanic
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FIGURE 1

Map of soil sampling sites within Gatundu North and Gatundu South sub-counties in Kiambu County, Kenya.

footbridge soils. These soils are of varying fertility levels with soils

from high-level uplands, which are from volcanic rocks, being very

fertile. Coffee and tea are the main cash crops in the county while

the main food crops grown in the county include maize, beans,

pineapples, potatoes, vegetables and bananas. In Kiambu County,

banana production is primarily practiced in high-rainfall areas that

have been under continuous cultivation for extended periods, often

resulting in decreased yields (Nzioka, 2009).

Collection of soil samples

Sampling was conducted according to the described method

by Wahome et al. (2023) in October 2022. Sampling occurred

in smallholder banana farms, where most farmers practice mixed

cropping systems, typically integrating bananas with other crops

such as maize, beans, and vegetables. Across all farms, banana

plants sampled were mature, characterized by fruiting bunches,

ensuring consistency in the plant growth stage and minimizing

variability due to plant age or vegetative state. Rhizospheric soil

samples were collected at a depth of 15–20 cm at ∼100m spacing

from each collection point using a sterile hand shovel applying the

cluster sampling method. Soil sampling was carried out across and

diagonally from 26 points per sampling site in each study site. A

total of 78 soil samples of 200 g each were mixed and packed in

sterile Ziplock bags in a dry iced box before they were transported

and stored at −20◦C at the Pwani University Biosciences Research

Center (PUBReC) lab for further analysis. One portion (half) of

each of the 78 soil samples was air-dried at room temperature for 1

week and sieved through a 100-mesh sifter to remove stones and

visible plant fragments. The soils were stored at 4◦C for further

physicochemical analysis at the soil mechanics laboratory at Jomo

Kenyatta University of Agriculture and Technology. The remaining

halves of the soil samples were pooled into three composite

samples representing each study site and stored at −80◦C for soil

genomic DNA extraction at Pwani University Biosciences Research

Center (PUBReC).

Soil physicochemical analysis

The measured soil parameters mainly included: the soil pH,

soil water electrical conductivity, total organic carbon, organic

matter, nitrogen, potassium and phosphorus content. Soil pH was

measured using a soil pH meter (FE28, Mettler Toledo, Zurich,

Switzerland) with a soil–water ratio of 1:2.5 (w/v) (Han et al.,

2023). The electrical conductivity (EC) of the soil was measured

using a portable analyzer (YSI, USA) (Tan et al., 2023). Total

organic carbon (TOC) and available nitrogen (N) were determined

by the sulphuric acid/potassium dichromate (H2SO4-K2Cr2O7)

wet oxidation and the Kjeldahl methods, respectively (Li et al.,

2022). TOC was analyzed using Shimadzu TOC-L CPH while N
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was measured using Lachat QuikChem 8500 equipment. Available

phosphorus (P) was analyzed by inductively coupled ICP-OES

Optima 8000 plasma-optical emission spectroscopy (Perkin Elmer,

Massachusetts, USA) (Li et al., 2022). The soil organic matter

(OM) was measured using the potassium dichromate external

heating method (Tan et al., 2023) while available potassium (K)

was extracted using the flame photometric method via digestion

with ammonium acetate (NH4OAC) using the Cole-Parmer (USA)

Flame Photometer 1265 (Han et al., 2023).

DNA extraction and sequencing

Total soil DNA was extracted by the cetyltrimethylammonium

bromide (CTAB) method. The purity and quality of the genomic

DNA samples were checked using 1.2% agarose gel electrophoresis,

and the concentrations were measured using a NanoDrop

2000 spectrophotometer (Thermo Fisher, Massachusetts, USA)

before shipping the samples to Macrogen, South Korea for

16S rRNA gene amplicon and shotgun metagenomic sequencing

using the Illumina Novaseq 6000 sequencing platform. The

first two DNA samples (Gituamba and Mangu) were subjected

to amplicon sequencing where the hypervariable region (V3–

V4) was amplified using the 16S amplicon rRNA primer

pair 515F (5′-GTGYCAGCMGCCGCGGTAA-3′) and 806R (5′-

GGACTACNVGGGTWTCTAAT-3′) while the third DNA sample

(Ngenda) was subjected to shotgun metagenomic sequencing. For

amplicon sequencing, libraries were created, and each sample

underwent a single-step PCR with 35 cycles using the HotStarTaq

Plus Master Mix Kit (Qiagen, Valencia, CA). The PCR conditions

were as follows: an initial denaturation at 95◦C for 10min, then 35

cycles comprising denaturation at 95◦C for 30 s, annealing at 53◦C

for 40 s, and extension at 72◦C for 1min, with a final extension at

72◦C for 10min. After PCR, all amplicons from the samples were

purified using SPRI beads. For shotgun metagenomic sequencing,

library preparation followed the protocol for the Nextera DNA

Flex kit (Illumina). Briefly, the sample began with 50 ng of DNA,

which was fragmented and then tagged with Illumina sequencing

adapters. Amplification of the libraries involved six PCR cycles.

After amplification, library concentration was determined with the

Qubit R© dsDNA HS Assay Kit (Life Technologies), and average

fragment size was assessed using the Agilent 2100 Bioanalyzer

(Agilent Technologies). The libraries were then pooled at a final

concentration of 0.7 nM in equimolar amounts and sequenced in

a paired-end format for 300 cycles on the NovaSeq 6000 platform

(Illumina). The paired-end raw reads for all three samples were

stored in FASTQ format.

