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Background: Tuberculosis (TB) remains a significant global health challenge, 
necessitating reliable biomarkers for differentiation between latent tuberculosis 
infection (LTBI) and active tuberculosis (ATB). This study aimed to identify blood-
based biomarkers differentiating LTBI from ATB through multicohort analysis of 
public datasets.

Methods: We systematically screened 18 datasets from the NIH Gene Expression 
Omnibus (GEO), ultimately including 11 cohorts comprising 2,758 patients across 
8 countries/regions and 13 ethnicities. Cohorts were stratified into training (8 
cohorts, n = 1,933) and validation sets (3 cohorts, n = 825) based on functional 
assignment.

Results: Through Upset analysis, LASSO (Least Absolute Shrinkage and Selection 
Operator), SVM-RFE (Support Vector Machine Recursive Feature Elimination), and 
MCL (Markov Cluster Algorithm) clustering of protein–protein interaction networks, 
we identified S100A12 and S100A8 as optimal biomarkers. A Naive Bayes (NB) model 
incorporating these two markers demonstrated robust diagnostic performance: 
training set AUC: median = 0.8572 (inter-quartile range 0.8002, 0.8708), validation 
AUC = 0.5719 (0.51645, 0.7078), and subgroup AUC = 0.8635 (0.8212, 0.8946).

Conclusion: Our multicohort analysis established an NB-based diagnostic 
model utilizing S100A12/S100A8, which maintains diagnostic accuracy across 
diverse geographic, ethnic, and clinical variables (including HIV co-infection), 
highlighting its potential for clinical translation in LTBI/ATB differentiation.
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1 Introduction

Tuberculosis (TB) remains a leading global cause of morbidity and mortality, ranking as 
the top fatal infectious disease before the COVID-19 pandemic, surpassing even HIV/AIDS 
(Chen et  al., 2024; An et  al., 2025; Zhuang et  al., 2024b). Despite being diagnosable, 
preventable, and treatable, persistent diagnostic challenges contribute to its high disease 
burden (Fortún and Navas, 2022). Current diagnostic approaches primarily rely on tuberculin 
skin tests (TST, Diaskintest, C-Tb, EC-test) and interferon-gamma release assays (IGRAs: 
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T-SPOT.TB, QFT-GIT, QFT-Plus, LIASON QFT-Plus, LIOFeron TB/
LTBI) (Gong and Wu, 2021; Li et al., 2024; Li et al., 2023). While these 
methods effectively distinguish active TB (ATB) from healthy controls 
(HCs), they lack precision in differentiating latent TB infection (LTBI) 
from ATB (Peng et al., 2024; Cheng et al., 2023; Wang et al., 2024; 
Jiang et al., 2023a; Jiang et al., 2023c; Jiang et al., 2023d).

To address this gap, the World Health Organization (WHO) has 
outlined target product profiles for novel diagnostics requiring: (1) 
non-sputum sampling (e.g., blood), (2) > 80% sensitivity in HIV 
co-infected patients, (3) > 66% sensitivity in pediatric culture-positive 
TB, and (4) operational simplicity [Global Programme on Tuberculosis 
and Lung Health (GTB), 2014]. This has spurred investigations into 
blood-based biomarkers using microarray technologies (Lu et  al., 
2019; Natarajan et  al., 2022; Shao et  al., 2021), complemented by 
emerging approaches in epigenetics (Esterhuyse et al., 2015), urinary 
metabolomics (Deng et al., 2021), Raman spectroscopy (Kaewseekhao 
et al., 2020), sputum proteomics/microbiomics (HaileMariam et al., 
2021), NMR-based metabolomics (Izquierdo-Garcia et al., 2020), and 
machine learning-driven multi-marker profiling (Wang et al., 2024; 
Robison et al., 2019).

Nevertheless, critical limitations persist. Few studies have 
validated biomarkers in cohorts exceeding 2,000 cases, with scant 
evaluation in HIV co-infected or pediatric populations. Most 
proposed markers lack clinical trial validation (Jiang et al., 2023e; 
Jiang et al., 2023b), and while histological data mining shows promise, 
few studies leverage advanced computational methods (e.g., machine/
deep learning) to enhance biomarker reliability.

To overcome these constraints, we  conducted the largest 
GEO-based multicohort analysis to date (n = 2,758 across 8 countries/
regions), integrating machine learning with single-cell validation. This 
study systematically explores LTBI/ATB diagnostic biomarkers 
through the rigorous reuse of NIH GEO datasets, aiming to advance 
translational TB research.

2 Methods

2.1 Cohort acquisition and curation

We systematically queried the NIH Gene Expression Omnibus 
(GEO) using: ((“tuberculosis” [MeSH Terms] OR tuberculosis [All 
Fields]) OR TB [All Fields]) AND “Homo sapiens” [porgn] AND 
“GDS” [Filter].

2.1.1 Inclusion criteria
Studies involving whole or peripheral blood samples from patients 

with ATB (n = 11).

2.1.2 Exclusion criteria
Studies focused on vaccines or cell cultures, two-sample arrays, 

non-blood samples, datasets excluding S100 genes (e.g., GSE144127), 
inconsistencies in data format, or unavailable matrices (n = 7).

The final cohorts included 2,758 patients from 8 countries/regions 
and 13 ethnicities (Table 1). LTBI and ATB classifications were based on 
the original study protocols, with household contacts categorized as LTBI 
(non-progressors) versus ATB (progressors). Given the heterogeneity of 
the 11 included cohorts and differences in sequencing platforms, we did 
not integrate all expression profiles but instead processed each cohort’s 

expression data individually. Feature selection and model development 
were also performed separately for each dataset.

