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The interplay between microbes and cancer has garnered significant attention
in life sciences. Clinically, microbial infections in cancer patients are common
complications and one of the major causes of mortality. Cancer patients often
experience compromised immune defenses, and conventional therapies—
including radiotherapy, chemotherapy, and invasive surgery—further diminish
their resistance to pathogens. Emerging evidence indicates that intratumoral
microbes and their interactions with the tumor microenvironment exacerbate
cancer cell proliferation, drug resistance, metastasis, and poor prognosis.
However, complex multidrug regimens increase patient burden and reduce
compliance. This necessitates the development of single agents with dual
anticancer and antimicrobial properties. Promisingly, naturally derived
compounds and synthetic chemicals exhibit such dual functionalities. This
review introduces microbial contributions to oncogenesis and analyzes
molecular targets of dual-function agents, proposing their potential as novel
therapeutics to improve clinical outcomes.
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1 Background

Microbial infections constitute a critical complication and leading mortality cause
in cancer patients (Sepich-Poore et al., 2021; Helmink et al., 2019). Clinically, specific
microbes correlate with malignant tumor behaviors, such as metastasis and drug resistance,
and are linked to poor prognosis (Pang et al., 2024; Er et al., 2025). These microbes
originate from both environmental sources and endogenous opportunistic pathogens.
Their symbiotic relationship with tumor cells weakens immune defenses, exacerbating
disease severity and mortality (Jiang et al., 2024; Shen et al., 2024; de Barros et al., 2024).
However, the combination application of antibiotics and anticancer drugs currently faces
thorny challenges, including dosing complexity, combination toxicity, drug interactions,
and reduced compliance (Kubecek et al., 2021; Royo-Cebrecos et al., 2024).

Development of single agents with dual functions of anticancer and antibacterial
activities has become an inevitable solution to address cancer complicated with bacterial
infection. The agents not only inhibit the proliferation of cancer cells, but also eliminate
bacteria at the same concentration, thereby block cancer and infection synergistic control,
and simplify the medication regimens (Rai et al., 2024; Xie et al., 2024; Kumari et al., 2024).
Preclinical studies demonstrate that such agents achieve long-term relapse-free survival
(>700 days) and even complete remission (Wang et al., 2024). This review synthesizes
current knowledge on microbial-tumor interactions and highlights advances in dual-
functional drug development. This review introduces current knowledge on microbial-
tumor interactions, and highlights the advances in the dual-functional drugs at the first
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time, which would provide a new insight into the development of
this new category of drugs.

2 Infection in cancer patients

Immunocompromised cancer patients are highly susceptible
to infections. Tumor cells play a pivotal role in undermining
immune function. They secrete various immunosuppressive
factors, such as transforming growth factor-8(TGF-B), interleukin-
10 (IL-10), and prostaglandin E2 (PGE2) (Nduom et al,
2015; Motz and Coukos, 2013; Yaguchi and Kawakami, 2016).
As the immune system weakens, the body becomes more
susceptible to infections, and the presence of infections could,
in turn, exacerbate the stress on the already compromised
immune system of cancer patients (Kang et al., 2024). Cancer-
associated immune dysfunction, compounded by cytotoxic
therapies (chemotherapy, radiation, surgery, transplantation, and
corticosteroids), creates a permissive environment for infections
(Bastien et al., 2019).

Epidemiological analyses reveal ~20% of cancer patients
develop sepsis, with infection-related mortality reaching 40-
70% in immunocompromised cohorts (Boucher and Carpenter,
2020; Hensley et al., 2019; Nelmes et al, 2023). Diagnosing
infections is challenging due to overlapping symptoms with cancer
progression, such as low-grade fever, fatigue, and malaise (Yaegashi
et al., 2014). Common pathogens include bacteria (Staphylococcus,
Streptococcus, Enterococcus, Pseudomonas aeruginosa, Klebsiella
pneumoniae) and fungi (Candida, Aspergillus, Mucormycosis,
Cryptococcus, Pneumocystis) (Fentie et al., 2018; Petrikkos et al.,
2024; Delgado and Guddati, 2021; Danielsen et al., 2023). To make
matters worse, the increasing prevalence of antibiotic-resistant
strains has severely complicated treatment, leaving these already
vulnerable patients with limited effective treatment options.