Sequence analysis, taxonomic and
functional classification

Taxonomic classification of 16S rRNA profiles
Quantitative Insights into Microbial Ecology (QIIME v2024.2)

was used to process the raw amplicon sequences (Bolyen et al.,

2019). Raw data quality control was done using FASTQC v0.11.9

(Chen et al., 2017). Raw sequence data was imported into QIIME

as a manifest file using the q2-tools import plugin followed by

quality filtering that involved adapter removal from the paired-

end demultiplexed sequences using the q2-Cutadapt trim-paired

plugin. Subsequently, the reads were denoised using the Divisive

Amplicon Denoising Algorithm (DADA2). The q2-dada2 denoise-

paired plugin was used to filter the paired-end reads based on the

quality score and length of the sequences as well as the removal

of chimeras and dereplicated sequences. This was followed by the

calculation of denoising statistics that produced files containing a

summary of denoising results, representative sequences, and the

feature count table. Further, the q2-feature classifier and assigned

taxonomy plugin were used to classify the representative sequences.

First, a machine learning approach involving a Scikit-learn

multinomial naïve Bayes classifier was trained on an integrated

reference database: Greengenes, SILVA and RDP database (GSR-

DB) (Molano et al., 2024). The classifier was trained on our target

hypervariable region of interest, the V3–V4 of 16S rRNA sequences.

Secondly, the classified representative sequences were assigned

taxonomy using the trained classifier. Taxonomy barplots were

created using the q2-taxa barplot plugin. A de novo phylogeny-

based approach was used to create a phylogenetic tree using

the MAFFT-FastTree method in which a multiple sequence

alignment with MAFFT was followed by building the maximum-

likelihood rooted tree with FastTree using the q2-phylogeny

plugin. Alpha diversity metrics (Observed features, Shannon index,

and phylogenetic distance) were calculated after samples were

subsampled without replacement (rarefied) to 225,541 sequences

per sample using the q2-diversity alpha-rarefaction plugin. Data

was presented as a direct visualization of QIIME2 artifacts on

QIIME2 View website (https://view.qiime2.org).

Functional prediction of 16S rRNA profiles
Predictive functional profiling of bacterial communities was

conducted using Phylogenetic Investigation of Communities by

Reconstruction of Unobserved States2 (PICRUSt2) v2.5.2 (Douglas

et al., 2020). Representative sequences were aligned using HMMER

followed by placement into a reference tree utilizing EPA-NG

(Barbera et al., 2018) and gappa (Czech et al., 2020). The number

of 16S rRNA gene copies was normalized and gene families were

inferred with Castor, a tool for hidden state prediction (Ye and

Doak, 2009). These predicted gene families were subsequently

mapped toMetaCyc pathways usingMinPath (Ye and Doak, 2009).

Taxonomic and functional classification of
shotgun metagenomic sequencing profiles

Shotgun sequencing data was analyzed with the SqueezeMeta

program v1.6.3, a fully automated pipeline for metagenomics that

covered all steps of the analysis (Tamames and Puente-Sánchez,

2019). Adapter removal, quality filtering and trimming of the reads

were done by Trimmomatic (Bolger et al., 2014). The high-quality

reads were assembled into contigs usingMEGAHIT v1.2.9 (Li et al.,

2015) via the sequential mode. Prinseq was used to remove short

contigs (<200 bp) and determine the contig statistics (Schmieder

and Edwards, 2011). The contigs were subjected to gene prediction

using Prodigal software v2.6.3, which was employed to retrieve the

corresponding amino acid sequences (Hyatt et al., 2010). Diamond
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v2.1.10 (Buchfink et al., 2021) was used to search for similarity

between the NCBI nr database (Sayers et al., 2019). Taxonomic

assignments of the genes were implemented using the lowest

common ancestor (LCA) algorithm of the hits for each query gene

searched against the reference database, NCBI nr. For functional

assignment, Diamond was also used to compare gene sequences

against the KEGG Orthology database (Kanehisa et al., 2017).

Statistical analyses

All statistical analyses were conducted in R v4.3.3 (Kelley et al.,

2008). A one-way analysis of variance (ANOVA) was used to

evaluate the differences in soil physicochemical properties across

the study sites and Tukey’s pairwise comparison was used for the

means at a significant level (p-value< 0.05). Spearman’s correlation

coefficient method was employed to assess the correlation between

soil pH and other soil physicochemical properties. The diversity

within the bacterial communities in the amplicon sequence data

was depicted qualitatively using observed features, Shannon and

phylogenetic distance (PD) matrices which were visualized as

alpha rarefaction plots. Vegan package in R (Dixon, 2003) was

used to evaluate the alpha diversity of the bacterial community

in the shotgun metagenomic sequence data using the Shannon

and Simpson indexes. The sequencing quality monitoring (SQM)

tools package in R (Puente-Sánchez et al., 2020) was used to

analyze both taxonomic and functional profiling data generated

from the SqueezeMeta pipeline. Default parameters were used for

all software unless otherwise specified.

Results

Soil physicochemical properties analysis

Results of the means of soil physicochemical properties of

the composite samples revealed that the soil pH was slightly

acidic across the sites. Soils in Gituamba had the lowest pH (5.32

± 0.47) while Ngenda recorded the highest pH (5.67 ± 0.51;

Supplementary material 1). There was no significant difference in

pH between Mangu and other study sites (Figure 2A). Mangu soils

contained a slightly higher EC value (0.13 ± 0.13 dS/m) while

Ngenda had the lowest value (0.11 ± 0.01 dS/m). The differences

in EC across the three sites were not significant (Figure 2B). The

contents of TOC were highest in Ngenda soils (3.49 ± 1.30%),

while Mangu soils exhibited the lowest content (1.77 ± 0.87%;

Figure 2C). Similarly, Ngenda soils had the highest content of OM

(6.02± 2.24%) while Mangu soils had a significantly lower content

(3.05 ± 1.50%) as compared to Gituamba and Ngenda respectively

(Figure 2D). The highest content of available N was contained in

Ngenda soils (0.35± 0.13%) while Mangu had a significantly lower

available N (0.18 ± 0.09%) compared to Gituamba and Ngenda

respectively (Figure 2E). The levels of available K content were

relatively similar and insignificant across all the sites with the

highest content recorded in Mangu soils (0.64± 0.33%; Figure 2F).