2.2 Cohort stratification

Differential expression analysis (LTBI vs. ATB) identified genes with 
|logFC| ≥ 1 and adjusted p ≤ 0.05. Training set selection prioritized 
cohorts with consistent DEG numbers (8 cohorts, n = 1,933), while the 
validation set comprised outliers (3 cohorts, n = 825).

2.3 Training set analysis pipeline

Stable differential genes (SDGs) were defined as genes 
recurrently dysregulated in >50% of training cohorts, identified via 
Upset analysis. Feature selection was refined using two machine 
learning approaches: Least Absolute Shrinkage and Selection 
Operator (LASSO) regression and Support Vector Machine 
Recursive Feature Elimination (SVM-RFE). Protein–protein 
interaction (PPI) networks for SDGs were constructed using the 
STRING database, and functional modules were clustered via the 
Markov Cluster Algorithm (MCL)1. The diagnostic performance of 
gene clusters was evaluated through receiver operating characteristic 
(ROC) curves, with nested one-way ANOVA comparing sensitivity, 
specificity, positive/negative predictive values, and AUC metrics. Six 
machine learning models (Naïve Bayes, SVM, Elastic Net, LASSO, 
Logistic Regression, Ridge Regression) were iteratively tested to 
optimize diagnostic accuracy.

2.4 Validation set assessment

The validated diagnostic model was rigorously evaluated in three 
independent cohorts (n = 825) to ensure generalizability. ROC curves 
were generated to assess diagnostic performance metrics, including 
AUC, sensitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV). The statistical significance of gene 
expression differences between LTBI and ATB groups was tested using 
the Mann–Whitney U test with a threshold of p < 0.05. Expression 
patterns were further validated against clinical metadata to ensure 
biological relevance.

2.5 Machine learning frameworks

2.5.1 LASSO regression
The Least Absolute Shrinkage and Selection Operator (LASSO) 

regression was implemented using the glmnet R package. The 
algorithm applied L1 regularization to minimize the residual sum of 
squares, iteratively shrinking non-informative coefficients to zero. 
Ten-fold cross-validation was performed to optimize the penalty 
parameter (λ), and features retained at the minimum cross-validated 
error were selected for downstream analysis.

1 https://cran.r-project.org/web/packages/MCL/MCL.pdf
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2.5.2 SVM-RFE
Support Vector Machine Recursive Feature Elimination (SVM-

RFE) utilized the Caret and kernlab packages. A radial basis function 
kernel was employed, and recursive feature elimination was conducted 
through five-fold cross-validation. Features were ranked by their 
contribution to the classification margin, with the least important 
features iteratively removed until an optimal subset was identified.

2.6 Network analysis and functional 
clustering

Protein–protein interaction (PPI) networks were constructed 
using the STRING database (version 11.5) with a combined 
interaction score threshold >0.4. The Markov Cluster Algorithm 
(MCL) was applied to partition the network into functional modules. 
Inflation parameters were automatically optimized to balance cluster 
granularity. FRIENDS analysis, implemented via custom scripts, 
calculated node centrality metrics (degree, betweenness, closeness) to 
identify hub genes within the network.

2.7 Statistical evaluation metrics

Nested one-way ANOVA was performed using GraphPad Prism 
9.5.0 to assess hierarchical variance components across diagnostic 
metrics. The analysis tested interactions between sensitivity/specificity 
and PPV/NPV, as well as between cutoff values and AUC. Assumptions 

of normality (Shapiro–Wilk test) and homoscedasticity (Levene’s test) 
were verified prior to analysis. ROC curves were generated using the 
ROCR and pROC packages, with optimal cutoff values determined by 
maximizing Youden’s index (J = sensitivity + specificity − 1).

2.8 External validation resources

2.8.1 CIBERSORT immune profiling
The CIBERSORT algorithm2 was executed with the LM22 

leukocyte gene signature matrix. Bulk RNA-seq data were normalized 
using quantile normalization, and 1,000 permutations were performed 
to estimate immune cell proportions. Results were filtered for p < 0.05 
to ensure confidence in deconvolution accuracy.

2.8.2 Single-cell validation
The Broad Institute’s Single Cell Portal3 was queried for 

tuberculosis-related single-cell RNA-seq datasets. Gene expression 
patterns were visualized across cell types using embedded tools, with 
specificity confirmed by comparing expression levels in myeloid cells 
(monocytes, macrophages) versus lymphoid populations.

2 https://cibersort.stanford.edu/

3 https://singlecell.broadinstitute.org/

TABLE 1 Basic information about the datasets.

Classification 
of data sets 
by purpose

Name of 
datasets

Availability 
of GEO2R 
analysis

Total 
number 

of 
patients

Number 
of ATB 

Patients

Number 
of LTBI 
Patients

Number 
of 

patients 
enrolled

Organization 
sources

Number of 
DEGs 

obtainable 
by GEO2R 

analysis

Discovery

GSE37250 Yes 537 195 167 362 Blood 113

GSE39939 Yes 157 79 14 93 Blood 284

GSE39940 Yes 334 111 54 165 Blood 264

GSE101705 Yes 44 28 16 44 Blood 1,126

GSE112104 Yes 51 29 21 50 Blood 3,389

GSE19491 Yes 498 75 69 144 Blood 190

GSE28623 Yes 108 46 25 71 Blood 821

GSE40553 Yes 204 166 38 204 Blood 151

Validation

GSE94438 Yes 434 101 327 428 Blood 53

GSE79362 Yes 355 110 245 355 Blood 31

GSE84076 Yes 36 6 16 22 Blood 26

Excluded

GSE144127 Yes 628 301 13 314 Blood 20

GSE83456 Yes 202 / / / Blood /

GSE62147 Yes 52 / / / Blood /

GSE41055 Yes 27 / / / Blood /

GSE34608 Yes 24 / / / Blood /

GSE84152 Yes 470 / / / Blood /

GSE107995 No 414 / / / Blood /

https://doi.org/10.3389/fmicb.2025.1584360
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://cibersort.stanford.edu/
https://singlecell.broadinstitute.org/


Jiang et al. 10.3389/fmicb.2025.1584360

Frontiers in Microbiology 04 frontiersin.org

2.8.3 GenDoma pathway analysis
GenDoma4 was accessed to map candidate biomarkers to disease 

pathways, regulatory networks (miRNA-gene, lncRNA-gene), and 
functional annotations. Enrichment analysis utilized Fisher’s exact test 
with Benjamini-Hochberg correction for multiple comparisons (q < 0.05).