3 Intratumoral microbe

Emerging evidence suggests that symbiotic bacteria and fungi
reside within malignant tumor cells, as revealed by metagenomics
and next-generation sequencing (Gao et al, 2022; Galeano
Nifo et al, 2022). A study analyzing fungal communities in
over 17,000 tissue and blood samples from 35 cancer types
detected microbial presence in all samples (Dohlman et al., 2022).
Specific microbial communities are associated with gastrointestinal
tumors, breast cancer, melanoma, lung cancer, bladder cancer,
lymphomas, adenomas, and head and neck paragangliomas
(Kim et al, 2024). For instance, Fusobacterium dominates
colorectal cancer (CRC) niches, while Malassezia enriches in
pancreatic tumors (Zepeda-Rivera et al, 2024; Aykut et al,
2019). Notably, tumor-resident microbes significantly impact
therapeutic outcomes—for instance, intratumoral Enterococcus
compromises Programmed Death-1 (PD-1) inhibitor efficacy
in melanoma models (Matson et al, 2018). Mechanistically,
intratumoral microbiota modulate tumor growth, metastasis, and
treatment resistance through immune modulation, inflammation
2022; Shi
2024). These findings highlight the critical need for integrating

induction, and so on (Li and Saxena, et al,
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targeted antimicrobial strategies into cancer therapeutic regimens
to address microbial contributions to tumor progression and
treatment failure.

4 Carcinogenic mechanisms of
microbiota

Unlike normal cells, tumor cells could coexist with specific
bacteria and fungi, forming a symbiotic microbiota that benefits
both tumor and microbial proliferation and drug resistance (Lutsiv
etal., 2024). For instance, fungi associated with lung cancer include
Cryptococcus, Malassezia, Candida,
Bacillus, while bacteria such as Staphylococcus, Streptococcus,
Pseudomonas aeruginosa (P. aeruginosa), Klebsiella, Escherichia
coli (E. coli) contribute to a cancer-promoting microenvironment.
The presence of these microbes is strongly associated with elevated
mortality rates and unfavorable prognoses in patients.

Aspergillus, Blastomyces,

The carcinogenic effects of bacteria and fungi are mediated
through several mechanisms (Figure 1): (1) Chronic inflammation
induction; (2) Immunosuppression and immune evasion; (3)
Secretion of virulence factors that act as carcinogens; (4) Induction
of DNA mutations; (5) Activation of oncogene expression and
signaling pathways; (6) Inhibition of tumor cell apoptosis.

4.1 Immunosuppression and inflammatory
activation of Porphyromonas gingivalis (P.
gingivalis)

P. gingivalis infection enhances programmed death-
ligand 1 (PD-L1) expression on dendritic cells within tumor
microenvironments and lymph nodes through Akt/STAT3 pathway
activation, subsequently impairing CD8" T cell functionality (Ren
et al, 2023). This manifests as significant downregulation of
interleukin-2 (IL-2), interferon-y (IFN-y), perforin, granzyme
B, and CD107a expression in CD8T T cells. In murine models,
P. gingivalis-induced immunosuppression significantly enlarges
tumor areas and accelerates oral cancer progression (Luo et al,
2024). Given its prevalence in human gingival microbiota, targeting
P. gingivalis proliferation and its molecular signaling pathways
could enhance CD8" T cell activity and improve PD-1/PD-L1
immunotherapy efficacy.

Furthermore, P. gingivalis promotes malignancy in
gastrointestinal cancers, including CRC and esophageal cancer.
CRC mouse models administered P. gingivalis exhibit increased
colorectal tumor burden compared to controls (Wang et al., 2021).
Mechanistically, P. gingivalis recruits myeloid immune cells to
activate the NLRP3 inflammasome, driving excessive inflammation

that facilitates CRC initiation and progression.

4.2 Induction of chronic inflammation by
Candida albicans (C. albicans)

C. albicans promotes carcinogenesis through chronic

inflammation by orchestrating a cascade of molecular and
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FIGURE 1
Carcinogenic mechanisms of microbiota. (1) Chronic inflammation from excessive immune activation. (2) Immune evasion via immunosuppressive
mechanisms. (3) Virulence factor secretion. (4) DNA damage through mutagenic metabolites. (5) Oncogenic pathway activation. (6) Apoptosis
resistance in tumor cells.

immunological disruptions. Studies have demonstrated that C.
albicans is closely associated with oral malignancies. Recent
research has elucidated several mechanisms underlying this
association, including disruption of the epithelial barrier,
production of carcinogenic substances (e.g., nitrosamines and
acetaldehyde), and induction of chronic inflammation (Liao
et al., 2020). Concurrently, C. albicans disrupts mucosal barriers
via hydrolases (e.g., proteases), enabling persistent microbial
invasion and chronic antigen exposure. This triggers sustained
activation of NF-kB and STAT3 pathways, driving the production
of proinflammatory cytokines (IL-6, TNF-, and IL-1B) that fuel
hyperproliferation and apoptosis resistance in epithelial tissues
(Wang X. et al., 2023).

The interplay between dysregulated immune responses and
fungal persistence further exacerbates oncogenic processes.
In genetically susceptible hosts, such as those with chronic
mucocutaneous candidiasis, defective IFN pathways amplify
inflammatory damage and epithelial dysplasia (Smeekens et al.,
2013). Additionally, C. albicans synergizes with bacterial pathogens
(e.g., Streptococcus) to activate TLR2/4 and NLRP3 inflammasomes,
amplifying IL-1pB-driven inflammation and reactive oxygen species
(ROS) generation, both implicated in malignant transformation
(Wang X. et al, 2023). Animal models of oral carcinogenesis
confirm these mechanisms, where antifungal therapy reduces
squamous hyperplasia and carcinoma incidence, directly linking C.
albicans to inflammation-mediated oncogenesis (Sano et al., 2009).