A higher amount of available P content was contained in Mangu

(10.56 ± 5.69 mg/kg) while the lowest content was recorded in

Ngenda soils (1.89± 1.29 mg/kg; Figure 2G).

Spearman’s correlation analysis

The relationship between soil pH and most of the soil

parameters [EC, %TOC, %O.M, %N and P (mg/kg)] in Gituamba

soils exhibited weak positive correlations indicating that changes

in pH did not greatly affect other parameters. Available potassium

levels showed a moderate correlation to soil pH suggesting that

an increase in pH resulted in a noticeable increase in potassium

content in Gituamba (Figure 3A). In Mangu soils, there was a weak

negative correlation between pH and other soil parameters [%TOC,

%O.M, %N, and P (mg/kg)] while a weak positive correlation was

recorded between pH and EC. Like Gituamba soils, pH positively

correlated with available potassium content (Figure 3B). The soil

pH in Ngenda soils had weak positive correlations with other soil

parameters (EC, %TOC, %O.M, and %N) as well as moderate

FIGURE 2

Box plots showing the means of soil physicochemical properties for Gituamba, Mangu and Ngenda: (A) pH, acidity/basicity; (B) EC, soil water
Electrical conductivity; (C) %TOC, percentage of total organic carbon; (D) %O.M, percentage of organic matter; (E) %N, percentage of available
nitrogen; (F) %K, percentage of available potassium; (G) P2O5 (mg/kg), available phosphorus content. Di�erent superscript letters indicate significant
di�erences between treatments (p < 0.05) according to the Tukey honest significance test (HSD). Outliers represent data points that deviated
significantly from each individual the sample dataset.
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FIGURE 3

Spearman’s correlation of the relationship between soil pH and other soil physicochemical properties (p < 0.05) in (A) Gituamba, (B) Mangu, and (C)

Ngenda.

positive correlations with available potassium and phosphorus were

observed (Figure 3C).

Analysis of sequencing data

A total of 2,769,898 16S rRNA sequence reads were obtained

from the two samples. Sample 1 (Gituamba) had 1,887,650 reads

while sample 2 (Mangu) had the least number 882,248 reads. The

percentage of reads that passed quality filtering for the two samples

was 90.32 and 89.09%, respectively (Supplementary material 2). A

total of 67,136,628 shotgun metagenomic sequence reads were

obtained from sample 3 (Ngenda) of which 27,584,941 (41.09%)

reads were mapped and used for taxonomic and functional

annotation. After assembly, 2,504,874 contigs were identified. The

longest contig was 125,240 bp, while the shortest contig was 128

bp. A total of 3,205,501 open reading frames (ORFs) were predicted

fromProdigal of which 1,508,761 were annotated against the KEGG

Orthology database (Supplementary material 3).

Bacterial diversity analysis

Based on Shannon diversity metrices, a higher bacterial

diversity was recorded in Gituamba than Mangu (Figure 4A).

The rarefaction plot of observed features revealed that Gituamba

exhibited a higher number of observed features compared to

Mangu, indicating a richer species composition (Figure 4B). The

rarefaction plot based on phylogenetic distance (PD) produced

similar results to Shannon and observed features, indicating greater

phylogenetic distances among bacterial communities in Gituamba

than Mangu (Figure 4C). Due to the limited number of amplicon

samples (n= 1 per site), statistical comparison using t-tests was not

appropriate. The lack of replication prevented reliable estimation

of within-group variability. As a result, we focused on qualitative

and descriptive analyses to highlight differences between sites.

In the sample analyzed from Ngenda, the Shannon index (1.77)

and Simpson index (0.49) (Supplementary material 4) indicated

moderate microbial diversity. Nonetheless, given the lack of sample

replication, these results are limited to the individual sample and

should not be generalized to characterize the overall bacterial

community at the site.

Bacterial community composition

Bacterial community composition based on 16S
rRNA profiles

Classified representative amplicon sequence variants

(ASVs) were assigned to 50 bacterial phyla, 117 classes,

247 orders, 508 families, 1,440 genera, and 2,748 species

(Supplementary material 5). There were 11 dominant bacterial

phyla in Gituamba and Mangu soils respectively. The most

dominant phylum was Proteobacteria (59.7 and 58%) followed
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FIGURE 4

Alpha rarefaction plots showing bacterial diversity metrices as a function of sampling depth: (A) Shannon, (B) Observed_features, (C) Faith_pd in
Gituamba and Mangu.

by Actinobacteria (13.5 and 12.4%), and Cyanobacteria (8.2 and

11.9%; Figure 5A). At the genus level, 24 prominent genera were

observed in both samples. The most dominant were Pantoea (43.7

and 30.8%) and Brasilonema (13.6 and 19.4%; Figure 5B).

Bacterial community composition based on
shotgun metagenomic sequencing profiles

Assembly-based metagenome taxonomic profiling revealed

that Ngenda soils had four superkingdoms: Bacteria, Archaea,

Eukaryota, and Viruses. Bacteria was the most abundant

taxa containing 98% of the total soil taxa. The bacterial

community was composed of 102 distinct phyla, 238 classes,

435 orders, 808 families, 1,772 genera, and 2,791 species

(Supplementary material 6). At the phylum level, Actinobacteria

(37%) was the most abundant followed by Pseudomonadota

(34%), Acidobacteria (7%), and Chloroflexota (3%; Figure 6A). At

the genus level, Bradyrhizobium (4.0%) was the most abundant

followed by Actinomycetes (2.0%; Figure 6B).

Metagenomic functional prediction

Metagenomic functional prediction based on 16S
rRNA profiles

A total of 7,634 KEGG orthologs (enzymes) predicted by

PICRUSt2 were consolidated into 435 Meta-Cyc pathways. There

were 15 most abundant functional pathways in both Gituamba and

Mangu. PWY-3781 [Aerobic respiration I (cytochrome c)] was the

most abundant followed by PWY-7111 (pyruvate fermentation to

isobutanol), PWY-5101 (L-Isoleucine biosynthesis II), ILEUSYN-

PWY (L-Isoleucine biosynthesis I from threonine) and VALSYN-

PWY (L-Valine biosynthesis; Figure 7). Analysis of pathway

differentiation by location demonstrated that the mean abundance

of predicted pathways was significantly elevated in Gituamba

relative to Mangu.