2.9 Computational tools and workflow

Raw microarray data were preprocessed using GEOquery for 
dataset retrieval and limma for background correction and quantile 
normalization. Probe-to-gene annotation was performed with 
hgu133plus2.db for Affymetrix platforms. Network visualizations 
were generated using Cytoscape (v3.9.1) for PPI networks and ggplot2 
for ROC curves. All code and reproducibility workflows are archived 
in Supplementary material 1.

3 Result

3.1 Dataset screening and stratification

Eleven GEO datasets were analyzed, with eight assigned to the 
training set (GSE37250, GSE39939, GSE39940, GSE101705, 
GSE112104, GSE19491, GSE28623, GSE40553) and three to the 
validation set (GSE94438, GSE79362, GSE84076). Seven datasets were 
excluded due to non-blood samples or technical limitations (Table 1). 
Differential expression analysis (adjusted p ≤ 0.05, |logFC| ≥ 1) 
revealed substantial variability in DEG counts across cohorts, ranging 
from 26 (GSE84076) to 3,389 (GSE112104). Volcano plots and 
tabulated results (Figure 1; Table 1) highlight this heterogeneity, with 
GSE101705 and GSE112104 exhibiting the highest DEG counts (1,126 
and 3,389, respectively).

3.2 Identification of stable differential 
genes (SDGs)

Upset analysis of DEGs across eight training cohorts identified 55 
SDGs recurrently intersected in >50% of datasets (Figure 2). These 
included immune-related genes (e.g., S100A12, S100A8, GBP5), 
inflammatory mediators (CXCR5, ELANE), and metabolic regulators 
(CYP1B1, MGST1). Hierarchical clustering of expression profiles 
(Figure  3) demonstrated consistent upregulation of S100A12 and 
S100A8 in ATB versus LTBI across training cohorts.

3.3 Machine learning-driven feature 
refinement and functional module 
discovery via PPI and MCL clustering

LASSO regression and SVM-RFE reduced the 55 SDGs to 47 
high-confidence candidates (Figure 4A). In the results of PPI analysis, 
the interaction network maps between the proteins corresponding to 
the 47 SDG are shown in Figure 4B; based on the MCL clustering 

4 https://ai.citexs.com/homePath

algorithm (the inflation parameter was set to 3), 31 of the 47 proteins 
were clustered into 9 classes (Figure 4B). Cluster 1 consisted of 6 genes 
(ANXA3, GPR84, MCEMP1. MMP9, S100A12, S100A8), Cluster 2 
consisted of 6 genes (GBP1, GBP5, IFI27, IFIT3, PLSCR1, RSAD2), 
Cluster 3 consisted of 4 genes (AIM2, CXCR5, NAIPNLRC4), Cluster 
4 consisted of 3 genes (BPI, DEFA4, ELANE), Cluster 5 consisted of 3 
genes (C1QA, FCGBPSERPING1), Cluster 6 consisted of 3 genes 
(FCARFCGR1A, FCGR1B), Cluster 7 consisted of 2 genes (LCN2, 
VNN1), Cluster 8 consisted of 2 genes (COL17A1.PLOD2) and 
Cluster 9 consisted of 2 genes (CYP1B1, MGST1).

The Sens/Spec/PPV/NPV of each of the nine clusters were 
obtained, and cluster 1 was found to have the highest diagnostic 
efficacy after descending the order of the clusters (Figure 5A). Cluster 
1 contains six genes, and three genes, GPR84, S100A12, and S100A8, 
had higher Sens/Spec/PPV/NPV than three genes, ANXA3, 
MCEMP1, and MMP9, and therefore three genes, GPR84, S100A12, 
and S100A8, were included in the subsequent analysis (Figure 5B). 
The Sens/Spec/PPV/NPV of the six models constructed by three-gene 
signatures with a single biomarker, respectively, are NB 
(Average = 0.8490) > SVM (Average = 0.8360) > ENR (Average =  
0.8338) > LASSO (Average = 0.8266) > MLR (Average = 0.8255)  
> Ridge (Average = 0.8251) > None (Average = 0.7458), indicating 
that the constructed model can significantly improve the prediction 
efficacy (Figure 5C). To further optimize the gene signature from the 
perspective of diagnostic efficacy, four combinations of Sens/Spec/
PPV/NP for three genes were compared, GPR84 + S100A12 + S100A8 
(Average = 0.8541) > S100A12 + S100A8 (Average = 0.8525) >  
GPR84 + S100A12 (Average = 0.8456) > GPR84 + S100A8 (Average =  
0.8438, Figure  5D). For AUC/Cutoff, S100A12 + S100A 
(Average = 0.7897) > GPR84 + S100A12 (Average = 0.7788) > GPR84  
+ S100A8 (Average = 0.7801) > GPR84 + S100A12 + S100A8 
(Average = 0.7440, Figure  5E). Because the 2 gene signature of 
S100A12 + S100A8 has been consistently ranked in the top two in 
terms of diagnostic efficacy, S100A12 + S100A8 is considered the 
optimal combination. The Sens/Spec/PPV/NPV of the six models 
constructed based on 2 gene signatures with gene signature were, 
respectively, LASSO (Average = 0.7769) > NB (Average = 0.7732) >  
MLR (Average = 0.7699) > Ridge (Average = 0.7696) > ENR 
(Average = 0.7611) > SVM (Average = 0.7532) > None (Average =  
0.7205, Figure 5F). NB is regarded as the best model construction 
method because it is firmly in the top two in both the 3-gene signature 
and 2-gene signature model construction.

