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Objectives: Phenotypical Extended Spectrum β-Lactamase (ESBL)-production

is commonly determined using the combination disk diffusion test or

gradient test. This requires overnight incubation, prolonging time-to-

detection and increasing duration of empirical treatment for patients

with infections caused by gram-negative bacteria. To achieve instant

confirmation without incubation, we developed a machine learning

(ML)-model that predicts phenotypic ESBL-confirmation using Minimum

Inhibitory Concentrations from routine automated antimicrobial susceptibility

testing (AST)-results.

Methods: Data from the Dutch national laboratory-based surveillance

system ISIS-AR collected between 2013 and 2022 from 49 laboratories

were used: 178,044 isolates of E. coli (141,576), K. pneumoniae (33,088),

and P. mirabilis (3,380) that exhibited resistance to cefotaxime and/or

ceftazidime, and had available results of phenotypical ESBL-confirmation

testing. We evaluated Logistic Regression, Random Forest and XGBoost

models and calculated SHAP-values (SHapley Additive exPlanations)

to identify most contributing features. We externally validated models

using 5,996 isolates collected in Amsterdam University Medical Centres’

between 2013 and 2022.

Results: XGBoost achieved an AUROC (Area Under Receiver Operating

Characteristics) of 0.97, a sensitivity of 0.89 and an accuracy of 0.93. The

most contributing features were the antibiotics cefotaxime, cefoxitin and

trimethoprim for E. coli and K. pneumoniae, and cefuroxime, imipenem and

cefotaxime for P. mirabilis. External validation yielded AUROCs of 0.93 (E. coli),

0.89 (K. pneumoniae) and 0.93 (P. mirabilis).

Conclusion: ML-models for prediction of ESBL-production using routine

AST-system data achieved high performances. Implementing these models

in laboratory practice could shorten time-to-detection. Once deployed,
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this approach could facilitate widespread screening for phenotypic ESBL-

production.
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Introduction

Extended-spectrum β-lactamase (ESBL) producing gram-
negative bacteria are a global health burden, and the predominant
cause of third-generation cephalosporin resistance in Europe
(Livermore et al., 2007). The genes that encode for ESBL-
enzymes are mostly located on behalf of the ISIS-AR study
group. plasmids, which facilitate transfer between bacterial strains
and dissemination between patients. For these reasons, early
and reliable detection of ESBL-producing bacteria is important.
A wide variety of gram-negative bacteria can harbor ESBL-
enzymes. The most predominant ESBL-producing species are
E. coli, K. pneumonia, and P. mirabilis (Bradford, 2001; Castanheira
et al., 2021). In these species, guidelines recommend that a clinical
isolate exhibiting resistance to third-generation cephalosporins
during initial testing and reporting, should be screened for ESBL-
production (Clinical and Laboratory Standards Institutes (CLSI),
2024; EUCAST, 2017; NVMM, 2021). A minimal inhibitory
concentration (MIC) that is larger than 1 µg/ml for cefotaxime
and/or ceftazidime are advised as the threshold for ESBL-
confirmation testing (EUCAST, 2017; NVMM, 2021). Phenotypic
ESBL-confirmation is performed using either the combination disk
diffusion test or the gradient test (NVMM, 2021). In these tests,
susceptibility for certain cephalosporins is tested in the presence
and absence of clavulanic-acid, a potential ESBL-inhibitor.

Currently, the process of ESBL-screening and confirmation
has several limitations. Firstly, for practical reasons, screening is
performed based on results of only three selected cephalosporins.
However, for many other β-lactams there is a correlation
between increased MICs and ESBL-presence (Bradford, 2001;
Castanheira et al., 2021). In addition, ESBL-positive isolates often
harbor co-resistance to other antibiotics such as aminoglycosides
and quinolones, but this potentially relevant information is
not incorporated into the process. More importantly, the
confirmation of ESBL production requires overnight incubation,
which significantly delays time-to-detection. It is customary
to treat a patient with suspected ESBL-infection by initiating
broad-spectrum empirical therapy covering ESBL while awaiting
definitive culture results, which currently takes at least one
additional day.