Metagenomic functional prediction based on
shotgun metagenomic sequencing profiles

A total of 9,585 KEGG orthologs (KOs)/Enzymes were

predicted among which 15 of them were the most abundant KOs

[higher number of TPM (transcripts per million)] within the

bacterial community metagenome. The most abundant ortholog

in the metagenome was: RNA polymerase sigma-70 factor, ECF

subfamily (KEGG ID: K03088). Other abundant KOs included:

eukaryotic-like serine/threonine-protein-kinase [EC:2.7.11.1]

(KEGG ID: K12132) followed by 3-oxoacyl- [acyl-carrier protein]

reductase [EC:1.1.1.100] (KEGG ID: K00059), putative ABC

transport system permease protein (KEGG ID: K02004), ABC- 2

type transport system ATP- binding protein (KEGG ID:K01990),

acyl-COA dehydrogenase [EC:1.3.8.7] (KEGG ID: K00249)

and aerobic carbon-monoxide dehydrogenase large subunit

[EC:1.2.5.3] (KEGG ID: K03520; Figure 8). The KOs predicted

within the metagenome were associated with six high-level

functions: metabolism, genetic information processing, cellular

processes, environmental information processing, organismal

systems and human diseases (Supplementary material 7). The

key lower-level functions included amino acid, lipid, sulfur,

energy, nucleotide, vitamins and carbohydrate metabolism. For

genetic information processing, the prominent low-level functions

were replication, translation, transcription, folding, sorting, and

degradation. Cellular processes within the metagenome included

cell growth and death, cell motility, cellular community and

transport and catabolism while the key functions predicted

under environmental information processing were signal

transduction and membrane transport. The most abundant

bacterial genera with open reading frames (ORFs) containing
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FIGURE 5

Relative abundance of bacterial community composition at di�erent taxonomic levels: (A) Phylum and (B) Genus in Gituamba, and Mangu,
respectively.

FIGURE 6

Relative abundance of bacterial community composition at di�erent taxonomic levels: (A) Phylum and (B) Genus in Ngenda.

annotation of the six high-level functions were Bradyrhizobium,

Alphaproteobacteria, Betaproteobacteria, Pseudomonadota,

Solirubacterales, Acidobacteria, and Hyphomicrobiales (Figure 9).

Discussion

Rhizosphere-inhabiting microbes can enhance plant growth

and health (Kong and Liu, 2022). Their diversity in soil habitats

is a potential indicator of soil health and quality (Bargali,

2024). However, changes in the diversity and functional potential

of soil microbes within banana farming systems are still not

well-understood. We used Illumina Novaseq, a high-throughput

sequencing approach, to examine the bacterial communities in

the rhizosphere of banana plants grown in small-scale farms in

Kiambu, focusing on their composition and functional potential.

Also, the variation of the soil physicochemical parameters within

our study sites was assessed.

Physicochemical analysis revealed that soil pH was slightly

acidic across all study sites, with non-significant differences (p-

value > 0.05) between Mangu and the other locations. The

observed pH values in Mangu and Ngenda fall within the optimal

range of 5.5–7.5 for banana cultivation, as reported by Nyamamba

et al. (2020). Soil pH plays a crucial role in regulating chemical

reactions and nutrient availability in the soil, directly impacting

plant growth (Cordero et al., 2020). In addition, it is the primary

factor that determines the microbial community structure in

natural environmental systems (Kang et al., 2013). Our results

align with the research conducted by Swafo and Dlamini (2022),

who observed slightly acidic soils for banana production upon
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FIGURE 7

Relative abundance of the most abundant predicted MetaCyc pathways within the bacterial metagenome in Gituamba and Mangu.

FIGURE 8

Most abundant KEGG orthologs of bacteria. Abundance of each function is counted in transcripts per million (TPM), genes from each function per
million genes in the bacterial community metagenome in Ngenda.

characterizing the soil parameters. The variations in soil nutrient

properties (TOC, N, and OM) showed a similar trend across

our study sites. Previous reports suggest that the higher levels

of soil nutrients in Gituamba and Ngenda can be attributed

to high biomass production by the banana plants and other

crops, mulching practices, effective crop residue management and

favorable soil microbial activities (Gerke, 2022; Githongo et al.,

2022; Mushtaq et al., 2023). Spearman’s correlation revealed that

soil pH had weak correlations with most of the parameters (EC,

TOC, OM, N, and P) in our study sites suggesting that soil pH
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FIGURE 9

Taxonomy of bacteria at the genus level, showing the distribution of abundant bacteria containing the open reading frames (ORFs) that encode for
the main biological metabolic pathways (primary level functions) in Ngenda soils.

did not strongly affect most soil parameters. Contrary to our

findings, a related study by Zhang et al. (2019) revealed that

soil pH showed positive correlations with other soil parameters

in different soil horizons, making it a key factor in controlling

soil nutrient availability. The findings of our study suggest that

soil pH management practices should be prioritized across our

study sites to enhance sustainable banana production. Overall,

soils in Gituamba and Ngenda depicted better soil fertility

characteristics with higher TOC, OM, and N levels compared to

Mangu. The variations in soil parameters across the study sites

could be due to variations in soil management practices, farming

techniques, soil types, climate, and soil microbial communities

(Singh et al., 2020).

Since rhizospheric soil is closest to the roots, it provides an

avenue to explore microbial communities (Sui et al., 2019). From

our metagenomics analyses of rhizospheric bacterial communities

and their potential functions, we hypothesized that diverse

microbial populations in banana soils play beneficial roles in

supporting plant health. Metagenomic profiling, as demonstrated

in this study, facilitates the identification of previously unknown

bacterial taxa and their functional roles. These bacteria are essential

for boosting plant growth, strengthening disease resistance,

and enhancing soil health. Additionally, we anticipate that

these microbial communities will display distinct biogeographical

patterns across different banana-growing regions, influenced by

variations in soil characteristics, climate, and agricultural practices.