3.4 Biomarker validation across cohorts

Mann–Whitney tests confirmed significant upregulation of S100A12 
and S100A8 in ATB versus LTBI across six training cohorts (Figure 6). 
Validation cohorts showed variable performance (Figure 6): GSE94438 
exhibited significant differential expression (p < 0.05), while GSE79362 
and GSE84076 lacked consistency, potentially reflecting cohort-specific 
confounders (e.g., HIV co-infection).

3.5 Subgroup-specific diagnostic 
performance

ROC analysis revealed variability across demographic and clinical 
subgroups (Figure  7; Table  2). The model achieved near-perfect 
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discrimination (AUC = 1.0000) in UK-born individuals (GSE19491) 
and children in GSE112104. On the contrary, the 2-gene signature 
performed poorly in GSE79362 (AUC = 0.4610). Geographic, ethnic, 
and HIV status influenced accuracy: South Africa (GSE19491 = 0.8258, 
GSE39940 = 0.9041, GSE40553 = 0.5875, GSE37250 = 0.8730), 
Malawi (GSE37250 = 0.8732, GSE39940 = 0.8747), London 
(GSE19491 = 0.8042), Asian (GSE19491_South Asian = 0.8571, 
GSE19491_asian other = 0.8333) and Black (GSE19491 = 0.8044) 
cohorts showed robust prediction performance, while 
HIV-negative individuals (GSE37250 = 0.907, GSE39939 = 0.8297, 

GSE39940 = 0.8635) outperformed HIV co-infected patients 
(GSE37250 = 0.8490).

3.6 Immune cell correlates of biomarkers 
and single-cell expression validation

CIBERSORT-based immune infiltration analysis was 
performed on all eight datasets, and S100A12 and S100A8 were 
screened against 64 immune cells with p < 0.05 in the Mantel test 

FIGURE 1

Differential gene volcano plot. The horizontal coordinate is the Log2FC value, the vertical coordinate is −Log10 (Padj), and genes with Padj < 0.05 are 
marked in blue for negative Log2FC values, in red for positive Log2FC values, and in black for genes with Padj > 0.05.
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results, and a stable correlation between the three types of cells 
(CD4+ T cells, neutrophils, and NK cells) and 2 gene signature was 
observed after taking the intersection (Figure 8). The intersection 
of CD4+ T cells, neutrophils, and NK cells showed a stable 
correlation (Figure 8).

To verify in which cells the two genes S100A12 and S100A8 are 
highly expressed, we further validated the expression of the two genes 
using a single-cell dataset. First, 10,006 cells from 2 non-human 
primates at 6 weeks after infection with Mycobacterium tuberculosis 
(MTB)5 were used to observe the expression of S100A12 and S100A8 

5 https://singlecell.broadinstitute.org/single_cell/study/SCP1749/

cellular-ecology-of-m-tuberculosis-granulomas-4-week-

dataset#study-summary

genes (Figures 9A–D). S100A12 was expressed at a high level in Mast 
cells, and S100A8 was expressed at a high level in Club cells (also 
known as bronchiolar exocrine cells), Fibroblast cells, Macrophage 
cells, and Neutrophil cells.

Next, 109,584 cells from 4 non-human primates at 10 weeks after 
infection with MTB6 were used to observe the expression of two 
genes, S100A12 and S100A8 (Figures 9E–H). S100A12 was expressed 
at high levels in Macrophage and Neutrophil cells, and S100A8 was 
expressed at high levels in Fibroblast cells, Macrophage cells, and 
Neutrophil cells.

6 https://singlecell.broadinstitute.org/single_cell/study/SCP257/

cellular-ecology-of-m-tuberculosis-granulomas-10-week-

dataset#study-summary

FIGURE 2

Upset graph for stable differential gene (SDG) screening. The set size indicates the number of all genes contained below this dataset. Dots indicate 
whether the interactable set is in a particular dataset. Dots connected by short lines indicate the presence of intersections in certain datasets. The 
number of genes that can be intersected together corresponds to the intersection size above.
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Further, we  used 18,915 cells from human lung tissue 
ACE2 + co-infected with MTB and HIV7 was performed to observe 
the expression of two genes, S100A12 and S100A8 (Figures 9I–L). 
S100A12 and S100A8 were expressed at high levels in Ciliated Cell 
cells and Pneumocyte cells.

7 https://singlecell.broadinstitute.org/single_cell/study/SCP814/human-lung-

hiv-tb-co-infection-ace2-cells?genes=LHFPL2&cluster=umap&spatialGr

oups=--&annotation=cell_type__ontology_label--group--study&subsampl

e=all&tab=distribution#study-summary

3.7 Network enrichment and functional 
annotation

STRING-FRIENDS analysis expanded the S100A12/A8 (2 gene 
signature) interactome to include S100A9, CDH1, AGER (RAGE 
receptor), and signaling adaptors (GRB2, PTPN11) (7 gene signature, 
Figure 10A). Functional enrichment tied these 2 genes to Calprotectin 
complex (Strength = 3.69), S100A9 complex (Strength = 3.69), 
Neutrophil aggregation, and Aquaporin 9 (Strength = 3.59), and 
S100A8 complex (Strength = 3.59, Figure 10B). FRIENDS analysis 
further revealed robust associations between 7 genes and Neutrophil 
aggregation, and Aquaporin 9 (Strength = 3.4 in GO Process/3.22 in 
STRING clusters), Toll-like receptor 4 bindings (Strength = 3.15), 

FIGURE 3

Heat map of SDG expression and clinical information. The SDGs obtained from Upset analysis were displayed as heatmaps of gene expression levels 
based on the clinical information in the respective datasets GSE37250 (A), GSE39939 (B), GSE39940 (C), GSE101705 (D), GSE112104 (E), GSE28623 (F), 
GSE40553 (G), GSE19491 (H) and the clinical information corresponded to them to facilitate the visualization of the basic situation of the whole cohort.
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MET activates PTPN11 (Strength = 3.05), Calprotectin complex 
(Strength = 3.32), S100A9 complex (Strength = 3.32), and S100A8 
complex (Strength = 3.35, Figure 11).

