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Background: Necrotizing enterocolitis (NEC), a lethal gastrointestinal disorder 
in preterm infants, remains poorly understood in its pathology, and early 
diagnosis are critically limited. Multi-omics approaches present unprecedented 
opportunities to elucidate NEC pathogenesis and identify clinically translatable 
biomarkers.

Methods: Infants with Bell stage II-III NEC and gestational age-matched controls 
were enrolled. Serum/stool samples from NEC patients at acute (NEC-D) 
and recovery (NEC-R) phases, and controls (non-NEC) were collected. Fecal 
metagenomic sequencing and serum untargeted metabolomic profiling were 
performed. Clinical parameters were compared.

Results: The study comprised seven NEC and seven non-NEC infants. 
Baseline neonatal characteristics and maternal perinatal parameters showed 
no significant differences between NEC-D and non-NEC except for markedly 
lower leukocyte counts in NEC infants. Fecal metagenomics revealed severely 
diminished alpha diversity in NEC-D versus both non-NEC controls and NEC-R, 
characterized with lower Chao1 index. NEC-D exhibited elevated Escherichia 
coli relative abundance alongside reduced Staphylococcus haemolyticus, 
Staphylococcus aureus, Staphylococcus epidermidis, and Lactobacillus 
paracasei. Correspondingly, KEGG functional gene analysis demonstrated 
impaired metabolism in NEC-D. Serum metabolomics identified significantly 
decreased ornithine, DL-arginine, L-threonine, leucine, and D-proline in 
NEC-D versus non-NEC. NEC-D also showed lower taurodeoxycholic acid, 
glycocholic acid, and chenodeoxycholic acid compared to NEC-R. Integrative 
analysis revealed a positive correlation between the metabolites D-proline and 
ornithine and the Lactobacillus paracasei, Staphylococcus epidermidis, and 
Staphylococcus aureus abundance.

Conclusion: NEC is characterized by gut microbiota dysbiosis with reduced 
diversity, altered functional gene expression, and disrupted host-microbiota 
metabolic crosstalk. The identified serum metabolite-microbiome correlations 
provide mechanistic insights into NEC pathogenesis and potential diagnostic 
biomarkers.
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1 Introduction

Necrotizing enterocolitis (NEC), a life-threatening gastrointestinal 
emergency in neonates, remains a leading cause of morbidity and 
mortality in neonatal intensive care units (Stoll et al., 2010). With an 
incidence rate of 5–10% among infants born before 32 weeks of 
gestation (Yee et al., 2012; Alsaied et al., 2020), this multifactorial 
disease disproportionately affects premature neonates and very 
low-birth-weight infants, carrying mortality rates exceeding 30% in 
severe cases (Jones and Hall, 2020; Hull et  al., 2014). Current 
diagnostic protocols based on the revised Bell’s criteria (Agakidou 
et al., 2020) rely on radiographic evidence and clinical presentation, 
yet face significant limitations in differentiating early-stage NEC from 
common neonatal feeding intolerance. This diagnostic ambiguity 
underscores the urgent need for innovative strategies integrating 
advanced biological technologies to improve early detection and 
risk stratification.

Recent advances in multi-omics approaches—particularly the 
synergistic application of proteomics, metabolomics, microbiomics, 
and genomics—offer unprecedented opportunities to unravel NEC 
pathogenesis and identify clinically actionable biomarkers (Masi et al., 
2024; Tian et al., 2024; Leiva et al., 2023). Among these, metabolomics 
has demonstrated significant potential in biomarker discovery across 
various clinical domains, including pediatric oncology, 
neurodevelopmental disorders, and perinatal medicine (Moco et al., 
2013; Li et al., 2021; Ravi et al., 2022; Guo et al., 2022). However, 
NEC-specific metabolic research remains underdeveloped, with 
current studies limited to isolated biofluid analyses (blood, urine, or 
stool) that fail to capture systemic metabolic-microbial interactions 
(Morrow et al., 2013; Thomaidou et al., 2022; Thomaidou et al., 2019). 
Critical knowledge gaps persist regarding: (1) disease-specific 
metabolic signatures distinguishing NEC from other intestinal 
pathologies, and (2) the functional interplay between host metabolism 
and gut microbiota during NEC progression.