The makeup of microbial communities in rhizospheric soil is

strongly linked to soil quality and the overall health of crops (Shi

et al., 2021). Soil-associated microbiota significantly influences how

plants adapt and respond to environmental changes, including

stressors like salinity and drought (Zhang et al., 2017).

In Gituamba andMangu agroecosystems, our primary goal was

to characterize the bacterial composition and diversity. This guided

the choice of amplicon sequencing, particularly 16S rRNA gene

sequencing, which provided a cost-effective and high-throughput

method to profile the microbial communities at the taxonomic

level. On the other hand, the Ngenda agroecosystems soil was

subjected to shotgun metagenomic sequencing. Due to relatively

better soil fertility characteristics in Ngenda compared to other

sites, we aimed to go beyond taxonomic classification to analyze

the functional traits and metabolic potential of the microbial

communities. Shotgun metagenomics thus allowed whole genome

reconstruction and functional annotation, providing detailed

insights into the potential roles of soil bacteria in ecosystem

attributes. By using both amplicon and shotgun sequencing

approaches, we ensured a balanced approach in characterizing the

taxonomic composition in all sites while obtaining more functional

insights in Ngenda than Gituamba and Mangu.

Phylum Proteobacteria was the most prevalent across all our

sites and has been consistently observed in studies evaluating

bacterial communities in the banana rhizosphere (Fu et al., 2017;

Kaushal et al., 2022a,b; Mia et al., 2010). Members of the phylum

Proteobacteria, a Gram-negative bacterium, are also enriched in

the rhizosphere soil of many plants (Fu et al., 2022; Gao et al.,

2019; Zhang et al., 2022). They play an active role in organic

matter decomposition, ammonia oxidation, nitrogen fixation and

degradation of inorganic compounds (Ling et al., 2022). The

phylum Actinobacteria, a group of Gram-positive bacteria, plays

a crucial role in decomposing organic matter and produces

antibiotics that inhibit plant pathogens in soil (Dhakal et al., 2017).

In addition, Cyanobacteria, Planctomycetes, and Chloroflexi are

known to play a role in nitrogen cycling within agroecosystems
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(Li et al., 2021). A previous study by Beltran-Garcia et al.

(2021) also identified key processes mediated by Proteobacteria,

Actinobacteria, and Cyanobacteria within banana agroecosystems.

The predominant genus, Pantoea, a Gram-negative bacterium

belongs to the Enterobacteriaceae family, and its members are

versatile biocontrol agents, protecting against pathogenic microbes

in several plant varieties (Duchateau et al., 2024). Other abundant

genera including Brasilonema, a genus of Cyanobacteria, play

a significant role in banana soils, particularly in mitigating

Panama disease, a soil-borne infection, caused by pathogenic

fungi, Fusarium. Other genera including Serratia, Klebsiella,

Burkholderia, and Streptomyces contribute to plant growth

promotion by production of phytohormones, mitigation of plant

abiotic stresses and inhibition of plant pathogens (Dos Santos

et al., 2022; Kulkova et al., 2024; Olanrewaju and Babalola,

2019). The bacterial communities in Ngenda soils exhibited a

moderate level of alpha diversity, suggesting that the bacterial

community diversity was moderate with a balanced representation

of different species. This suggests a relatively healthy and stable

ecosystem. Phyla Pseudomonadota and Actinobacteria were the

most prominent in Ngenda soils, consistent with findings by

Liu et al. (2022) who investigated the vertical distribution

patterns of soil microbial communities in peatlands under varying

environmental conditions. Members of Actinobacteria bacteria are

an important phylum that act as plant growth promoters due to

their vital role in the cycling of organic matter and inhibition of

several plant pathogens (Ibrahimi et al., 2023). At the genus level,

we found Bradyrhizobium as the most abundant in Ngenda soils

and its members actively promote plant growth and yield by fixing

nitrogen in soil (Shahrajabian et al., 2021). A study by Chalasani

et al. (2021) also reported the positive roles of Bradyrhizobium

enhancing legume nodulation, which helps to maintain plant

community structure and restore degraded ecosystems. A previous

study by Wahome et al. (2023) explored the abundance of soil

bacteria as well the effects of soil parameters on their distribution in

small-holder banana farms in Kisii, Nyamira, and Embu Counties

of Kenya. Similar to our findings, they reported Proteobacteria

phylum as the most prevalent. They also noted a variation in soil

pH which affects the bacterial community composition in all their

study sites. Overall, their study revealed the importance of soil

health and management practices in shaping microbial diversity,

which in turn affects the productivity of banana agroecosystems

in these regions. In our study, the adaptability of soil bacteria

likely accounts for their significant presence in the study sites

and underscores their potential role in maintaining soil health

and enhancing crop yield. These sensitive bacterial species may be

crucial for evaluating the impact of human activities on banana

microbiomes and their associated ecological functions.

The functional diversity of soil microbes is a vital indicator

of community composition and ecological roles, essential for

understanding the contributions of microorganisms in different

environments (Chen et al., 2020). We focused on bacterial

functional predictions of pathways and enzymes encoded within

bacterial metagenomes. Metabolic gene functions in the 16S

rRNA gene sequences revealed a significantly higher abundance

in Gituamba than in Mangu. Metabolic pathways such as aerobic

respiration I (PWY-3781), pyruvate fermentation to isobutanol

(PWY-711), L-isoleucine biosynthesis II (PWY-5101), L-isoleucine

biosynthesis I from threonine (ILEUSYN-PWY), and L-valine

biosynthesis (VALSYN-PWY) were prominent. These findings

resonate with studies by Tang et al. (2024) and Zhou et al.

