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The pig microbiome composition is a�ected by factors such as dietary changes,
genetics, and diseases. Recent evidence suggests that housing temperature
may also contribute to the variability in community structure and composition.
Therefore, we investigated the interactive e�ects of di�erent nutritional
strategies and heat stress (HS) on the fecal microbiota composition, community
structure, taxon distribution, and taxa correlation structure of pigs. Forty-eight
(Landrace × Large White) finishing gilts with an average of 67.7 ± 6.2 kg of body
weight (BW) were distributed in a 2 × 3 factorial arrangement: two temperatures
[thermoneutral (TN, 22◦C for 24h) and cyclic heat stress (CHS, 12h to 35◦C
and 12h to 22◦C)] and three diets varying in the dietary crude protein (CP)
contents and amino acid (AA) levels [highCP (HP); lowCP-free AA-supplemented
diet (LPAA); low CP-free AA-supplemented diet and digestible Lys level (+20%),
and Lys:AA ratios above recommendations (LPAA+)] originating six treatments
(eight replicates of one pig). Pigs were fed ad libitum throughout the study. The
16S ribosomal RNA (rRNA)-based microbiome analysis was conducted in fecal
samples collected on days 0 and 27 (endpoint). Overall, microbiome analysis
suggested an increased richness in the fecal microbiome of pigs raised in TN
conditions fed a diet supplemented with higher levels of AA (LPAA+). In addition,
changes in the fecal microbiome composition indicated thatMogibacteriumwas
significantly diminished in the feces of pigs fed the LPAA diet when compared
to pigs fed the LPAA+, both in CHS conditions. Oscillospira was reduced
in the feces of pigs fed a diet containing exclusively protein-bound as the
source of AA, while the more the feed-grade AA was included in the remaining
diets, the more the abundance of this taxon in fecal samples. Despite dietary
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alterations, Corynebacteriumwas enriched under CHS compared to TN,whereas
the enrichment of Prevotella and Eubacterium hallii group was higher in the
TN group. Outcomes of this study suggest that changes in fecal microbiota
compositionweremainly associatedwith temperature, pointing toward potential
taxa that may contribute to physiological adaptation to heat stress.
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1 Introduction

Modern swine commercial farms are populated with outbred
genotypes that have a variable response to lean meat deposition
and feed conversion, among which, heat stress (HS) can be an
environmental factor capable of negatively altering performance
and profitability (St-Pierre et al., 2003; Ross et al., 2015). Heat stress
can affect all stages of swine production. Its net effect is primarily
determined by the building characteristics, stocking density, and
geography (climate influences), which are collectively responsible
for creating the microclimate that influences air quality, barn
temperature, and, consequently, pig growth and health (Godyń
et al., 2020; Schauberger et al., 2020; De Prekel et al., 2024).
Continuously exposing growing-finishing pigs to HS can negatively
affect feed intake, lean meat deposition, and feed conversion
variability, which are crucial economic metrics in modern swine
production (Ross et al., 2015; de Oliveira et al., 2024). As such, it
is known to a certain extent that HS reduces pig performance (de
Oliveira et al., 2022, 2024), perhaps due to changes their digestive,
absorptive, and post-absorptive metabolism of nutrients (Morales
et al., 2016), and disruption of feeding behavior (de Oliveira et al.,
2023). In addition, HS might reduce disease resistance by altering
physiological immune responses, compromising the intestinal
barrier (Gabler et al., 2018; Xiong et al., 2022), and ultimately
predisposing pigs to intestinal inflammation often caused by
endemic enteric pathogens that circulate in modern farms (Vidal
et al., 2019; Luppi et al., 2023). Apart from its well-recognized
detrimental results on production traits, HS has been reported
to alter the gut microbiome composition and, consequently,
influence colonization resistance against enteric pathogens and
overall metabolism (Le Sciellour et al., 2019; Xiong et al., 2020;
Gomes-Neto et al., 2023; Liao et al., 2024).

Dietary amino acid (AA) supplementation has been reported to
be a potential attenuating factor to the deleterious effects caused by
HS in pigs, especially regarding gut health and immune response.
Jejunal damage due to HS was attenuated when finishing pigs were
fed supplemental arginine (Yi et al., 2020), by partially helping pigs
recover jejunum villi height (Morales et al., 2021). While arginine,
histidine, and methionine contribute to restoring the intestinal
epithelium integrity of the small intestine (Wu et al., 2009),
threonine is used to produce a mucin glycoprotein (Faure et al.,
2002) which helps to maintain intestinal mucosal integrity (Yi et al.,
2017). Mucin-type O-glycans, the primary constituents of mucins,
are known to be degraded by Bacteroides thetaiotaomicron and
can affect mice’s response in beneficial ways through mutualistic
relationships as reported by Bergstrom and Xia (2013). Tryptophan