To address these limitations, this study implements a dual-omics 
framework combining non-targeted LC–MS/MS metabolomic 
profiling and metagenomic sequencing to characterize NEC-associated 
perturbations in both host metabolism and microbial ecology. By 
analyzing paired serum and fecal samples from NEC patients, we aim 
to: (1) identify clinically relevant metabolic biomarkers with 
diagnostic and prognostic value, and (2) elucidate microbiota-
metabolite networks critical to NEC pathophysiology. This integrative 
approach advances beyond previous single-modality investigations, 
providing a systems-level perspective essential for developing 
precision diagnostic tools and targeted therapeutic interventions.

2 Materials and methods

2.1 Participant recruitment

This study enrolled neonates admitted to the Neonatal Intensive 
Care Unit at the Third Affiliated Hospital of Guangzhou Medical 
University between October 2022 and October 2023. The infants 
diagnosed with NEC stages II to III were eligible for inclusion in the 
NEC group. The control group consisted of non-NEC infants with a 
comparable gestational age at birth (±1 week), matched in a 1:1 ratio 
to the NEC group. Infants with the following conditions were 
excluded: significant congenital malformations, chromosomal 
anomalies, hereditary metabolic disorders, severe perinatal asphyxia, 
a family history of cow milk protein allergy or parental refusal to 
participate. This study was approved by the Clinical Research Ethics 
Committee of the Third Affiliated Hospital of Guangzhou Medical 
University (No. 2021-024). Written consent was diligently obtained 
from the parents of the infants included in this study.

2.2 Clinical data and biospecimen 
collection

The following demographic and clinical data were collected:  
(1) Maternal perinatal disorders and complications, including 
preeclampsia, premature rupture of membranes, and chorioamnionitis; 
(2) Neonatal demographic characteristics and birth conditions, 
including gender, gestational age, birth weight, mode of delivery, and 
birth asphyxia; (3) Treatments administered prior to NEC diagnosis, 
including antibiotic use, red blood cell transfusion, and mechanical 
ventilation; (4) Laboratory test results upon NEC diagnosis, including 
C-reactive protein (CRP) levels, white blood cell counts, and 
platelet counts.

Serum and fecal samples were collected from infants in the NEC 
group at two defined time points: (1) the acute phase (at diagnosis) 
and (2) the recovery phase (5–6 days after re-establishment of total 
enteral feeding). For the control group, samples were collected at a 
corresponding chronological age (±3 days) to matched NEC infants 
during their acute phase. Fecal samples were collected via anal or 
ostomy access, immediately stored at −40°C. Concurrently, 0.5 mL of 
venous blood was drawn, allowed to clot at room temperature for 
30 min, and centrifuged at 2,500 rpm for 15 min. The resultant serum 
was aliquoted and stored at −40°C pending analysis.

2.3 Metagenomics

Metagenomic sequencing was used to analyze the fecal samples. 
The genomic DNA of the fecal microbiota was initially extracted using 
the CTAB (cetyltrimethylammonium bromide) method. Subsequently, 
the OD values of nucleic acids were assessed using a NanoDrop 
microspectrophotometer, followed by agarose gel electrophoresis. The 
dsDNA was fragmented into 50–1,000 bp fragments using the 
NEBNext DNA duplex fragmentation enzyme, with different action 

Abbreviations: NEC, Necrotizing enterocolitis; OPLS-DA, Orthogonal least squares 

discriminant analysis; LefSe, LDA effect size; DHA, Docosahexaenoic acid; EggNOG, 

Evlutionary genealogy genes: nonsupervised orthologous groups; KEGG, Kyoto 

encyclopedia of genes and gemomes; POS, Positive ion mode; NEG, Negative 

ion mode.
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times. A fresh centrifuge tube, free of nucleic acids, was filled with the 
following: End Prep Enzyme Mix (3 μL), Buffer for End Repair 
Reaction (10X) (6.5 μL), fragmented DNA (55.5 μL), and the total 
volume was adjusted to 65 μL with the specified reagent. The 
components were thoroughly mixed using a pipette before initiating 
the reaction under the PCR cycle settings: 20°C for 30 s, 65°C for 30 s, 
and then held at 4°C.