(2023) who reported that most bacterial metabolic pathways

in soils were associated with carbon IV oxide assimilation,

acetate, carbohydrates, amino acids biosynthesis, and inorganic

compounds degradation. In our study, most of the predicted

pathways are linked to crucial processes such as nitrate reduction

and the breakdown of various anaerobic aromatic compounds,

including catechol, creatinine, toluene, salicylate, L-arabinose,

L-valine, and the biosynthesis of adenosine nucleotides, 1,5-

anhydrofructose, and pyrimidine ribonucleotides (Zhou et al.,

2023). Therefore, the predicted pathways, based on PICRUSt2

analysis, are associated with functions that may contribute

to plant growth, development, and the synthesis of bioactive

substances. However, it is important to note that these predictions

are based on 16S rRNA gene profiles and do not represent

direct functional measurements. Previous studies have linked

similar microbial functions, such as energy metabolism,

fermentation/alternative energy metabolism and amino acid

biosynthesis pathways, to enhanced plant performance (Adedayo

et al., 2022). Recent reports indicate that the most common

bacterial phyla that contain metabolic pathways in rhizospheric

soils that contribute to soil health and plant growth include

Proteobacteria, Actinobacteria, Cyanobacteria, Acidobacteria,

Bacteroidetes, Firmicutes, Chloroflexi, and Planctomycetes (Li et al.,

2014, 2020; Lopes et al., 2016; Nicolas et al., 2021).

The most abundant KEGG Orthologs/Enzymes within the

bacterial metagenome in Ngenda were RNA polymerase sigma-70

factor, Extracytoplasmic function (ECF) subfamily, eukaryotic-

like serine/threonine-protein-kinase, 3-oxoacyl- [acyl-carrier

protein] reductase, putative ABC transport system permease

protein, ATP-binding cassette (ABC)-2 type transport system

ATP-binding protein, acyl-CoA dehydrogenase and aerobic

carbon-monoxide dehydrogenase large subunit. These results

align with a similar investigation by Wang et al. (2023) that

explored the microbial communities of rhizosphere soil and root

endophytes in Panax notoginseng from various geographical

regions. The KEGG pathways in this study site are associated with

key processes that contribute to improved soil health and crop

production in agroecosystems as demonstrated by Abulfaraj et al.

(2024). By connecting taxonomy and function, we discovered

that genes possessed by Bradyrhizobium, Actinomycetota,

Alphaproteobacteria, Betaproteobacteria, Pseudomonadota,

Solirubacterales, Acidobacteria, and Hyphomicrobiales were

associated with metabolic pathways for metabolism, genetic

information processing, cellular processes, environmental

information processing, organismal systems and human disease

processes. Analyzing the functional microbiome revealed potential

bacteria that could benefit plants and promote their growth at our

study locations.

While functional prediction provided initial insights into

the contribution of microbial communities to gene functions in

banana rhizospheric soils, it is recommended to apply several

omics approaches such as metagenomics, metatranscriptomics,

metabolomics and proteomics in future studies. These approaches
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can help address the known biases associated with functional

prediction tools. Also, the selection between shotgun and amplicon

sequencing methods for microbiome analysis typically depends on

the specific research objectives. For example, amplicon sequencing

is ideal for analyzing larger samples, such as in longitudinal studies,

but it provides limited taxonomic and functional resolution (Jovel

et al., 2016). In contrast, shotgun metagenomics generally offers

more comprehensive information on numerous genes, resulting

in enhanced taxonomic and functional resolution of sequences

(Peterson et al., 2021; Zaheer et al., 2018). In the current study,

both approaches revealed almost similar taxonomic groups whereas

functional profiling yielded more information in the shotgun

approach compared to 16S rRNA gene sequencing. The findings

from our study describe the need for the application of omics

techniques to provide more research insights in banana-soil

microbiome interactions, for sustainable agriculture in different

growing regions.

Conclusion

This study provides baseline data on the bacterial composition

and predicted gene functions associated with the rhizospheres

of banana plants in Kenya. It also highlights differences in soil

physicochemical properties across agroecosystems, emphasizing

the need for future research to explore how these factors influence

microbial community structure. Through amplicon and shotgun

metagenomic sequencing, we demonstrated that the abundance

of beneficial rhizosphere bacteria across diverse environments is

linked to their ecological functions, contributing to soil health

and crop productivity. A comprehensive understanding of key

microbial metabolic pathways that facilitate plant development

could empower farmers to adopt sustainable soil management

practices, enhancing both environmental and economic outcomes.

However, we acknowledge certain limitations in this study,

including the use of only two composite amplicon samples

per site without biological replication and the application of

shotgun metagenomics to a single sample. These constraints

limit the generalizability and robustness of our diversity and

functional predictions. Future research should incorporatemultiple

biological replicates and broader shotgun metagenomic analyses to

strengthen statistical validity and provide a more comprehensive

understanding of microbial roles in the banana rhizosphere.

Expanding such efforts could reveal novel microbial taxa and

functions with potential applications in ecosystem management,

agriculture, and biotechnology.

Data availability statement

Sequences from this study were deposited into the SRA under

the BioProject ID PRJNA1146306 (https://www.ncbi.nlm.nih.gov/

search/all/?term=PRJNA1146306).

Author contributions

EM: Data curation, Formal analysis, Investigation,

Methodology, Software, Visualization, Writing – original

draft. GK: Formal analysis, Investigation, Methodology,

Software, Validation, Visualization, Writing – original draft.

OM: Investigation, Methodology, Visualization, Writing – original

draft. AK: Conceptualization, Data curation, Funding acquisition,

Methodology, Project administration, Resources, Supervision,

Validation, Writing – review & editing. VG: Supervision,

Validation, Writing – review & editing. WM: Conceptualization,

Data curation, Funding acquisition, Methodology, Project

administration, Resources, Supervision, Validation, Writing –

review & editing.

Funding

The author(s) declare that financial support was received

for the research and/or publication of this article. This research

received support from the World Bank Group through the

National Agricultural and Rural Inclusive Growth Project

(NARIGP) in Kiambu County and the National Research Fund,

Kenya (NRF/2/MMC/158).