4.3 Promotion of tumor cell immune
evasion by Malassezia

Malassezia, an opportunistic pathogenic fungus commensal
on human skin, exhibits conditional pathogenicity contingent
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upon host immune status. Emerging evidence indicates that
immunosuppression facilitates fungal translocation into internal
organs, thereby potentiating tumorigenesis and malignant
progression (Spatz and Richard, 2020). Notably, Malassezia
demonstrates tissue tropism for multiple malignancies, including
pancreatic ductal adenocarcinoma (PDA), breast cancer, gastric
cancer, and prostate cancer. Quantitative analysis reveals a
remarkable 3,000-fold enrichment of fungal biomass in PDA
tumor tissues compared to adjacent normal parenchyma, a
phenomenon conserved across human and murine model (Aykut
et al,, 2019). In breast cancer patients, fungal detection in tumor
specimens correlates with significantly reduced overall survival
rates compared to Malassezia-negative cohorts (Liu et al., 2024).
The mechanistic underpinnings involve immunomodulatory
pathways mediated by Malassezia. Notably, gastric cancer
exhibit
upregulation of PD-L1 expression, suggesting fungal-mediated

specimens with fungal colonization concomitant
immune evasion through checkpoint protein induction (Zhang
etal., 2022). This immunoregulatory axis may explain the observed

acceleration of tumor progression in colonized malignancies.

4 .4 Release of virulence factors from
Helicobacter pylori (H. pylori)

H. pylori is a well-established driver of gastric carcinogenesis,
implicated in ~90% of gastric cancer cases (Engelsberger et al.,
2024). It also associates with malignancies such as colon
cancer, pancreatic cancer, and gastric mucosa-associated lymphoid
tissue lymphoma. Notably, 80% of infected individuals remain
asymptomatic despite severe potential consequences.

The procarcinogenic activity of H. pylori primarily stems from
virulence factor secretion. Cytotoxin-associated gene A (CagA),
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a key virulence factor, undergoes phosphorylation by host c-
Src/c-Abl kinases, activating oncogenic signaling pathways that
induce gastric epithelial inflammation, precancerous lesions, and
adenocarcinoma (Zhao et al.,, 2024). Additional virulence factors
include vacuolating cytotoxin A (VacA), which triggers immune
cell apoptosis, and y-glutamyl transpeptidase (y-GT), which
disrupts gastric epithelial integrity and promotes immune tolerance
(Wang B. et al., 2023; Baskerville et al., 2023). Targeting H. pylori
infection may thus complement existing cancer therapies.

4.5 Induction of tumor cell DNA mutation
by polyketide-non-ribosomal peptide
synthase operon (pks*) E. coli

The genotoxic pks™ E. coli contributes to colorectal
carcinogenesis through a mutagenic mechanism mediated by
its secondary metabolite, colibactin (Pleguezuelos-Manzano et al.,
2020). Pkst E. coli produces colibactin, a secondary metabolite
synthesized by the pks genomic island. Colibactin acts as a
crosslinking agent, forming covalent interstrand crosslinks between
adenine residues in double-stranded DNA. Colibactin induces
DNA interstrand crosslinks, primarily targeting adenine residues,
which obstruct replication forks and lead to double-strand breaks
during S phase. This damage triggers error-prone repair processes,
such as non-homologous end joining, resulting in characteristic
mutational signatures. These mutations preferentially affect cancer
driver genes (e.g., APC and KRAS) and promote chromosomal
instability through chromothripsis-like rearrangements. Clinically,
pks™ E. coli colonization correlates with elevated mutation burden
and adverse prognosis, highlighting its role as a microbial driver of
oncogenic mutagenesis in colorectal cancer.

4.6 Activation of oncogenic signal pathways
by Fusobacterium nucleatum (F. nucleatum)

Intestinal microbiota such as F. nucleatum is strongly linked
to CRC pathogenesis (Garrett, 2019). F. nucleatum exerts potent
procancer effects in vitro and in vivo, notably enhancing CRC
tumor growth in murine models. Its primary carcinogenic
mechanism involves FadA adhesion protein-mediated activation of
the Wnt/B-catenin pathway via E-cadherin binding (Cohn et al,,
2023; Rubinstein et al., 2013). Additionally, F. nucleatum increases
proliferation of colorectal cancer cells and tumor development in
mice by activating toll-like receptor 4 signaling (TLR4) to nuclear
factor -kB (NF-kB), and up-regulating expression of microRNA-21
(Yang et al., 2017). Moreover, F. nucleatum colonization accelerates
breast cancer metastasis, highlighting its systemic oncogenic
potential (Fu et al., 2022).