For the subsequent steps, the following reagents were prepared 
and mixed thoroughly: Blunt/TA Ligase Master Mix (15 μL), NEBNext 
Adaptor for Illumina (2.5 μL), Ligation Enhancer (1 μL), and a total 
of 83.5 μL of reagent solutions. The mixture was incubated in a PCR 
instrument at 20°C for 15 min. Following this, 3 μL of USER enzyme 
was added to the mixture, thoroughly mixed, and allowed to incubate 
at 37°C for 15 min to facilitate adapter connection.

To further process the DNA fragments, AMPure XP beads were 
integrated into the system. After equilibrating the ligation product to 
room temperature, 13.5 μL dH2O was added to reach a total solution 
volume of 100 μL. Subsequently, 40 μL of AMPure XP beads were 
combined with the binding reaction solution and gently mixed using 
a pipette. The reaction tube was then left at room temperature for 
5 min to transfer the supernatant to a new nucleic-acid free centrifuge 
tube. This process was repeated with additional AMPure XP beads for 
purification and drying of the resultant DNA fragments.

Further downstream, Adaptor Ligated DNA Fragments (23 μL), 
NEBNext High Fidelity 2X PCR Master Mix (25 μL), Index Primer 
(1 μL), Universal PCR Primer (1 μL), and a total volume of 50 μL were 
prepared into a reaction solution and thoroughly mixed. PCR 
reactions were executed under specific cycling conditions and purified 
using AMPure XP Beads. Finally, the library underwent quality 
checks, quantification using the ABI StepOnePlus Real-Time PCR 
System (Life Technologies), and subsequent sequencing based on 
pooling methods in line with the PE150 mode of Hiseq2500.

2.4 Non-targeted metabonomics

Serum samples were slowly thawed at 4°C, and an appropriate 
volume was added to a pre-cooled solution of methanol/acetonitrile/
water (2,2,1, v/v) for vortex mixing. This was followed by a 30-min 
low-temperature ultrasound treatment, a 10-min incubation at 
−20°C, centrifugation at 4°C at 14,000  rpm for 20 min, vacuum 
drying of the supernatant, and reconstitution with 100 μL of an 
acetonitrile aqueous solution (acetonitrile: water = 1:1, v/v). The 
reconstituted samples were then subjected to mass spectrometry, 
vortexed, centrifuged at 4°C at 14,000  rpm for 15 min, and the 
supernatant was injected for analysis. The samples underwent 
separation on an Agilent 1290 Infinity LC Ultra Performance Liquid 
Chromatography System (UHPLC) HILIC column. Subsequently, the 
primary and secondary spectra of the samples were collected using an 
AB Triple TOF 6600 mass spectrometer.

The raw data were converted to MzML format using 
ProteoWizard, and then underwent peak alignment, retention time 
correction, and peak area extraction utilizing the XCMS program. 
Data extracted by XCMS were initially scrutinized for completeness, 
with metabolites showing over 50% missing values within any group 
being excluded from subsequent analyses. Null values were imputed 
using K-nearest neighbors (KNN) method, outliers were removed, 
and the data were ultimately normalized based on the total peak areas 

to ensure consistency across each sample and metabolite for 
parallel analysis.

2.5 Statistical analysis

Statistical analyses were performed using SPSS 26.0 software. 
Normally distributed continuous data were expressed as mean ± 
standard deviation (SD), with differences between two groups assessed 
using the independent samples t-test. Non-normally distributed 
continuous data were presented as median and interquartile range [M 
(IQR)], and differences between two groups were evaluated using the 
Mann–Whitney U test. Categorical data were displayed as counts and 
percentages [n (%)], with comparisons between two groups conducted 
using either the Pearson chi-square test or the Fisher exact test, 
depending on the sample size. A p-value of less than 0.05 was 
considered to indicate statistical significance.