The potential information loss and prolonged time-to-
detection could be addressed with machine learning (ML). Recent
years saw the introduction of several promising ML-model
applications for clinical microbiology (Abu-Aqil et al., 2023; Lee
et al., 2021; Lee et al., 2023), but to date no study has reported
a model to predict the outcome of the ESBL-confirmation test.
The current time-to-detection can be drastically reduced with an
ML-model (providing instant predictions) based on MIC-results of
automated antimicrobial susceptibility testing (AST) systems that

are readily available when the ESBL-confirmation test would be
conducted.

The aim of this study was to reduce the time to ESBL-
confirmation among patients with infections caused by gram-
negative bacteria by means of a ML-model that can accurately
predict the outcome of phenotypic ESBL-confirmation tests directly
from MIC-results.

Materials and methods

Data source and population and study
design

We performed a study using data that are being prospectively
collected by the Dutch national laboratory-based surveillance
system for antimicrobial resistance (ISIS-AR) (Altorf-van der Kuil
et al., 2017). ISIS-AR is a combined initiative by the Dutch National
Institute for Public Health and the Environment (RIVM) and
the Dutch Society of Medical Microbiology (NVMM). In this
system AST data are collected monthly from laboratories based in
Netherlands.

We extracted data on three bacterial species: E. coli,
K. pneumonia, and P. mirabilis. The included isolates were sampled
in the period 2013 until 2022 and collected from 49 different
laboratories serving academic hospitals, general hospitals and
non-hospital institutions. Species identification was performed by
Maldi-Tof systems [Bruker MALDI biotyper R© (Bruker) or Vitek
MS R© (BioMerieux)]. Inclusion criteria were availability of results
from automated AST and phenotypic ESBL-confirmation.

Dutch national laboratory-based surveillance system for
antimicrobial resistance requires that labs always should perform
a confirmation test if the ESBL screenings criteria are met. We
included isolates that we eligible for ESBL screening, i.e., exhibiting
resistance to ceftazidime, cefotaxime or both as measured by
the AST system (MIC > 1 µg/ml). Susceptibility testing results
of the Vitek (BioMérieux, Durham NC) and Phoenix (BD
Biosciences, Sparks, MD) systems were included, as these are the
predominant systems used in Netherlands. Reference methods
used for ESBL-confirmation were either combination disk diffusion
test or commercial gradient tests (Etest R©-BioMerieux, MIC Test
Strip R©-Liofilchem), as per the EUCAST and national directives
(EUCAST, 2017; NVMM, 2021). We removed potential duplicates
by including one isolate per patient per material per 6 months
(Birgand et al., 2013). From these isolates, additional information
about the site of origin of the isolate and the type of AST system
was obtained.

The variables in the dataset represent MIC measured during
susceptibility testing of the isolates. We included the MIC-values
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for antibiotics that are currently on the standard testing panels
of the included AST-systems, namely: amoxicillin, amoxicillin-
clavulanic acid, piperacillin-tazobactam, cefoxitin, cefuroxime,
cefotaxime, ceftazidime, imipenem, meropenem, ciprofloxacin,
colistin, co-trimoxazole, fosfomycin, gentamicin, tobramycin,
nitrofurantoin, trimethoprim. An overview of the ranges of the
measurable MIC-values on the testing panels can be found in the
Supplementary Table 1.

Model outcome

We developed a model to predict for an isolate whether the
detected micro-organism produces ESBL or not.

Model development

The dataset was divided into three subsets based on the
three bacterial species because there is substantial variation
in occurrences and a significant lower ESBL-prevalence for
P. mirabilis. This allowed a detailed investigation into the
characteristics and prevalence patterns within each subset, and
development of the optimal model for each species. We did not
include the AST-system (Vitek or Phoenix) as a separate feature as
the objective was to develop a prediction model that can be used
independent of the specific system.