5 Progress of single agents for
anticancer and antibacterial activities

The interdependent relationship between tumor cells and
microbes presents a formidable obstacle, making it challenging to

Frontiers in Microbiology

10.3389/fmicb.2025.1582382

entirely halt tumor growth and recurrence through the exclusive
use of anticancer treatments or antibacterial medications (Kapoor
et al, 2022; Ma et al, 2023). In clinical settings, established
anticancer interventions, such as chemotherapy, radiotherapy,
and invasive surgical methods, typically succeed in restraining
tumor cell proliferation. However, their effectiveness against
the bacteria and fungi associated with tumors remains notably
inadequate (Inamura, 2023; Sheng et al, 2024). Given these
difficulties, single agents exhibiting broad-spectrum antimicrobial
and anticancer capabilities are surfacing as promising prospects for
both preclinical and clinical exploration (Rohilla et al., 2014; Yadav
etal., 2023).

5.1 Overall mechanism of single agents
with anticancer and antimicrobial effects

Natural products, clinically established antimicrobial and
antitumor agents, and newly synthesized single compounds
have been identified as pivotal sources for developing novel
antimicrobial and antitumor therapeutics. Diverse phytochemicals,
such asalkaloids, flavonoids, and

sesquiterpenes, saponins,

demonstrate  broad-spectrum  bioactivities = encompassing
antioxidant, anti-inflammatory, antimicrobial, and antitumor
properties. Furthermore, clinically validated dual-activity drugs
and novel synthetic bifunctional compounds exhibit multimodal
biological effects, including antibacterial, antifungal, and antitumor
activities. These agents execute their pharmacological actions via
diverse mechanisms of action (Table 1), ranging from microbial
membrane disruption to tumor cell apoptosis induction. These
findings underscore the concurrent antimicrobial and antitumor
capacities inherent in both natural and synthetic compounds,
highlighting substantial potential for designing multifunctional
therapeutic agents targeting the concurrent management of
infectious diseases and malignancies.

Dual-functional agents eliminate microbes and cancer cells
through multiple mechanisms (Figure 2): (1) Cell cycle arrest:
Targeting the uncontrolled proliferation shared by microbes
and tumor cells. (2) Regulation of cell energy metabolism.
(3)Immune modulation: Enhancing immune surveillance and
defense capabilities. (4) Membrane permeabilization: Increasing
cell membrane permeability to induce cytotoxicity. (5) ROS
induction: Promoting localized ROS overproduction to eradicate

pathogens and tumor cells.

5.2 Naturally-originating single compounds
with antibacterial and anticancer effects

Compounds with anticancer and antimicrobial properties,
such as alkaloids, sesquiterpenes, flavonoids, and saponins,
are widely distributed in nature. Natural products and their
derivatives with antibacterial and anticancer activities, including
rapamycin, curcumin, berberine, xanthoxylin, allicin, quercetin,
solanine, quinalizarin, and evodiamine, have been intensively
investigated (Fan and Yao, 2022; Vuong, 2021). These natural
compounds have shown remarkable potential in both combating
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TABLE 1 Main mechanisms of the typical dual-functional agents for anticancer and antibacteria.

Agents

Anticancer mechanism

Antibacterial mechanism

10.3389/fmicb.2025.1582382

Reference

Naturally-originating chemicals

ROS level; activating immune defense system

Rapamycin Inhibiting mammalian target of rapamycin (mTOR) Inhibiting mTOR signaling pathway Bian et al., 2020; Hujber et al.,
signaling pathway 2017; Jiang et al., 2021

Curcumin Cell cycle arrest; apoptosis activiation; inhibiting Disrupting cell membrane permeability Patel et al., 2020; Wong et al., 2021;
‘Wnt/B-catenin signal pathway Dong et al.,, 2022; Vallee et al., 2019

Berberine Cell cycle arrest; apoptosis activiation; inhibiting Binding with bacterial DNA and interfering Xiong et al., 2022; Wang et al.,
Hedgehog signal pathway protein synthesis 2015; Cao et al., 2016

xanthyletin Cell cycle arrest; inducing cell apoptosis; Destroying cell walls and membranes of bacteria Porrello et al., 2025; Zhang et al.,
anti-angiogenesis 2014

Allicin Cell cycle arrest; inducing cell apoptosis; increasing Destroying cell membranes of bacteria Tsubura et al.,, 2011; Tao et al,, 2023

Antimicrobial

peptides

apoptotic signaling pathways in tumor cells

with nucleic acids and inhibiting DNA replication

LL-37 Downregulating the expression of vascular endothelial Destroying cell membranes of bacteria Nagaoka et al., 2020; Bhattacharjya
growth factor (VEGF); inhibiting tumor angiogenesis; et al,, 2024; Stakheev et al., 2022
inducing cell apoptosis