3 Results

3.1 Clinical characteristics

Our study enrolled seven infants diagnosed with definite NEC 
(Bell’s stage II-III), two of whom required surgical intervention, along 
with seven gestational age-matched controls without 
NEC. Comparative analysis revealed no significant differences 
between NEC group and Control group in neonatal baseline 
characteristics, including gestational age at birth, birth weight, gender 
distribution, or Apgar scores at both 1- and 5-min assessments. 
Furthermore, maternal perinatal parameters showed comparable 
profiles between groups regarding delivery mode, antenatal 
glucocorticoid exposure, incidence of prolonged rupture of 
membranes ≥18 h, and pregnancy-related hypertensive disorders. 
Notably, the NEC group demonstrated significantly lower leukocyte 
counts compared to controls. No significant differences were observed 
in clinical management parameters including antibiotic utilization, 
mechanical ventilation duration, or laboratory markers such as 
C-reactive protein levels, platelet counts, and lactate concentrations, 
as shown in Table 1.

3.2 Fecal metagenomics analysis

Of the 21 initial fecal samples, 19 met inclusion criteria for further 
analysis. Two samples were excluded: one from the non-NEC group 
due to insufficient biomass and one from the acute NEC phase owing 
to excessive host DNA contamination (>50% host sequences). The 
final cohort comprised 6 acute-phase NEC cases, 7 convalescent-
phase NEC cases, and 6 non-NEC controls.

3.2.1 Alpha and beta diversity analysis
To detect differences in microbial community diversity, both alpha 

and beta diversity analyses were performed. Alpha diversity analysis 
revealed significant microbial community depletion during acute NEC 
episodes, as evidenced by markedly reduced Chao1 indices compared 
to both convalescent NEC (p < 0.05) and non-NEC groups (p < 0.05; 
Figures 1A,B). Beta diversity assessment through principal component 
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analysis demonstrated no statistically significant separation in 
microbial composition across the three clinical states (Figures 1C,D).

3.2.2 Abundance and composition of different 
bacteria between groups

To identify specific bacterial taxa associated with NEC, 
we performed a taxonomic comparison of gut microbiota between 
infants in the acute phase of NEC and healthy controls using linear 
discriminant analysis effect size (LEfSe). The analysis revealed 12 
differentially abundant taxa (LDA score >2; Figure 1E), including two 
orders (Bacillales and Enterobacteriales), two families 
(Staphylococcaceae and Enterobacteriaceae), three genera 
(Citrobacter, Enterobacter, and Escherichia), and five species 
(Staphylococcus haemolyticus, Staphylococcus aureus, Staphylococcus 
epidermidis, Lactobacillus paracasei, and Escherichia coli).

3.2.3 Functional gene differential analysis of 
bacterial flora

During comparative analysis of differential KEGG functions using 
LEfSe, significant functional disparities were identified. Infants in the 
acute phase of NEC exhibited reduced abundances of functional genes 
compared to non-NEC infants, particularly in pathways governing: 
folding, sorting, and degradation; pyruvate metabolism; fatty acid 
metabolism; valine, leucine, and isoleucine degradation; 
Staphylococcus aureus infection; thiamine metabolism; tryptophan 
metabolism; transport and catabolism; PPAR signaling; peroxisome 
activity; and biotin metabolism. Conversely, acute-phase NEC infants 

showed increased gene abundances related to carbohydrate digestion/
absorption, phosphonate/phosphinate metabolism, pancreatic 
secretion, bacterial chemotaxis, cell motility, and pentose/glucuronate 
interconversions (Figure 1F).

3.3 Non-target metabolomics analysis

Serum samples were analyzed using non-targeted LC–MS/MS 
metabolomics. To gain a comprehensive understanding of 
metabolite expression and sample classification, orthogonal partial 
least squares discriminant analysis (OPLS-DA) was employed to 
develop a relationship model. OPLS-DA effectively discriminated 
among samples from different groups. Additionally, OPLS-DA 
permutation test plots were utilized to enhance intergroup 
information retrieval and to identify distinctive metabolites. 
Notably, in NEG, compared to the other three OPLS-DA models, 
the OPLS-DA model for the NEC-R and NEC-D groups 
demonstrated superior predictive capabilities and moderate 
predictive accuracy, as shown in Figure 2.