3.8 Multi-omics contextualization via 
GenDoma

GenDoma revealed 353 interactions for S100A12/A8, including 
drug targets (e.g., tetracyclines), transcription factors (NF-κB), and 
disease pathways (Figures 12A,B). Literature mining highlighted their 

overexpression in blood dendritic cells (CD1C + B), monocytes 
(CD14 + CD16+), and lung basal cells (Table  3), with neutrophil 
depletion studies implicating S100A8/A9 in TB progression control.

4 Discussion

To our knowledge, this study represents the first attempt to 
distinguish LTBI from ATB using a novel approach based on 
S100A12 and S100A8. In our study, we undertook an extensive 
analysis of blood transcriptomic data from 2,758 patients across 

FIGURE 4

Screening of machine learning algorithm results and schematic diagram of protein–protein interaction (PPI) and MCL clustering algorithm results. 
(A) Upset diagram of machine learning algorithm results. (B) Schematic diagram of PPI and MCL clustering algorithm results for the corresponding 
proteins of genes after machine learning screening.
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11 cohorts to identify stable differential genes that could serve as 
potential biomarkers for distinguishing LTBI from 
ATB. We focused on the S100A12 and S100A8 gene pair, which 
exhibited notable upregulation in ATB patients compared to those 
with LTBI. Our findings demonstrate the robustness of these gene 

signatures in diagnostic applications, as machine learning models 
incorporating these biomarkers achieved a significant AUC of 
0.8572, indicating high predictive accuracy. Furthermore, our 
analysis revealed correlations between these biomarkers and 
immune cell populations, shedding light on their potential roles 

FIGURE 5

Schematic diagram of the results of nested one-way ANOVA analysis for clusters, genes, models, and gene combination types with better diagnostic 
efficacy. (A) The mean values of the nine clusters in the nested one-way ANOVA analysis under the first diagnostic efficacy perspective (consisting of 
Sens/Spec/PPV/NPV) are (Cluster 1 = 74.5505, Cluster 2 = 70.0766, Cluster 3 = 72.3194, Cluster 4 = 69.5216. Cluster 5 = 70.1375, Cluster 6 = 71.606, 
Cluster 7 = 71.3516, Cluster 8 = 70.4857, Cluster 9 = 69.1406), Cluster 1 showed the best diagnostic performance. (B) Nested one-way ANOVA analysis 
under the first perspective were (ANXA3 = 72.5781, GPR84 = 75.2875, MCEMP1 = 74.1844, MMP9 = 73.1344, S100A12 = 75.1875, S100A8 = 76.9313), 
where only GPR84, S100A12, and S100A8 had diagnostic efficacy greater than the overall diagnostic efficacy of 74.5505, and thus GPR84, S100A12, 
and S100A8 were considered as the three genes with better diagnostic efficacy. (C) In the first perspective, the ranking of NB was at the top 1. (D) In 
the second perspective (consisting of AUC/Cutoff value), the ranking of NB was at the top 2. (E) Four portfolio types (GPR84 + S100A12 + S100A8, 
S100A12 + S100A8, GPR84 + S100A8, GPR84 + S100A12) were evaluated, and two types (GPR84 + S100A12 + S100A8 and S100A12 + S100A8) 
showed superior diagnostic efficacy in the first angle. (F) In the second perspective, type (S100A12 + S100A8) showed better diagnostic efficacy than 
all the other three types.
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in the immune response during TB infection. These insights not 
only enhance our understanding of TB pathogenesis but also pave 
the way for future therapeutic developments aimed at improving 
patient outcomes (Dannenberg et  al., 2000; Mitterhauser and 
Wadsak, 2014; Russell, 2007).

The differential expression analysis conducted across various 
cohorts has underscored the potential of S100A12 and S100A8 as 
biomarkers for distinguishing between ATB and LTBI. The 
identification of 55 SDGs reveals significant variability in gene 
expression profiles across diverse datasets, with S100A12 and 
S100A8 consistently exhibiting upregulation in ATB cases relative 
to LTBI. This notable observation indicates that these genes may 
serve as reliable biomarkers, enhancing diagnostic accuracy and 
informing treatment strategies. The variability of gene expression 

counts across cohorts ranging from 26 to 3,389 highlights the 
challenges in establishing a universal biomarker profile. However, 
the consistent upregulation of S100A12 and S100A8 across 
training cohorts suggests their potential role in the 
pathophysiology of TB, warranting further exploration into their 
mechanisms of action and clinical applicability (Li et al., 2023).