Human Cell cycle arrest; inducing cell apoptosis; enhancing Destroying cell membranes of bacteria Hanaoka et al., 2016; Lee et al.,

p-defensin immune surveillance ability; 2013; Adyns et al., 2023

Buforin IT Targeting mitochondria and interfering respiratory Destroying cell membranes of bacteria; binding to Lee et al., 2008; Perez et al., 2019
chain function and ATP synthesis; inducing cell DNA and interfering DNA replication
apoptosis

Peptide-P2 Interfering mitochondrial function; activating cell Destroying cell membranes of bacteria; Interacting | Xu et al,, 2018; Zhang Q. et al.,

2021

Conventional

drugs in new function

cells

Macrolide Blocking potassium ion channels, and affecting the Binding with the P site of 50S subunit of bacterial Takeda et al., 2020; Bui et al., 2025
clarithromycin electrophysiological balance of tumor cells ribosomes, and blocking protein synthesis
Thiabendazole Targeting chromosome maintenance protein 2 and Inhibiting microtubule protein polymerization Yadav et al., 2016; Bai et al., 2024
blocking the initiation stage of DNA replication; required for cell division and interfering the
inhibiting tumor angiogenesis process of mitosis
Natamycin Activating oxidative stress-induced cell apoptosis Binding with ergosterol in fungal cell membranes, An et al,, 2021; Kang et al., 2025
pathway and increasing membrane permeability
Itraconazole Blockade of Hedgehog and HER2/AKT signaling Inhibiting fungal cytochrome P-450 dependent Zhang W. et al., 2021; Kulkarni
pathway enzymes, and blocking ergosterol biosynthesis, etal, 2025; Olender et al., 2025
leading to membrane integrity damage and fungal
death
Osimertinib Third-generation EGFR inhibitor Inhibiting the endocytosis of C. albicans into host Liu et al,, 2022; Singh et al., 2025

Other dual-functional therapies

Minor groove

Inhibiting replication or transcription

Interfering with DNA unwinding and nuclease

Msallam et al., 2025; Alniss et al.,

binders functioning 2024
Photodynamic Increasing ROS level Increasing ROS level Chen et al., 2024; Li et al., 2025
therapy

Au@Ag2Se-FA

Increasing immune surveillance and defense ability

Disrupting the cellular structures and functions

Wang et al., 2024

Ph-ph*

Disrupting mitochondrial function

Reducing energy supply

Zhao et al., 2022a,b

Quinoline-5-
sulfonamides

Inhibiting NF-kB signal pathway; inducing cell
apoptosis

Interfering DNA replication; Inhibiting
topoisomerase

Zieba et al., 2024; Qurban et al.,
2024

cancer cells and inhibiting the growth of various microbes.
For instance, rapamycin, initially discovered as an antifungal
agent, has now been extensively studied for its anti-cancer
properties (Ganesh and Subathra, 2023). It functions by inhibiting
the mammalian target of rapamycin (mTOR) pathway, which
plays a crucial role in cell growth, proliferation, and survival,
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thus impeding the development of tumors. Curcumin, a major
component of turmeric, has potent antioxidant and anti-
inflammatory properties (Abd El-Hack et al, 2021). In cancer
treatment, it could induce apoptosis in cancer cells, modulate
multiple signaling pathways, and also exhibits antibacterial activity
against a wide range of bacteria, including both Gram-positive
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FIGURE 2
The molecular mechanism of single agents against cancer and microbia. These agents typically exert dual inhibitory effects on both cancer and
bacterial pathogens through multifaceted mechanisms, including cell cycle arrest, modulation of energy metabolism pathways, immunoregulatory
functions, enhancement of membrane permeability, and induction of ROS generation.

and Gram-negative strains (Weng and Goel, 2022). Berberine,
found in plants like Coptis chinensis, has been shown to have
antibacterial effects by intBerberineerfering with bacterial DNA
replication and cell membrane integrity (Khan et al, 2022).
In the context of cancer, it could suppress tumor cell growth,
invasion, and metastasis through various mechanisms such as
regulating gene expression and cell cycle progression (Xiong et al.,
2022).

Antimicrobial peptides (AMPs), such as LL-37, Human f-
defensin, Buforin II, Peptide-P2, demonstrate dual antimicrobial
and antitumor activities through diverse mechanisms (Wu
et al., 2021; Baindara et al., 2018; Min et al.,, 2024; Girdhar
et al, 2024). Membrane disruption is a common antibacterial
strategy: cationic AMPs bind to negatively charged bacterial
membranes via electrostatic interactions, forming pores or
dissolving lipid bilayers, leading to cell lysis (Pérez-Peinado
et al, 2018; Dong et al, 2014). Similarly, lactoferrin-derived
peptides disrupts microbial membranes while modulating immune
responses to enhance pathogen clearance (Gruden and Poklar,
2021).