VIP (Variable Importance in Projection) values were calculated 
using the OPLS-DA model to identify the top 15 disparate metabolites 
in each group. Compared to non-NEC infants, NEC infants at the 
acute phase had lower levels of ornithine, DL-arginine, 
diethanolamine, nicotinamide, L-threonine, leucine, and D-proline; 
however, they had higher levels of candesartan and cortisol 21-sulfate. 
Meanwhile, compared to the recovery stage, infants at the acute stage 

TABLE 1 Comparison of clinical characteristics between NEC group and control group.

NEC group
(n = 7)

Control group
(n = 7)

P

Gestational age (weeks), M (Q1, Q3) 29.28 (27.51, 32.39) 30.28 (27.82, 32.5) NS

Birth weight (grams), M (Q1, Q3) 1,130 (743, 1768) 1,472 (1,024, 1921) NS

Postnatal age (days), M (Q1, Q3) 28 (11, 37) 24 (8, 36) NS

Gender, n (%) NS

  Male 3 (42.9) 6 (85.7)

  Female 4 (57.1) 1 (14.3)

Apgar score @ 1 min 7 (5, 9) 10 (9, 10) NS

Apgar score @ 5 min 9 (7, 10) 10 (10, 10) NS

Mode of delivery, n (%) NS

Vaginal delivery 1 (14.3) 1 (14.3)

Cesarean section 6 (85.7) 6 (85.7)

Antenatal glucocorticoid, n (%) 7 (100) 5 (71.4) NS

PPROM ≥ 18 h, n (%) 0 (0) 1 (14.3) NS

Hypertensive disorder in pregnancy, n (%) 3 (42.9) 2 (28.6) NS

Antibiotic use, n (%) 6 (85.7) 7 (100.0) NS

Red blood cell transfusion, n (%) 2 (28.6) 3 (42.9) NS

Duration of mechanical ventilation (days), M (Q1, Q3) 18 (5, 22) 23 (7, 29) NS

White blood cell counts (109/L), M (Q1, Q3) 6.32 (4.03, 9.24) 10.17 (9.26, 15.1) 0.047

Platelet counts (109/L), M (Q1, Q3) 277 (262, 370) 380 (251, 481) NS

C reactive protein (mg/L), M (Q1, Q3) 2.79 (0.50, 5.66) 0.7 (0.5, 1.03) NS

Lactic acid (mmol/L), M (Q1, Q3) 1.05 (2, 2.35) 1.25 (2, 2.35) NS
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of NEC had lower levels of ornithine, DL-arginine, diethanolamine, 
taurodeoxycholic acid, glycocholic acid, and chenodeoxycholic acid; 
but higher levels of atorvastatin, cortisol 21-sulfate, telmisartan, and 
2,5-dimethoxycinnamic acid (Figure 3).

3.4 Combined metagenome and 
metabolome analysis

To enhance the understanding of the pathophysiological 
mechanisms of NEC, the relationship between differential metabolites 
in the serum and differential species in the fecal microbiome between 

the NEC group and the control group was further explored. Using R 
language, Pearson correlation analysis was conducted between 
differential metabolites and differential strain genes at the species 
level, with differential metabolites and strains screened using a 
significance level of p < 0.05. The findings revealed interesting 
correlations: N,N-dimethylaniline exhibited a positive correlation 
with Escherichia coli. Differential metabolites D-proline and ornithine 
showed strong positive correlations with Lactobacillus rhamnosus, 
Lactobacillus paracasei, Streptococcus epidermidis, and Staphylococcus 
aureus. Metabolites such as asparagine, DL-threonine, and L-valine 
were found to be positively associated with Streptococcus sp. C150 and 
Streptococcus hiss2 (Figure 4).