The S100 protein family, particularly S100A12 and S100A8, 
has garnered attention due to their roles in inflammation and 
immune response (Gonzalez et  al., 2020). These proteins are 
secreted by activated immune cells and are involved in various 
inflammatory pathways (Donato et  al., 2013). S100A8/A9 
heterodimers regulate neutrophil adhesion via CD11b 
upregulation during MTB infection (Scott et  al., 2020), while 
S100A12 amplifies inflammation through AGER receptor 

FIGURE 6

Schematic visualization of biomarker’s expression significance test results in each dataset. In the three validation sets, only GSE94438 showed 
significant differences in the expression of the two genes, S100A12 and S100A8, among the different populations; on the contrary, in the eight training 
sets, except for GSE40553 and GSE101705, the other six training sets showed significant up-regulation of the expression of the two genes, S100A12 
and S100A8, in the ATB population in comparison with the LTBI population.
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signaling (Cole et  al., 2001). Studies have demonstrated that 
S100A12 and S100A8 are potential biomarker for disease severity 
and prognosis in some diseases, such as Idiopathic Pulmonary 
Fibrosis (Li et al., 2022), Rheumatoid Arthritis (Roszkowski et al., 
2022), Blau syndrome (Wang et al., 2018), Chronic Spontaneous 
Urticaria (Zhou et al., 2019), active lupus nephritis (Davies et al., 
2020), and dilated cardiomyopathy (Yu et  al., 2024). While 
S100A12/S100A8 are widely studied in these diseases, their 
specificity to TB remains an open question. In this study, we found 
that the correlation between their expression levels and immune 
cell populations, particularly CD4+ T cells, neutrophils, and 
natural killer (NK) cells, provides insights into the immune 
landscape in ATB versus LTBI. Understanding the dynamics 
between these biomarkers and immune cell infiltration could 

reveal critical pathways for therapeutic intervention (Li et  al., 
2023; Zhuang et al., 2024a). The immune profile of ATB patients, 
characterized by increased neutrophil activity and altered CD4+ T 
cell responses, suggests that S100A12 and S100A8 may have 
immune modulatory roles, influencing the inflammatory response 
and disease progression. Future research directions should focus 
on elucidating the mechanistic pathways through which these 
S100 proteins interact with immune cells, potentially leading to 
novel therapeutic strategies targeting immune responses in TB 
(Gonzalez et al., 2020; Donato et al., 2013).

Functional interaction and pathway analysis further illuminate 
the biological significance of S100A12 and S100A8  in TB. The 
STRING-FRIENDS analysis indicates their involvement in pathways 
such as neutrophil aggregation and the calprotectin complex (Yang 

FIGURE 7

Visualization of the diagnostic performance of biomarkers after naive Bayes modeling in each dataset. The ROC curves for the 11 datasets (3 in 
validation and 8 in discovery) and eight subgroups were shown and visualized with the Cutoff point.
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TABLE 2 Evaluation of the diagnostic efficacy of a simple Bayesian model with a two-gene signature.

No. GSE name Tag Classification AUC Cutpoint Sens Spec PPV NPV

#1 GSE79362 Not used in subgroup analysis Validation 0.4610 0.2885 0.9090 0.1430 0.3230 0.7780

#2 GSE84076 Not used in subgroup analysis 0.8438 0.1881 1.0000 0.6880 0.5450 1.0000

#3 GSE94438 Not used in subgroup analysis 0.5719 0.2324 0.3960 0.7830 0.3600 0.8080

25% Percentile 0.5165 0.2103 0.6525 0.4155 0.3415 0.7930

Median 0.5719 0.2324 0.9090 0.6880 0.3600 0.8080

75% Percentile 0.7079 0.2213 0.8263 0.7355 0.4525 0.9040

#4 GSE19491 BCG Training 0.8311 0.6761 0.7330 0.8550 0.8460 0.7470

#5 GSE28623 Gender 0.8530 0.8398 0.7390 0.9600 0.9710 0.6670

#6 GSE37250 Geographical location/HIV 0.8764 0.5390 0.7950 0.8260 0.8420 0.7750

#7 GSE39939 Geographical location/HIV 0.8689 0.9220 0.7220 0.9290 0.9830 0.3710

#8 GSE39940 Geographical location/HIV 0.8614 0.8822 0.6310 0.9630 0.9720 0.5590

#9 GSE40553 Geographical location/HIV 0.5721 0.8197 0.4100 0.7890 0.8950 0.2340

#10 GSE101705 Not used in subgroup analysis 0.7076 0.6433 0.7140 0.6880 0.8000 0.5790

#11 GSE112104 Gender 0.9254 0.2813 0.9670 0.8100 0.8790 0.9440

25% Percentile 0.8002 0.6172 0.6933 0.8048 0.8450 0.5120

Median 0.8572 0.7479 0.7275 0.8405 0.8870 0.6230

75% Percentile 0.8708 0.8504 0.7530 0.9368 0.9713 0.7540

#12 GSE19491_BCG+ BCG? Subgroup 0.8359 0.7268 0.6980 0.8860 0.8820 0.7050

#13 GSE19491_born in UK Born in UK? 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

#14 GSE19491_not born in UK Born in UK? 0.8027 0.5296 0.7110 0.8510 0.7620 0.8140

#15 GSE19491_London Geographical location? 0.8042 0.4051 0.8530 0.7110 0.7250 0.8440

#16 GSE37250_Malawi Geographical location? 0.8732 0.5236 0.8630 0.7610 0.8380 0.7940

#17 GSE39940_Malawi Geographical location? 0.8747 0.6992 0.6580 0.9400 0.8930 0.7830

#18 GSE19491_South africa Geographical location? 0.8258 0.4040 0.8000 0.8060 0.7270 0.8620

#19 GSE39940_South africa Geographical location? 0.9041 0.9818 0.7530 1.0000 1.0000 0.1820

#20 GSE40553_South africa Geographical location? 0.5875 0.7765 0.3790 0.8420 0.8930 0.2810

#21 GSE37250_South africa Geographical location? 0.8730 0.5401 0.7530 0.8650 0.8430 0.7830

#22 GSE19491_South asian Ethnicity? 0.8571 0.8075 0.8000 0.8570 0.9230 0.6670

#23 GSE19491_white Ethnicity? 0.8941 0.8784 0.7650 1.0000 1.0000 0.5560

#24 GSE19491_asian other Ethnicity? 0.8333 0.3743 0.8330 0.9000 0.8330 0.9000

(Continued)
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TABLE 2 (Continued)