In antitumor activity, AMPs exploit cancer cells altered
membrane properties (e.g., phosphatidylserine exposure). Melectin
penetrates cancer cell membranes and binds intracellular DNA
or RNA, inhibiting replication and inducing apoptosis (Liang
et al,, 2021). Defensins may trigger mitochondrial dysfunction
or activate death receptors in tumors, akin to Bogorol B-JX’s
ROS-mediated apoptosis (Jiang et al., 2017). These mechanisms,
combined with low resistance development, underscore AMPs as
versatile therapeutic candidates.

Frontiers in Microbiology

5.3 New function of clinical antibiotics and
anticancer drugs

Dactinomycin, also known as actinomycin D, is an antibiotic
isolated from the bacterium Streptomyces parvulus. It has long
been recognized for its potent antibacterial properties, but in recent
years, its anticancer activity has attracted significant attention. It
is a key component in the treatment of Wilms' tumor, a common
kidney cancer in children (Green et al, 1993; Armstrong et al,
2025). It is also used in the treatment of rhabdomyosarcoma,
a type of soft-tissue sarcoma, and orther soft tissue sarcomas
(Koscielniak et al., 2024). The primary mechanism by which
dactinomycin exerts its anticancer effects is through its ability
to intercalate into DNA. It specifically binds to the guanine-
cytosine (G-C) base pairs in the DNA double helix. This binding
disrupts the normal function of DNA-dependent RNA polymerase,
thereby inhibiting transcription (Passaquin et al., 1998). Moreover,
dactinomycin could also induce DNA strand breaks, leading
to genomic instability and ultimately triggering apoptosis in
cancer cells.

Furthermore, antifungal agents have also been found to possess
anticancer activity. Thiabendazole (TBZ) is a widely used generic
antifungal drug with over 50 years of clinical application and high
safety. Its antifungal mechanism lies in inhibiting the formation of
microtubules during fungal mitosis. Later, it was serendipitously
discovered that TBZ has potential anticancer activity (Garge
et al., 2021; Hu et al,, 2022). In a mouse model of fibrosarcoma
(a connective-tissue tumor with a rich vascular network), TBZ
reduces angiogenesis in the tumor by more than 50%, thereby
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delaying tumor growth and metastasis. The vascular damage caused
by TBZ is related to a decrease in microtubule protein, which is
similar to its antifungal mechanism.

Natamycin (NAT) is a polyene zwitterionic macrolide antibiotic
that exerts antifungal effects by binding to ergosterol on fungal cell
membranes. Recently, An et al. reported that NAT could induce
liver cancer cell apoptosis both in vitro and in vivo. The mechanism
is closely associated with the down-regulation of the expression
of peroxisome protein 1, which leads to a significant increase in
ROS accumulation (An et al., 2021). In addition, the blockade of
the AKT/mTOR signal pathway is also involved in the anticancer
activity of NAT. This blockade induces cell-protective autophagy
and reduces the acquired drug resistance of cancer cells.

Itraconazole is a commonly used antifungal medication in
clinical. It is found that has the ability to significantly increase the
overall survival rate of tumor-bearing animalst as combination with
antitumor drugst (Kast, 2024). In clinical trials (NCT02749513),
itraconazole is orally administered to patients with esophageal
cancer, including adenocarcinoma (EAC) and squamous cell
carcinoma (ESCC), and the results show that itraconazole
has potent antitumor properties, partially through blockade of
HER2/AKT signaling pathway (Zhang W. et al., 2021). Moreover,
another antifungal agent, clotrimazole, can inhibit cancer cell
division and proliferation by blocking the entry of calcium and
potassium ions into the cells (Cortat and Zobi, 2023).

The third-generation EGFR inhibitor osimertinib (OSI) has a
dual function. In addition to being an anticancer drug, it can also be
used in the treatment of fungal infections. OSI could target the host
EGEFR receptor to inhibit the endocytosis of Candida albicans into
host cells, thereby protecting the host cells from fungal invasion
(Liu et al,, 2022). Additionally, OSI could bind to the drug efflux
pump Pdr5 of C. albicans and suppress the efflux of the antifungal
drug fluconazole (FLC). This action increases the accumulation of
FLC in cells and improves the antifungal efficacy of FLC. Thus, OSI
combined with FLC has broad-spectrum antifungal efficacy against
multiple fungal resistant strains.

Certain antibiotics, such as thiabendazole, as well as
anticancer drugs like actinomycin D, exhibit dual functionalities of
antibacterial and anticancer activities, enabling the simultaneous
treatment of infections and cancer. These medications have been
extensively applied in clinical practice, with their safety and efficacy
well-established. Their mechanisms of these drugs, which include
inhibiting microtubule formation or inducing DNA strand breaks,
have been intensively investigated. However, the relatively low
antibacterial or anticancer activity of these drugs restricts their
widespread application. Moreover, some drugs exhibit a narrow
therapeutic window, manifested as dose-limiting toxicity.