FIGURE 1

Different gut microbiota composition, diversity, functional genes between groups. (A,B) The alpha diversity as measured by the Chao1 index (the genus 
level). (C) Comparison of beta diversity between NEC-D, NEC-R, and non-NEC groups based on PCA analysis on genus level classification. 
(D) Comparison of beta diversity between NEC-D, NEC-R, and non-NEC groups based on PCA analysis on species level classification. (E) LEfSe analysis 
of specific bacteria in NEC-D and non-NEC groups. (F) Differential analysis of lefse KEGG function between NEC-D group and non-NEC group.
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FIGURE 2

Orthogonal Partial Least Squares Discriminant Analysis (OPLSDA) was employed to perform a comprehensive statistical evaluation of the metabolite 
profiles within each group. (A–C) The OPLS-DA analysis was conducted in anionic mode between the two groups. (B–D) The OPLS-DA analysis was 

(Continued)
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4 Discussion

Current diagnosis of NEC primarily relies on radiographic 
findings and clinical manifestations, yet still faces significant 
limitations in differentiating early-stage NEC. This diagnostic 
uncertainty highlights the critical need for novel approaches to 
improve clinical decision-making. Emerging multi-omics technologies 
now provide unprecedented potential to elucidate NEC pathogenesis 
and discover translational biomarkers for early detection. In this study, 
we employed integrated metagenomic and metabolomic analyses to 
characterize gut microbiota profiles and serum metabolite patterns 
across three cohorts: NEC patients at disease onset (NEC-D), 
non-NEC controls, and NEC patients at recovery (NEC-R). While no 
significant differences in microbial community composition were 
observed between groups, α-diversity indices revealed substantially 
reduced bacterial diversity in the NEC-D group compared to both 
non-NEC controls and NEC-R infants. Furthermore, NEC-D infants 
demonstrated decreased relative abundances of microbial functional 
genes involved in amino acid metabolism and oxidative stress response 
compared to non-NEC counterparts. Most notably, serum 
metabolomic profiling identified significant perturbations in the 
NEC-D group, including marked reductions in ornithine, DL-arginine, 
and diethanolamine concentrations relative to both control groups.

Growing evidence implicates gut microbiota dysbiosis as a key 
contributor to NEC pathogenesis. Longitudinal investigations have 
demonstrated temporal progression of microbial diversity in healthy 
preterm infants, while a developmental trajectory notably absent in 
NEC populations (Tarracchini et al., 2021; Dobbler et al., 2017). A 
2023 meta-analysis consolidated these observations, confirming 
significantly diminished α-diversity in NEC patients compared to 
gestational age-matched controls (Pammi et  al., 2017). Current 
consensus identifies characteristic microbial shifts in NEC 
development, particularly enrichment of Proteobacteria phylum 
members (including opportunistic pathogens such as Klebsiella 
pneumoniae, Escherichia coli, and Enterobacteriaceae) coupled with 
depletion of commensal Firmicutes and Bacteroidetes species (Pammi 
et al., 2017). Our findings align with these established patterns while 
providing novel insights. In our study, bacterial diversity was notably 
lower in the NEC-D group compared with non-NEC group or NEC-R 
group, which is supported by significant reduction in alpha diversity. 
Moreover, using Linear Discriminant Analysis Effect Size (LDA Effect 
Size, LefSe), our results identified the NEC group had lower relative 
abundance of Staphylococcus haemolyticus, Staphylococcus aureus, 
Staphylococcus epidermidis, and Lactobacillus paracasei, and higher 
relative abundance of Escherichia coli comparing with non-NEC group.

The pathobiont Escherichia coli has emerged as a critical microbial 
driver of NEC pathophysiology. Compelling evidence demonstrates 
that E. coli overgrowth disrupts gut ecological balance, reducing 
microbiota diversity and predisposing preterm infants to NEC (Zhang 
et al., 2025; Thänert et al., 2021). Notably, colonization by virulent 
strains such as uropathogenic E. coli (UPEC) significantly elevates 
NEC-associated morbidity and mortality (Ward Doyle et al., 2016). 