Three different ML-algorithms were evaluated: Logistic
Regression, Random Forest and XGBoost. Logistic Regression
(Cox, 1958) is known for its simplicity, making it a strong baseline
algorithm. Random Forest (Tin, 1995) and XGBoost (eXtreme
Gradient Boosting) (Chen and Guestrin, 2016) are both ensemble
learning algorithms that are known for their high predictive
accuracy.

Each subset was subjected to each ML-algorithm, leading to the
development of nine prediction models. To develop the models,
we applied a stratified ten-fold cross-validation using an 80/20
division and averaging the results. The experiments were conducted
in Python 3.9.7 with Pandas (1.3.4), Scikit-learn (0.24.2) and
XGBoost (1.7.3).

Performance measurement

To evaluate the performance of the developed models, we
calculated multiple metrics. To assess how well the model
discriminates between positive and negative, we calculated the
AUROC (Area Under Receiver Operating Characteristics). For
the calibration of the predictions, we plotted calibration curves
and calculated the Brier score. A higher AUROC indicates
better performance, while a lower Brier score indicates a better
calibration. These metrics are independent of the decision
threshold, s than 0.8 was defined as an ESBL-negative outcome.
Using a higwhich is used to convert predicted probabilities to
an ESBL-label. To define a model outcome as ESBL-positive, a
decision threshold of 0.8 was used in this study: a probability of
less threshold makes the model strict and, therefore, minimizes the
rate of false positives. With this threshold, we calculated additional
metrics: accuracy, f1-score and sensitivity. These are also indicators

of how well the model discriminates between positives and
negatives, but given a certain decision threshold. The definitions
of the performance metrics are given in the Supplementary Table 2.

Feature importance

We calculated SHAP-values (SHapley Additive exPlanations)
(Lundberg et al., 2021) to assess the importance of each feature on
the predictions. If the model performs well (i.e., classifies correctly),
SHAP-values indicate which antibiotics are most relevant in the
model predicting ESBL-production.

External validation

To assess the robustness and quality of the models, they were
validated on a separate data-cohort. For this external validation,
data from Amsterdam UMC, an academic hospital with a capacity
of approximately 700 beds, were used. These data were not part of
the development cohort. Inclusion criteria were the same as those
of the development cohort. The isolates were also sampled in the
period 2013 until 2022, with one isolate per patient per material per
6 months. Automated susceptibility testing was performed using
the Vitek-system.

Ethics

The Amsterdam UMC local medical ethics review committee
waived the review of this study, as the medical research involving
Human Subjects Act did not apply. Due to privacy restrictions, the
data and scripts used for this study are not publicly available but are
available upon reasonable request.

Results

Cohort description

The three datasets comprised a total of 178,044 isolates,
tested between 2013 and 2022: 141,576 isolates of E. coli, 33,088
of K. pneumoniae, and 3,380 of P. mirabilis for which ESBL-
confirmation testing data were available. Table 1a shows the details
for this model development cohort. Prevalence of ESBL-production
among the selected isolates was 84.1% for E. coli, 82.4% for
K. pneumoniae and 31.6% for P. mirabilis. Most isolates in all
subsets originated from urine samples. Around 85% of the isolates
were subjected to Vitek for susceptibility testing. The cohort used
for external validation (Table 1b) consisted of 5,996 isolates and
had a species-distribution similar to the development cohort: 4,291
isolates of E. coli, 1,639 of K. pneumoniae, and 69 of P. mirabilis.
Vitek was the used AST-system in this laboratory.

Performance measurement

Table 2 lists the performance of the developed models across
the three species. XGBoost and Random Forest achieved AUROCs
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TABLE 1 Overview of datasets used in this study: a) Dataset for model
development. b) Dataset for external validation.