5.4 Development of single compounds with
antibacterial and anticancer activities

Based on the interplay between tumor cells and microbial
infections, diverse single compounds exhibiting both antimicrobial
and anticancer properties have been synthesized. The mechanisms
of action of these drugs include inhibiting the cell cycle, inducing
the generation of ROS, regulating the immune system, and
inhibiting energy metabolism, etc.
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5.4.1 Inhibition of cell cycle

Minor groove binders (MGBs) exhibit antitumor and
antibacterial properties. These agents generally induce either
permanent DNA damage or temporary inactivation of
DNA (Msallam et al, 2025). Upon binding, MGBs disrupt
interactions between critical proteins (e.g., transcription factors
and polymerases) and DNA in tumor cells through allosteric
perturbation, thereby inhibiting replication or transcription
processes (Alniss et al., 2024). Notably, MGBs such as MGB28
and MGB32 demonstrate potent inhibitory effects against Gram-
positive bacteria and Gram-negative bacteria. Their antibacterial
mechanism involves binding to the minor groove of bacterial
DNA, which interferes with DNA unwinding or impairs nuclease
functionality.

5.4.2 Induction of ROS generation

In recent years, several biomaterials have been synthesized
that exhibit both anticancer and antibacterial activities. The
underlying mechanism of these biomaterials against tumors and
bacteria primarily involves increasing intracellular ROS levels.
This leads to irreparable oxidative damage to bacterial cell
membranes and other functional biomolecules such as DNA,
enzymes, and fatty acids, thereby exerting cytotoxic effects on
both bacteria and tumor cells. These bifunctional nanomaterials
encompass inorganic nanomaterials, organic polymer materials,
and photosensitizers. Notably, inorganic nano antibacterial agents
are a type of anticancer and antibacterial material that capitalizes
on the properties of inorganic metal ions (Shi et al., 2018; Tehrani
Nejad et al,, 2022). Once these nanomaterials enter cells, they
could promote bacteria to generate ROS, causing cell deformation,
collapse, and ultimately cell death (Jing et al., 2024).

Photodynamic therapy (PDT) is an outstanding technique for
treating tumors and microbial infections. It utilizes photosensitive
agents and laser activation to generate ROS (Xu et al., 2024; Law
et al., 2024). This technique works by injecting a photosensitizer
into animals and then irradiating the lesion site with a specific
wavelength. This process facilitates the selective accumulation
of the photosensitizer in the lesion, triggering a photochemical
reaction to generate excessive ROS and destroy tumors and
microbes (Zhang J. et al, 2024). Notably, aggregation-induced
emission (AIE) photosensitizers in the PDT technique have
been extensively employed in photodynamic anticancer and
antibacterial therapy (Xu et al., 2025). Among the reported organic
photosensitizers, AIE photosensitizers have unique aggregation-
induced enhancement effects on ROS production. They have
been successfully applied in microbial and tumor detection,
identification, and treatment (Yang et al., 2021).

5.4.3 Improvement of immune surveillance and
defense ability

Tumor resident intracellular microbiota (TRIM) has recently
garnered significant attention as a crucial factor in carcinogenic
processes (Fu et al., 2022; Ma et al.,, 2021). The immunosuppressive
tumor microenvironment (TME) serves as a haven for TRIM.
Accumulating evidence indicates that TRIM can not only reduce
the efficacy of chemotherapy but also enhance drug toxicity
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to normal tissues, while simultaneously promoting the pro-
inflammatory response and proliferation of tumor cells (Geller
etal., 2017; Sears et al., 2014).

In this regard, Yuanlin Wan et al. proposed a solution to the
issues of immunosuppression and over-growth in TRIM-infected
cancers by incorporating TRIM-targeted antimicrobials into anti-
tumor therapy (Wang et al., 2024). To enable simultaneous
antimicrobial and anti-tumor therapy with a single drug, they
designed Ag,Se shell-coated Au nanoparticles whose surface was
modified with folic acid (Au@Ag,Se-FA NPs). FA on the surface
of Au@Ag,Se-FA is a pivotal targeting moiety. Given that FA has
a high affinity for folate receptors, which are overexpressed on a
wide range of cancer cells, this specific binding enables Au@Ag2Se-
FA to be selectively internalized by tumor cells. Once inside, it
could initiate a series of events that impact cellular immunity.
For instance, it may enhance the recognition of tumor-associated
antigens by T cells, promoting their activation and proliferation.
This activation leads to a more robust and targeted attack on cancer
cells. Moreover, The Ag ions released from the nanoparticle possess
potent antibacterial and anticancer capabilities. These ions can
disrupt the cellular structures and functions of both bacteria and
cancer cells, effectively eliminating them.

Au@Ag,Se-FA restores cellular immunity in both anticancer
and antibacterial contexts. By targeting cancer cells, releasing
antigens, and promoting T-cell activation, it rejuvenates the
antitumor immune response. Simultaneously, its antibacterial
action helps maintain a healthy immune environment, enabling
better-coordinated cellular immune responses against both tumors
and bacteria, which ultimately contributes to improved patient
outcomes and the potential for long-term relapse-free survival.