No. GSE name Tag Classification AUC Cutpoint Sens Spec PPV NPV

#25 GSE19491_black Ethnicity? 0.8044 0.4797 0.7430 0.8000 0.7430 0.8000

#26 GSE19491_female Gender? 0.7714 0.2392 0.9290 0.5500 0.5910 0.9170

#27 GSE28623_female Gender? 0.9397 0.8784 0.8570 1.0000 1.0000 0.8330

#28 GSE112104_female Gender? 0.9551 0.4425 0.9170 0.9230 0.9170 0.9230

#29 GSE19491_male Gender? 0.8951 0.7826 0.8300 0.8620 0.9070 0.7580

#30 GSE28623_male Gender? 0.7760 0.7995 0.7200 0.9000 0.9470 0.5620

#31 GSE112104_male Gender? 0.8889 0.2940 1.0000 0.6250 0.8570 1.0000

#32 GSE37250_HIV+ HIV? 0.8490 0.5855 0.7450 0.8100 0.8200 0.7310

#33 GSE37250_HIV- HIV? 0.9070 0.4695 0.8870 0.8310 0.8600 0.8620

#34 GSE39939_HIV- HIV? 0.8297 0.8805 0.6540 0.9290 0.9710 0.4190

#35 GSE39940_HIV- HIV? 0.8635 0.8314 0.6430 0.9630 0.9570 0.6750

#36 GSE112104_children Children? 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

#37 GSE19491_adult Children? 0.8166 0.6698 0.7300 0.8410 0.8440 0.7260

#38 GSE112104_adult Children? 0.8873 0.3329 0.9410 0.6670 0.8000 0.8890

25% Percentile 0.8212 0.4560 0.7250 0.8080 0.8265 0.6900

Median 0.8635 0.6698 0.8000 0.8620 0.8820 0.7940

75% Percentile 0.8946 0.8195 0.8750 0.9345 0.9520 0.8755

https://doi.org/10.3389/fmicb.2025.1584360
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Jiang et al. 10.3389/fmicb.2025.1584360

Frontiers in Microbiology 14 frontiersin.org

et al., 2024; Heilmann et al., 2019), which are essential for the host’s 
response to MTB infection. These findings suggest that S100A12 
and S100A8 not only act as biomarkers but may also serve as targets 
for therapeutic intervention (Huoshen et  al., 2025). The 
identification of additional interactions within these pathways 
opens avenues for drug development aimed at modulating the 
inflammatory response and enhancing host defense mechanisms. 
Considering the role of neutrophil aggregation in tuberculosis 
pathogenesis, targeting these pathways could potentially improve 
clinical outcomes for patients suffering from active disease (Heida 
et al., 2017).

Machine learning models utilizing the S100A12 and S100A8 gene 
signatures demonstrated significant predictive accuracy, with a 
median AUC 0.8572  in training datasets and 0.8635  in subgroup 
analysis, indicating their potential utility in clinical diagnostics for 
early detection of LTBI. The performance of various machine learning 
approaches highlights the importance of feature selection and model 
optimization in enhancing diagnostic efficacy (Li et al., 2023; Du et al., 
2024). Notably, the Naïve Bayes model exhibited superior 
performance, suggesting its applicability in diverse clinical settings, 
which met WHO target product profile requirements [Global 
Programme on Tuberculosis and Lung Health (GTB), 2014] by (1) 

utilizing peripheral blood samples, (2) maintaining high sensitivity in 
HIV co-infected patients (AUC = 0.8490), and (3) achieving excellent 
discrimination in high-burden low-and middle-income country 
(LMIC) settings (South  Africa (GSE19491 = 0.8258, 
GSE39940 = 0.9041, GSE40553 = 0.5875, GSE37250 = 0.8730), 
Malawi (GSE37250 = 0.8732, GSE39940 = 0.8747), and Asian 
(GSE19491_South Asian = 0.8571, GSE19491_Asian other = 0.8333)). 
Furthermore, subgroup analyses revealed demographic influences, 
with reduced prediction efficacy in males (AUC = 0.7760 ~ 0.8951 vs. 
Female AUC = 0.7714 ~ 0.9551) and improved performance in 
children individuals (GSE112104_children AUC = 1.0000 vs. Adult 
AUC = 0.8166 ~ 0.8873), highlighting the need for population-
specific validation. The implications of these findings underscore the 
need for ongoing research to refine machine learning applications in 
TB diagnostics, paving the way for more accurate and timely 
identification of patients at risk for progression from LTBI to ATB 
(Zhao et al., 2015).

However, the validation of these biomarkers across different 
cohorts revealed variability in expression levels, emphasizing the 
complexity of biomarker validation in diverse populations (Li et al., 
2023). While significant upregulation of S100A12 and S100A8 was 
observed in specific cohorts, inconsistent results in others may 

FIGURE 8

Schematic visualization of immune cell correlation based on immune infiltration analysis and mantel test for biomarker. The order of the 22 immune 
cells was 11 cells from top to bottom in the blue sequence, followed by 11 cells from top to bottom in the pink sequence. The order of the various 
immune cells in the correlation analysis was consistent with the direction of the arrows. The meaning of the heatmap in the triangular section was the 
heatmap analysis of the correlation of the results of immune cell infiltration in different data sets. The short lines connected to the heatmaps indicated 
the results of the analysis of the correlation between genes and immune cells.
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FIGURE 9

Schematic representation of biomarker expression in single-cell sequencing results. (A,E,I) Showed the planar projections of the cell numbers of 
single-cell sequencing results at 4 weeks, 10 weeks of tuberculosis infection, and tuberculosis and HIV co-infection. (B,F,J) Showed the heatmaps of 
the expression of S100A12 in different cells under the three conditions. (C,G,K) Showed the heatmaps of the expression of S100A8 in different cells 
under the three conditions. (D,H,L) Showed the matrix heatmaps of the expression of two genes, namely, S100A12 and S100A8, in different cells.
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reflect demographic and clinical factors that influence biomarker 
expression. This variability underscores the necessity for 
standardized cohort definitions and careful consideration of the 
characteristics influencing biomarker validation. Future studies 
should aim to address these challenges, enhancing the robustness 
of biomarker discovery and validation efforts in tuberculosis 
research (Mester et al., 2024).