Derivation
cohort

E. coli K. pneumoniae P.mirabilis

Isolates (n) 141,576 33,088 3,380

ESBL-positive
(%)

84.1 82.4 31.6

Unique patients
(n)

96,270 21,821 2,765

Unique samples
(n)

141,576 33,088 3,380

Material (n)

Urine 83,020 18,332 2,164

Blood/CSF 4,837 1,189 49

Other* 53,719 13,567 1,167

AST-system (n)

Vitek 120,354 27,363 2,918

Phoenix 21,222 5,725 462

Validation
cohort

E. coli K. pneumoniae P.mirabilis

Isolates (n) 4,291 1,639 69

ESBL-positive
(%)

92.9 95.1 62.3

Unique patients
(n)

2,158 670 40

Unique samples
(n)

4,038 1,590 68

Material (n)

Urine 1,427 565 27

Blood/CSF 217 123 1

Other* 2,647 951 41

SAT-system (n)

Vitek 4,291 1,639 69

*Other specifically consists of: genitals, respiratory, feces, pus/wound and others.

of 0.97 for E. coli and K. pneumoniae, and 0.98 for P. mirabilis.
Logistic Regression achieved an AUROC of 0.95 for E. coli, 0.94
for K. pneumoniae, and 0.93 for P. mirabilis. For calibration we
calculated the Brier scores (the lower the better). XGBoost and
Random Forest achieved Brier scores lower than 0.05 for all species.
Logistic Regression achieved slightly higher Brier scores but all
between 0.05 and 0.10.

We calculated the additional metrics (indicating the models’
discriminative abilities) with the given decision threshold (0.8).
XGBoost achieved a sensitivity of 0.97, 0.93, and 0.89 for,
respectively, E. coli,K. pneumonia, and P. mirabilis. Accuracy scores
achieved by XGBoost were 0.96, 0.93, and 0.96 for, respectively,
E. coli, K. pneumonia, and P. mirabilis. The f1-scores were also
high: 0.98, 0.96, and 0.93 for, respectively, E. coli, K. pneumonia,
and P. mirabilis. Random Forest had comparable results.

The sensitivity scores achieved by Random Forest were similar
with the exception of 0.79 for P. mirabilis. Logistic Regression had
notably lower scores. The narrower confidence intervals indicate

that the results of the cross-validation splits were more stable for
E. coli and K. pneumoniae compared to P. mirabilis. Specificity and
Negative Predictive Value are added in Supplementary Table 3.

We analyzed the predicted probability of the development
cohort for the different models (Figure 1). This showed comparable
profiles for E. coli and K. pneumoniae. As expected, most isolates
had a high probability of ESBL-production. The probability
distribution of P. mirabilis had a different profile: most isolates
had a low probability. This aligns with our expectations as the
ESBL-prevalence was much lower in this subset.

Subsequent model evaluation was done by analysis of the
calibration curves during cross-validation (Figure 2). For E. coli
and K. pneumoniae, both the XGBoost and Random Forest models
showed good overall calibration, although Random Forest tended
to underestimate probabilities at lower predicted values. Logistic
Regression was slightly less well-calibrated but remained close
to the ideal line. For P. mirabilis, Logistic Regression aligned
more closely with the perfect calibration line, whereas XGBoost
and Random Forest overestimated probabilities in the mid-range.
Despite these deviations, both models achieved higher overall
performance scores (Table 1) Further details are provided in the
Supplementary Figure 1.

Due to the low occurrence of Phoenix data in our dataset we
conducted a subset validation of a Phoenix dataset. These results
showed that there was no impact from the low occurrence of
Phoenix data (Supplementary Tables 4, 5).

Feature importance

We performed the feature importance analysis only on
XGBoost (Figure 3). The SHAP-values showed that the models
for E. coli and K. pneumoniae had very similar ranking, with
the same antibiotics in the three most important features and
showing nearly identical distributions. Cefotaxime was the most
important feature in both models, with a high MIC-value indicating
a high predictive value for ESBL. In contrast, cefoxitin (second
most important feature) showed a reverse pattern, with high
values indicating a low risk of ESBL. Trimethoprim, piperacillin-
tazobactam and cefuroxime completed the five most important
features in both models. For the P. mirabilis-model, SHAP-values
showed cefuroxime as the most important feature, followed by
imipenem, cefotaxime, tobramycin, and cefoxitin.