Acknowledgments

We thank Pwani University for providing laboratory

space at the Pwani University Bioscience Research Centre

(PUBReC) to conduct this research. Additionally, the authors

acknowledge the National Research Fund for their research

grant support.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fmicb.2025.

1582271/full#supplementary-material

Frontiers inMicrobiology 12 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1582271
https://www.ncbi.nlm.nih.gov/search/all/?term=PRJNA1146306
https://www.ncbi.nlm.nih.gov/search/all/?term=PRJNA1146306
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1582271/full#supplementary-material
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Muzami et al. 10.3389/fmicb.2025.1582271

References

Abulfaraj, A. A., Shami, A. Y., Alotaibi, N. M., Alomran, M. M., Aloufi, A. S., Al-
Andal, A., et al. (2024). Exploration of genes encoding KEGG pathway enzymes in
rhizospheric microbiome of the wild plant Abutilon fruticosum. AMB Express 14:27.
doi: 10.1186/s13568-024-01678-4

Adedayo, A., Fadiji, A., and Babalola, O. (2022). The effects of plant health
status on the community structure and metabolic pathways of rhizosphere
microbial communities associated with Solanum lycopersicum. Horticulturae 8:404.
doi: 10.3390/horticulturae8050404

Alawiye, T., and Babalola, O. (2019). Bacterial diversity and community structure
in typical plant rhizosphere. Diversity 11:179. doi: 10.3390/d11100179

Alawiye, T., and Babalola, O. (2021). Metagenomic insight into the community
structure and functional genes in the sunflower rhizosphere microbiome. Agriculture
11:167. doi: 10.3390/agriculture11020167

Alemu,M.M. (2017). Banana as a cash crop and its food security and socioeconomic
contribution: the case of Southern Ethiopia, Arba Minch. J. Environ. Prot. 08, 319–329.
doi: 10.4236/jep.2017.83024

Barbera, P., Kozlov, A. M., Czech, L., Morel, B., Darriba, D., Flouri, T., et al. (2018).
Data from: EPA-ng: massively parallel evolutionary placement of genetic sequences
(Version 1, p. 16601287 bytes) [Dataset]. Dryad. doi: 10.1101/291658

Bargali, S. S. (2024). Soil microbial biomass: a crucial indicator of soil health. Curr.
Agric. Res. J. 12, 01–06. doi: 10.12944/CARJ.12.1.01

Beltran-Garcia, M. J., Martinez-Rodriguez, A., Olmos-Arriaga, I., Valdez-
Salas, B., Chavez-Castrillon, Y. Y., Di Mascio, P., et al. (2021). Probiotic
endophytes for more sustainable banana production. Microorganisms 9:1805.
doi: 10.3390/microorganisms9091805

Birt, H. W. G., Pattison, A. B., Skarshewski, A., Daniells, J., Raghavendra, A., and
Dennis, P. G. (2022). The core bacterial microbiome of banana (Musa spp.). Environ.
Microbiome 17:46. doi: 10.1186/s40793-022-00442-0

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a
flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.
doi: 10.1093/bioinformatics/btu170

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith,
G. A., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data
science using QIIME 2. Nat. Biotechnol. 37, 852–857. doi: 10.1038/s41587-019-0209-9

Buchfink, B., Reuter, K., and Drost, H.-G. (2021). Sensitive protein
alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368.
doi: 10.1038/s41592-021-01101-x

Chalasani, D., Basu, A., Pullabhotla, S. V., Jorrin, B., Neal, A. L., Poole, P. S., et al.
(2021). Poor competitiveness of Bradyrhizobium in pigeon pea root colonization in
Indian soils.MBio 12, 10–1128. doi: 10.1128/mBio.00423-21

Chen, S., Huang, T., Zhou, Y., Han, Y., Xu, M., and Gu, J. (2017). AfterQC:
automatic filtering, trimming, error removing and quality control for fastq data. BMC
Bioinformatics 18(S3):80. doi: 10.1186/s12859-017-1469-3

Chen, Z.-J., Shao, Y., Li, Y.-J., Lin, L.-A., Chen, Y., Tian, W., et al. (2020).
Rhizosphere bacterial community structure and predicted functional analysis in the
water-level fluctuation zone of the danjiangkou reservoir in china during the dry
period. Int. J. Environ. Res. Public Health 17:1266. doi: 10.3390/ijerph17041266

Cordero, J., De Freitas, J. R., and Germida, J. J. (2020). Bacterial microbiome
associated with the rhizosphere and root interior of crops in Saskatchewan, Canada.
Can. J. Microbiol. 66, 71–85. doi: 10.1139/cjm-2019-0330

Czech, L., Barbera, P., and Stamatakis, A. (2020). Genesis and Gappa: processing,
analyzing and visualizing phylogenetic (placement) data. Bioinformatics 36, 3263–3265.
doi: 10.1093/bioinformatics/btaa070

Dhakal, D., Pokhrel, A. R., Shrestha, B., and Sohng, J. K. (2017). Marine rare
actinobacteria: isolation, characterization, and strategies for harnessing bioactive
compounds. Front. Microbiol. 8:1106. doi: 10.3389/fmicb.2017.01106

Dixit, M., Ghoshal, D., Lal Meena, A., Ghasal, P. C., Rai, A. K., Choudhary, J., et al.
(2024). Changes in soil microbial diversity under present land degradation scenario.
Total Environ. Adv. 10:200104. doi: 10.1016/j.teadva.2024.200104

Dixon, P. (2003). VEGAN, a package of R functions for community ecology. J. Veg.
Sci. 14, 927–930. doi: 10.1111/j.1654-1103.2003.tb02228.x

Dos Santos, I. B., Pereira, A. P. D. A., De Souza, A. J., Cardoso, E. J. B. N., Da Silva,
F. G., Oliveira, J. T. C., et al. (2022). Selection and characterization of burkholderia
spp. for their plant-growth promoting effects and influence onmaize seed germination.
Front. Soil Sci. 1:805094. doi: 10.3389/fsoil.2021.805094

Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C.
M., et al. (2020). PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol.
38, 685–688. doi: 10.1038/s41587-020-0548-6

Duchateau, S., Crouzet, J., Dorey, S., and Aziz, A. (2024). The plant-associated
Pantoea spp. as biocontrol agents: mechanisms and diversity of bacteria-produced

metabolites as a prospective tool for plant protection. Biol. Control 188:105441.
doi: 10.1016/j.biocontrol.2024.105441

Enagbonma, B. J., Ajilogba, C. F., and Babalola, O. O. (2020).Metagenomic profiling
of bacterial diversity and community structure in termite mounds and surrounding
soils. Arch. Microbiol. 202, 2697–2709. doi: 10.1007/s00203-020-01994-w

Fu, L., Penton, C. R., Ruan, Y., Shen, Z., Xue, C., Li, R., et al. (2017). Inducing the
rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt
disease. Soil Biol. Biochem. 104, 39–48. doi: 10.1016/j.soilbio.2016.10.008

Fu, L., Yan, Y., Li, X., Liu, Y., and Lu, X. (2022). Rhizosphere soil
microbial community and its response to different utilization patterns in
the semi-arid alpine grassland of northern Tibet. Front. Microbiol. 13:931795.
doi: 10.3389/fmicb.2022.931795

Gao, X., Wu, Z., Liu, R., Wu, J., Zeng, Q., and Qi, Y. (2019). Rhizosphere bacterial
community characteristics over different years of sugarcane ratooning in consecutive
monoculture. Biomed Res. Int. 2019, 1–10. doi: 10.1155/2019/6916189

Gerke, J. (2022). The central role of soil organic matter in soil fertility and carbon
storage. Soil Syst. 6:33. doi: 10.3390/soilsystems6020033

Giri, B., and Varma, A. (Eds.). (2020). Soil Health, Vol. 59. New York, NY: Springer
International Publishing. doi: 10.1007/978-3-030-44364-1

Githongo, M., Kiboi, M., Muriuki, A., Fliessbach, A., Musafiri, C., and Ngetich,
F. K. (2022). Organic carbon content in fractions of soils managed for soil
fertility improvement in sub-humid agroecosystems of Kenya. Sustainability 15:683.
doi: 10.3390/su15010683

Han, C., Zhang, Z., Gao, Y., Wang, W., Chen, J., and Wang, Y. (2023).
Microbiome reveals the effects of biogas fertilizer on soil microbial community
structure and diversity in perennial apple orchards. Horticulturae 9:1023.
doi: 10.3390/horticulturae9091023

He, Z., Yuan, C., Chen, P., Rong, Z., Peng, T., Farooq, T. H., et al. (2023). Soil
microbial community composition and diversity analysis under different land use
patterns in Taojia River Basin. Forests 14:1004. doi: 10.3390/f14051004

Hyatt, D., Chen, G.-L., LoCascio, P. F., Land, M. L., Larimer, F. W., and Hauser,
L. J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site
identification. BMC Bioinformatics 11:119. doi: 10.1186/1471-2105-11-119

Ibrahimi,M., Loqman, S., Jemo,M., Hafidi,M., Lemee, L., andOuhdouch, Y. (2023).
The potential of facultative predatoryActinomycetota spp. and prospects in agricultural
sustainability. Front. Microbiol. 13:1081815. doi: 10.3389/fmicb.2022.1081815

Jovel, J., Patterson, J., Wang, W., Hotte, N., O’Keefe, S., Mitchel, T., et al. (2016).
Characterization of the gut microbiome using 16S or shotgun metagenomics. Front.
Microbiol. 7:459. doi: 10.3389/fmicb.2016.00459

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017).
KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res.
45, D353–D361. doi: 10.1093/nar/gkw1092

Kang, S., Van Nostrand, J. D., Gough, H. L., He, Z., Hazen, T. C., Stahl, D.
A., et al. (2013). Functional gene array–based analysis of microbial communities
in heavy metals-contaminated lake sediments. FEMS Microbiol. Ecol. 86, 200–214.
doi: 10.1111/1574-6941.12152

Kaushal, M., Kolombia, Y., Alakonya, A. E., Kuate, A. F., Ortega-Beltran, A.,
Amah, D., et al. (2022a). Subterranean microbiome affiliations of plantain (Musa spp.)
under diverse agroecologies of Western and Central Africa.Microb. Ecol. 84, 580–593.
doi: 10.1007/s00248-021-01873-x

Kaushal, M., Mahuku, G., and Swennen, R. (2020a). Metagenomic insights of
the root colonizing microbiome associated with symptomatic and non-symptomatic
Bananas in fusarium wilt infected fields. Plants 9:263. doi: 10.3390/plants9020263

Kaushal, M., Swennen, R., and Mahuku, G. (2020b). Unlocking the microbiome
communities of banana (Musa spp.) under disease stressed (Fusarium wilt) and
non-stressed conditions.Microorganisms 8:443. doi: 10.3390/microorganisms8030443

Kaushal, M., Tumuhairwe, J. B., Kaingo, J., Richard, M., Nakamanya, F., Taulya,
G., et al. (2022b). Compositional shifts in microbial diversity under traditional banana
cropping systems of Sub-Saharan Africa. Biology 11:756. doi: 10.3390/biology11050756

Kelley, K., Lai, K., and Wu, P.-J. (2008). “Using R for data analysis: a best practice
for research,” in Best Practices in Quantitative Methods, ed. J. Osborne (London: SAGE
Publications, Inc), 535–572. doi: 10.4135/9781412995627.d40

Kong, Z., and Liu, H. (2022). Modification of rhizosphere microbial communities: a
possible mechanism of plant growth promoting rhizobacteria enhancing plant growth
and fitness. Front. Plant Sci. 13:920813. doi: 10.3389/fpls.2022.920813
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