Recent longitudinal profiling revealed dynamic microbial shifts 
preceding NEC onset, with E. coli undergoing exponential expansion 
during the 24-h presymptomatic phase (Jenke et al., 2013) a pattern 
corroborated by our findings showing higher E. coli abundance in 
NEC-D versus controls. Mechanistically, E. coli may orchestrate NEC 
progression through dual ecological and metabolic perturbations. 
Metagenomic studies identify NEC-specific depletion of microbial 
enzymes governing tryptophan catabolism, biotin biosynthesis, and 
glycogenolysis pathways strongly correlated with E. coli dominance 
(Tarracchini et al., 2021). Our metabolomic data further implicate 
E. coli-derived N,N-dimethylaniline, a known immunomodulatory 
compound, in NEC-associated inflammation. These findings position 
E. coli as both a microbial biomarker and metabolic architect of NEC 
pathogenesis, with its enzymatic output potentially modulating host 
inflammatory cascades. Future multi-omics investigations should 
delineate strain-specific virulence factors and microbial-metabolite 
crosstalk underlying NEC progression.

Existing studies have demonstrated that single-omics approaches 
(e.g., metabolomics or microbiome analysis alone) are insufficient to 
capture the multidimensional pathophysiology underlying disease 
progression. Integrative multi-omics frameworks—synergizing 
proteomic, metabolomic, metagenomic, and genomic data—now 
enable systematic dissection of NEC mechanisms and identification 
of clinically translatable biomarkers. Our cross-domain correlation 
analysis, integrating fecal metagenomics with serum metabolomics, 
revealed three critical microbial-metabolite axes: (1) A strong positive 
correlation between Escherichia coli abundance and elevated 
N,N-dimethylaniline levels, potentially implicating microbial-derived 
aryl hydrocarbon receptor agonism in NEC pathogenesis (Deng et al., 
2023; Lu et al., 2021); (2) Commensal Lactobacillus rhamnosus and 
L. paracasei demonstrated robust associations with D-proline and 
ornithine, metabolites functionally linked to enterocyte regeneration 
through nitric oxide synthase modulation (Mu et al., 2019; Gookin 
et  al., 2002); (3) Streptococcus spp. abundance covaried with 
asparagine, DL-threonine, and L-valine concentrations, suggesting 
microbial regulation of immunomodulatory amino acid metabolism 
(Lavelle and Sokol, 2020; Morris et  al., 2016; Sasabe et  al., 2016). 
Future clinical translation should focus on validating these microbial-
metabolite networks as therapeutic targets and developing rapid LC–
MS/MS assays for bedside biomarker quantification.

However, limitations of this research include small sample sizes 
and fewer selected sample collection time points, which may impact 
the overall predictive performance of the OPLS-DA model. Moreover, 
the current experimental results lack validation from in  vivo and 
in  vitro experiments. Future endeavors should aim to minimize 
confounding variables between groups and enhance sample sizes. 
Both cell experiments and animal disease models are necessary to 
elucidate the causal relationship and analyze key functional genes 
between gut microbiota and host in NEC development. In summary, 
NEC is characterized by gut microbiota dysbiosis with reduced 
diversity, altered functional gene expression, and disrupted host-
microbiota metabolic crosstalk. The identified serum 

conducted in cationic model between the two groups. (E) OPLSDA permutation test comparison between NEC-D and non-NEC in anionic mode. 
(F) OPLSDA permutation test plot between NEC-D and non-NEC in cationic model. (G) OPLSDA permutation test plot between NEC-D and NEC-R in 
Anionic Mode. (H) OPLSDA permutation test plot between NEC-D and NEC-R in cationic model.

FIGURE 2 (Continued)
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FIGURE 3

VIP diagram of differential metabolites. (A) Compare the differential metabolites in NEG between non-NEC and NEC-D. (B) Compare the differential 
metabolites in POS between non-NEC and NEC-D groups. (C) Compare the differential metabolites in NEG between NEC-R and NEC-D groups. 
(D) Compare the differential metabolites in NEG between NEC-R and NEC-D groups.
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FIGURE 4

A heat map illustrating the correlation between microbial species and metabolites in the NEC-D group and the NON-NEC group. (A) The microbial 
species-metabolite correlation heat map in the context of NEG for both groups. (B) The microbial species-metabolite correlation heat map concerning 
POS among the groups. The metabolic names associated with the serial numbers of the metabolites depicted in the figure are fully detailed in 
Supplementary Table S1.
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metabolite-microbiome correlations provide mechanistic insights into 
NEC pathogenesis and potential diagnostic biomarkers.
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