External validation

We performed the external validation on the XGBoost models
being the best performing model type. Table 3 shows a performance
overview of the models on the external dataset. For E. coli only
2.33% of the isolates were mislabeled, for K. pneumoniae 3.42%
and for P. mirabilis 5.80%. The E. coli and P. mirabilis-models both
achieved an AUROC of 0.93, followed by the K. pneumoniae-model
with an AUROC of 0.89. These results show that the developed
model performs well when implemented in another setting. Of
note, performance outcomes in this Vitek-only subcohort were
comparable to those observed in the Phoenix-only subcohort,
indicating that the model performs consistently across both
platforms.
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TABLE 2 Performance of the models.

AUROC Brier score Sensitivity Accuracy f1-score

E. coli

LR 0.95 CI = (0.950, 0.954) 0.05 CI = (0.051, 0.052) 0.90 CI = (0.894, 0.899) 0.90 CI = (0.895, 0.898) 0.94 CI = (0.935, 0.937)

RF 0.97 CI = (0.968, 0.970) 0.03 CI = (0.030, 0.031) 0.96 CI = (0.955, 0.957) 0.95 CI = (0.952, 0.953) 0.97 CI = (0.971, 0.972)

XGB 0.98 CI = (0.975, 0.977) 0.03 CI = (0.028, 0.029) 0.97 CI = (0.965, 0.967) 0.96 CI = (0.959, 0.961) 0.98 CI = (0.975, 0.976)

K. pneumoniae

LR 0.94 CI = (0.937, 0.944) 0.07 CI = (0.065, 0.067) 0.86 CI = (0.859, 0.867) 0.87 CI = (0.868, 0.876) 0.92 CI = (0.915, 0.920)

RF 0.97 CI = (0.963, 0.969) 0.05 CI = (0.045, 0.049) 0.92 CI = (0.912, 0.919) 0.92 CI = (0.916, 0.922) 0.95 CI = (0.947, 0.951)

XGB 0.97 CI = (0.968, 0.972) 0.04 CI = (0.042, 0.046) 0.93 CI = (0.929, 0.933) 0.93 CI = (0.928, 0.933) 0.96 CI = (0.955, 0.958)

P. mirabilis

LR 0.93 CI = (0.917, 0.944) 0.08 CI = (0.076, 0.090) 0.60 CI = (0.577, 0.619) 0.86 CI = (0.853, 0.870) 0.73 CI = (0.713, 0.749)

RF 0.98 CI = (0.979, 0.987) 0.04 CI = (0.033, 0.040) 0.79 CI = (0.771, 0.811) 0.93 CI = (0.920, 0.937) 0.87 CI = (0.858, 0.890)

XGB 0.98 CI = (0.981, 0.987) 0.03 CI = (0.030, 0.039) 0.89 CI = (0.878, 0.903) 0.96 CI = (0.950, 0.960) 0.93 CI = (0.918, 0.934)

Each model was tested through Stratified 10-fold cross-validation. Scores are an average of the performances of the ten folds. A 95% confidence interval (CI) was used. See Supplementary
Table 3 for definitions of the metrics. AUROC, Area Under Receiver Operating Characteristics; LR, Logistic Regression; RF, Random Forest; XGB, XGBoost.

FIGURE 1

Average probability distributions in the test set for each combination of species and algorithm. The average is calculated across all ten folds with the
error bars indicating the standard deviation of the mean.

Discussion

We developed different ML-models that predict
ESBL-production solely based on MIC-values obtained
from routine antimicrobial susceptibility testing.