The limitations of this study primarily stem from the lack of wet 
lab validation, which hinders the confirmation of the identified 
biomarkers’ functionality. Additionally, the variability in sample size 
across datasets may affect the robustness of the findings and their 
generalizability to broader populations. The inconsistent definitions 
of LTBI and ATB across cohorts further complicate the analysis, 
leading to potential biases in classification and interpretation of results 

FIGURE 10

Visualization schematic of the results of PPI analysis, FRIENDS analysis, and enrichment analysis of PPI. (A) The PPI network diagram and the PPI of the 
FRIENDS analysis results for S100A12 and S100A8. (B) The heatmap visualization of the enrichment analysis results for the PPI network.
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(Zhao et al., 2015; Mester et al., 2024; Zhou et al., 2023). Moreover, 
comorbid conditions (such as diabetes mellitus) on LTBI and the 
exclusion of specific cohorts may overlook critical demographic and 
clinical factors that could influence biomarker expression, limiting the 
applicability of our conclusions (Zhou et al., 2023; Kumar and Babu, 
2023). Addressing these limitations through standardized definitions, 
enhanced sample diversity, and future mechanistic studies will 
be essential for validating the clinical utility of S100A12 and S100A8 in 
TB diagnostics.

5 Conclusion

In conclusion, this study successfully highlights the potential of 
S100A12 and S100A8 as promising biomarkers for differentiating 
between ATB and LTBI. The findings not only enhance diagnostic 
accuracy but also provide insights into the underlying immune 
mechanisms involved in TB infection. Furthermore, the integration 
of machine learning models demonstrates the feasibility of employing 
these biomarkers in clinical settings, paving the way for improved 

FIGURE 11

The enrichment analysis result of Schematic visualization of FRIENDS analysis. The FRIENDS analysis interaction network of S100A12 and S100A8 
showed a strong association with neutrophil differentiation, Calprotein complex, and other functions in the enrichment analysis results.
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FIGURE 12

The schematic diagram for visualizing the results of high-dimensional analysis of biomarker-based on the GenDoma server and interworking network 
graph. (A) Enrichment of the PPI, mRNA-Target gene, Drug-Target protein, and Chemical-Gene in the results of the S100A12 and S100A8 
concatenation analysis based on GenDoma server visualization. (B) PPI and Chemical-Gene enrichment in the results of the S100A12 and S100A8 
intersection analyses based on GenDoma server visualization.

TABLE 3 Literature enrichment analysis of genes.

Tissue Cell Biomarker Gene Protein ID PMID

Blood CD1C + _B dendritic cell S100A12 S100A12 P80511 28428369

Peripheral blood CD14 + CD16 + monocyte S100A12 S100A12 P80511 29361178

Kidney Neutrophil S100A12 S100A12 P80511 30093597

Fetal kidney Monocyte S100A12 S100A12 P80511 30093597

Blood CD1C + _B dendritic cell S100A8 S100A8 P05109 28428369

Umbilical cord blood Lymphoid-primed multipotent progenitor cell S100A8 S100A8 P05109 29167569

Bone marrow Monocyte derived dendritic cell S100A8 S100A8 P05109 29313948

Esophagus Secretory progenitor cell S100A8 S100A8 P05109 29802404

Kidney Neutrophil S100A8 S100A8 P05109 30093597

Fetal kidney Monocyte S100A8 S100A8 P05109 30093597

Lung Basal cell S100A8 S100A8 P05109 30069046

Disease Description Gene Protein ID PMID

Tuberculosis

Depletion of neutrophils or S100A8/A9 

deficiency resulted in improved MTB control 

during chronic but not acute TB.

S100A8 P05109 32134742
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therapeutic strategies. Future research should focus on refining 
biomarker validation through comprehensive cohort analyses and 
mechanistic studies, ultimately contributing to better patient 
outcomes in tuberculosis management.
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Glossary

LTBI - Latent tuberculosis infection

TBI - Tuberculosis infection

ATB - Active tuberculosis

LASSO - Least Absolute Shrinkage Selection Operator

SVM-RFE - Support Vector Machines Recursive Feature Elimination

MCL - Markov Cluster Algorithm

PPI - Protein–Protein Interaction

NB - Naive Bayes

AUC - Area Under Curve

IQR - Inter-Quartile Range

HIV - Human Immunodeficiency Virus

TB - Tuberculosis

AIDS - Acquired immunodeficiency syndrome

MTB - Mycobacterium tuberculosis

PTB - Pulmonary tuberculosis

IGRAs - Interferon-gamma release assays

TST - Tuberculin Skin Testing

HC - Health control

WHO - World Health Organization

NMR - Nuclear Magnetic Resonance

NIH GEO - National Institutes of Health Gene Expression Omnibus

DEG - Differential expression gene

SDG - Stable differential gene

ROC - Receiver Operating Characteristic

ANOVA - Analysis of variance

SVM - Support vector machines

ENR - Elastic Net Regression

MLR - Multiple Logistic Regression

RR - Ridge Regression

RFE - Recursive Feature Elimination

FDR - False Discovery Rate

DAMP - Danger-associated molecular pattern

TLR4 - Toll-like receptor 4

AGER - Late glycosylation end product receptor

ROS - Reactive oxygen species

LMIC - Low-and middle-income country
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