5.4.4 Regulation of cell energy metabolism

Mitochondria are the key organelles for cellular energy
metabolism. According to the endosymbiotic theory, mitochondria
might originate from ancient bacteria. Due to the high dependence
of tumor and bacterial cells on energy metabolism for maintaining
the cell proliferation, targeted damage of mitochondria might have
dual anticancer and antibacterial effects (Tehrani Nejad et al,
2022).

Hemiprotonic bisphenanthroline (ph-ph™) possesses practical
antimicrobial and anticancer activities, partially through disrupting
the energy metabolism of bacteria and tumor cells (Zhao et al,
2022a,b). Antibacterial experiments demonstrate that ph-ph™ has
an excellent inhibitory effect on both Gram-positive and Gram-
negative bacteria, exhibiting broad-spectrum antibacterial activity
against S. aureus, E. coli, S. pyogenes, S. pneumoniae, C. nucleatum,
P. mirabilis, and B. fragilis. In addition, ph-ph™ could induce
apoptosis in tumor cells such as H22, B16, U251MG, and SH-SY5Y
at the same concentration used for antibacterial activity. Although
the anticancer and antibacterial mechanisms of ph-ph™ are not
fully understood, preliminary studies suggest that they may be
related to the inhibition of energy generation in eukaryotic cell
mitochondria and bacteria.

5.4.5 Others
Recently, thanks to the rapid advancement of chemical
synthesis technology, emerging studies highlight novel strategies
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These
approaches leverage advances in synthetic biology and targeted

for dual-functional drug development. innovative
delivery to address the complex tumor-microbe interplay. For
instance, antibiotic-antibody conjugates (AACs) combine tumor-
targeting antibodies with antimicrobial payloads, enabling selective
delivery to infection-primed tumor microenvironments (Nurkesh
etal, 2019). A study demonstrated that a ciprofloxacin-conjugated
anti-EGFR

aeruginosa-infected colorectal tumors while sparing normal tissues.

antibody effectively eradicated Pseudomonas
Small-molecule inhibitors such as quinoline-5-sulfonamides
norfloxacin analogs, and zelkovamycin analogs possess anticancer
and antibacterial activities (Zieba et al., 2024; Qurban et al., 2024).
BET-HDAC dual inhibitors can prevent the proliferation of cancer
cells and C. albicans (Huang et al., 2023). Moreover, polymersomes
and carbon nanodots can function as drug carriers against cancers,
fungi, and bacteria simultaneously (Nurkesh et al., 2019; Wang
etal., 2022).
These
simultaneously combat tumors and potential infections, achieving

compounds have diverse structures and can
a synergistic therapeutic effect. The synthesized compounds
allow for precise chemical modifications to enhance potency
and selectivity. They may act on multiple targets simultaneously
or interfere with the physiological functions of cells through
a completely new mechanism of action. This multi-target or
new-mechanism mode of action increases the difficulty of drug
resistance and is expected to delay or overcome the problem of
drug resistance to a certain extent. Generally, these drugs exhibit
strong antibacterial and anti-tumor activities. However, these
results were obtained from experimental animals and need to be
verified in clinical settings. Although these compounds possess
antibacterial and anti-cancer activities, their molecular targets
have not been fully elucidated. This means that we are not clear
about which specific molecules the drugs interact with inside
cells to exert their effects. This uncertainty makes it difficult to
further optimize the drugs, predict drug responses, and understand
potential side effects.

6 Conclusion and future perspectives

The intricate symbiosis between microorganisms and tumors
presents both challenges and opportunities in modern oncology.
Here we review the effects of microorganisms on cancer cell
proliferation, infiltration, metastasis, drug resistance, and highlight
the significance of single agents against both bacteria and cancer
cells. The dual functional agents can simultaneously target tumor
proliferation pathways and key active sites of pathogens, reducing
clinical treatment complexity and minimizing the risk of multi-
drug application. They also would achieve synergistic effects
by decreasing the mutual promotion between pathogens and
cancer cells.

Regarding the predictive biomarkers for the dual-functional
therapies in patients, it may be considered to use the factors as
predictive biomarkers of patient response to the therapies because
bacterial infection and tumor infiltration are accompanied by
the alteration in inflammation and immune factors (Zhang X.
et al., 2024). In addition, 16S rRNA gene sequencing and genomic
identification could achieve the comprehensive analysis of bacterial
flora in tumor-bearing animals, which would be another method
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to evaluate the effects of the dual-functional therapies (Roje et al.,
2024; Zeng et al., 2025).

Due to the persistent problem of concurrent infections in
cancer patients, single agents with antibacterial and anticancer
activities hold great promise. This innovative therapeutic strategy
possesses transformative potential for oncology by employing a
dual-targeting mechanism that simultaneously disrupts tumor-
microbe symbiosis and modulates tumor-associated microbiota.
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