Comparing these models, XGBoost achieved high
performance which shows that it is able to instantly
confirm ESBL-production with good predictive accuracy,
representing a significant advancement in antimicrobial
resistance detection.
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FIGURE 2

Average calibration curves across all 10-fold for each developed model. A perfect calibration represents a theoretical shape of the model without
error.

The most contributing antibiotics aligned with the expectations
of domain experts. High MIC-values for cefotaxime led the
models to predict ESBL, in line with established confirmation
guidelines. The models tended toward ESBL-positivity in case
of low MIC-values for cefoxitin, which aligns with the fact that
ESBL-producing micro-organisms are susceptible to cefoxitin while
AmpC-producers are not. MIC-values for cefoxitin therefore also
provide valuable information while this antibiotic is currently
not included in the screening criteria for the ESBL-confirmation
test. Cefuroxime was the most contributing antibiotic in the
P. mirabilis-model, which is different from the other models.
Plasmid-mediated AmpC rarely occurs in P. mirabilis (Reuland
et al., 2015; Shaaban et al., 2022), which is possibly the reason
that the third-generation cephalosporins have less contribution
to the predictions and instead the presence or absence of
second-generation cephalosporin resistance becomes the most
contributing factor. The analysis of feature importances revealed
that, in addition to β-lactam antibiotics, MICs of several non-
β-lactam antibiotics, such as trimethoprim and ciprofloxacin, also
contributed to the prediction models. This reflects the common
co-resistance observed in ESBL-positive isolates.

In the current situation, ESBL-production is confirmed
approximately 2 days after the sample was taken from the
patient (Figure 4a). Awaiting ESBL-confirmation, broad-spectrum
empirical treatment is initiated before the ESBL-confirmation test
results are available so as not to delay treatment. This is suboptimal
as there is still the possibility of a negative test result: almost 20% for
E. coli and K. pneumoniae and more than 50% for P. mirabilis in our
study turned out not to be ESBL-producing. In recent years, several
biochemical and immunological tests have been reported that can
accurately detect ESBL-production and have a short time-to-results
(Boattini et al., 2022; Demord et al., 2021). These tests however,
require additional handling of the isolate and an incubation step.
Deployment of our models could provide results without additional
handling and would improve the current workflow (Figure 4b):
shortening the timeline to ESBL-detection through instant results
from the ML-model. Consequently, de-escalating from empirical
treatment to definite treatment is possible on the second day instead
of the third day, thereby preventing unnecessary use of reserve
antibiotics.

The following points are important when interpreting our
results. First, ML-models are based on a decision threshold that
is determined on their context (permitting more false positives

or more false negatives). Creating a strict model (high threshold)
prevents unnecessary treatment and isolation by reducing false
positives. Another approach could be to have a low decision
threshold, in order to reduce false negatives as much as possible.
We chose to reduce the false positives as much as possible
since unnecessary use of reserve antibiotics drives increase of
resistance rates. The second point is that we did not perform
any hyperparameter tuning as we deemed the performance scores
sufficient with the default settings of the models. Thirdly, despite
the class imbalance in the datasets, we did not add class weights
as the models did not show a tendency to favor the majority
class. The fourth point concerns model drift. Due to real-world
changes, the data that the model was trained on might no longer
be representative of the current resistance levels. Retraining of the
model will be required after a certain period of time.

Our approach contains several notable strengths worth
highlighting. First, the traditional test requires a predefined
selection criterion to limit the number of executed confirmation
tests, whereas a ML-model does not require such limitations. Our
ML-approach could establish a safeguard for isolates that are ESBL-
positive but fall outside the predefined test criteria. Furthermore,
some AST-systems have a built-in data-driven approach to pre-
screen for ESBL (i.e., Advanced Expert System) that uses a
proprietary database which is not open-source. Our data-driven
approach, however, is directly based on the golden standard
for phenotypic ESBL-confirmation which is in line with the
recommendations by the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) and the Clinical and Laboratory
Standards Institute (CLSI) (Imkamp et al., 2022; Poulou et al.,
2014). Additionally, the two most commonly used AST-systems,
Vitek and Phoenix, were included in the development cohort.
Besides, we included the MIC-values of all antibiotics that can
be found on the susceptibility cards of these AST-systems. This
facilitates opportunities for new insights on association of MIC-
values of specific antibiotics and ESBL-production. Lastly, the
cohort represents national-level data over multiple years, making
the results generalizable for Netherlands.

There are also limitations to this study. Despite the models’
discriminatory power, some cases were still misclassified.
Developing an implementation strategy where both the traditional
test and the ML-model are used, could reduce the missed
cases. For example, one could implement the policy that every
negative predicted case (the minority of cases) is still subjected
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FIGURE 3

Feature importance calculated through SHapley Additive exPlanations (SHAP)-values of the XGBoost models. When the impact on the model output
is larger than 0 on the X-axis, the feature value contributes to the prediction of a positive Extended Spectrum β-Lactam (ESBL)-confirmation. When
the impact on the model output is lower than 0, the contribution is toward a negative outcome of ESBL-confirmation. The color represents the
actual value of the feature at that particular prediction: blue represents a low MIC-value, and red a high MIC-value.

TABLE 3 Results of predictive performance of XGBoost during the external validation.

AUROC Brier score Sensitivity Accuracy f1-score

XGBoost validation

E. coli 0.93 0.02 0.99 0.98 0.99

K. pneumoniae 0.89 0.03 0.97 0.97 0.98

P. mirabilis 0.93 0.06 0.98 0.94 0.95

AUROC, Area Under Receiver Operating Characteristics. See Supplementary Table 2 for definitions of the metrics.

to a traditional test. Furthermore, it is known that phenotypic
confirmation testing is not perfectly accurate (Drieux et al.,
2008). The specific type of phenotypical test used for each
isolate, combination disk diffusion test or gradient test, remained
unknown. Thus, we are not able to verify the universality of the
models. Moreover, the ESBL-prevalence in the P. mirabilis-dataset
is much lower than in the other datasets. This could be an
explanation for the less stable models developed on this subset.

An additional study to validate this with a larger cohort would be
interesting. Fourth, as Netherlands has a low ESBL-prevalence,
the validity of these models might be restricted to epidemiological
contexts with a comparable low prevalence. We plan to validate
our approach on international data from a high ESBL-prevalence
region. Next, it would be interesting to know more details on
the confirmation test results, i.e., details on diffusion zones for,
cefotaxime or ceftazidime. This could allow the model to make

Frontiers in Microbiology 07 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1582703
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-16-1582703 April 26, 2025 Time: 21:22 # 8

Ghouch et al. 10.3389/fmicb.2025.1582703

FIGURE 4

Visualization of the workflow from sample collection to ESBL-detection. (a) represents the current situation; (b) represents the proposed approach.
In (b) the timeline is shortened due to the instant results from the machine learning model. Consequently, the switch from empirical treatment to
definite treatment can be made after 24 h.

better correlations with the MIC-values. Finally, the difference
between amoxicillin and amoxicillin-clavulanic acid would be an
interesting added feature but the windows of the AST-systems
made this impossible.

A future research suggestion would be to include isolates with
an MIC-value that lies below the cut-off MIC-value for third-
generation cephalosporins, i.e., that do not meet the criteria for a
phenotypic confirmation test. Through the MIC-values of the other
antibiotics, the model could possibly predict ESBL-production
accurately, whereas they would currently be missed. In addition,
it would be interesting to compare the internal flagging systems of
individual AST-systems to our machine-agnostic model.

In conclusion, ML-models for prediction of ESBL-production
based on routine AST-data resulted in high-performing prediction
models. Implementing these models in laboratory practice could
significantly shorten time-to-detection. Once, deployed, this
approach could facilitate widespread screening for phenotypic
ESBL-production.
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