is a precursor for synthesizing haptoglobin, an acute-phase protein
secreted during an inflammatory process (Le Floc’h and Seve,
2007) and increases during HS (Santos et al., 2021). Likewise, diet
varying in protein composition can also play a role in microbiome
modulation, being responsible for direct changes in keystone taxa
(e.g., Blautia, Clostridium sensu stricto 1, Dorea, Lactobacillus,
Mogibacterium, Peptococcus, Prevotella, Prevotellaceae NK3B31,
Prevotellaceae UCG 001, Rikenellaceae RC9, Ruminococcus, Sarcina,
Streptococcus, Terrisporobacter, Treponema, and Turicibacter)
present in pig fecal microbiome (Zhou et al., 2016; Sung et al.,
2023). Modulation of gut microbiota at some specific genus, such
as Lactobacillus (Kim et al., 2007), Treponema (Mäkinen and
Mäkinen, 1996) has a prominent influence on AA metabolism
because of its proteolytic capacity and AA utilization. Therefore,
modifying the availability of protein levels as well as sources of
AA (protein-bound and feed-grade) might be a useful tool to
increase the availability of AA toward better utilization at the
community level (Dai et al., 2013). Thus, the level of such micro-
nutrients is expected to modulate the structure, composition, and
functionality of the pig microbiota, to benefit HS-exposed pigs to
enhance performance.

Previous studies have reported the effect of HS (Xiong et al.,
2020; Hu et al., 2021, 2022; Xiong et al., 2022) and diet/feedstuff
(Zhou et al., 2016; Liu et al., 2023) on the microbiome of pigs.
However, limited information is available about their potential
integrative effects in commercial growing pigs. Therefore, a more
comprehensive understanding of how protein and AA levels may
modulate the intestinal microbial gut ecosystem of pigs raised in
HS conditions, compared to pigs raised in thermoneutrality (TN),
is needed. Protein and AA appear to be useful tools to maximize
pig performance and lean mass deposition, but the role of the
gut microbiome in mediating gut health and host metabolism
under stressful conditions remains largely unclear. Thus, we
hypothesized that protein and AA content levels may modulate
the fecal microbiota composition of pigs raised in cyclic heat stress
(CHS) conditions differently from those in TN conditions. More
specifically, we expected changes in some genus levels, such as
Clostridium, Prevotella, Fusobacterium, Lactobacillus, Treponema,
Roseburia, Ruminococcus, Oscillospira, Blautia, and Megasphera,
known core members of the finishing pigs fecal microbiome
(Holman et al., 2017; Wang et al., 2019, 2021; Wylensek et al., 2020;
Arfken et al., 2020; Luo et al., 2022; Dong et al., 2023) which can
influence community structure and function of the gut microbiota,
being associated with worsening (e.g., Clostridium with species
level largely unexplored) or enhancement (e.g., Prevotella) of pig
performance. Therefore, our primary expectation was that there
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would be a direct modulation of putatively short-chain fatty acid
(SCFA) producers, given that those molecules have the capacity
to influence basal metabolism and gut health (Chi et al., 2024).
To reach that goal, we performed 16S ribosomal RNA (rRNA)
amplicon sequencing to map bacterial taxa that could differentiate
between pigs, according to their nutritional strategies and/or
housing temperature. In summary, our results suggest that under
our experimental settings, changes in fecal microbiota composition
were mainly associated with temperature changes, pointing toward
potential taxa that may be needed for physiological adaptation to
CHS or be reflective of a microbiome bottleneck.

2 Materials and methods

2.1 Animals, housing, management, and
experimental design

All the experimental procedures and methods were reviewed
and approved by the Institutional Animal Care and Use Committee
at São Paulo State University (protocol No. 3380/20). This study
used 48 selected crossbred (Landrace × Large White) finishing
gilts (Agroceres PIC Camborough). Animals arrived at the Swine
Research Facilities of São Paulo State University (Jaboticabal, São
Paulo, Brazil) with an average of 24.5± 2.9 kg of body weight (BW).
They were individually identified using ear tags and an exclusive
electronic chip (plastic button tag containing passive radio-
frequency identification transponders, which allows the animals
access to electronic feeder stations). Pigs were randomly assigned
to one of two similar rooms kept in TN housing conditions (22◦C)
and with a fixed artificial light photoperiod of 12 h (06:00–18:00 h)
until they reached a BW of approximately 67 kg. Between arrival
and the experiment beginning, regardless of the room, all pigs were
fed ad libitumwith a commercial diet formulated according to their
nutritional requirements. They had free access to water, provided
by low-pressure nipple drinkers. When pigs achieved an average
of 67.7 ± 6.2 kg of BW, the house temperature of experimental
room 1 was maintained at thermoneutrality (TN, 22◦C, 24 h/day).
In contrast, in experimental room 2, a CHS condition was set by
fluctuating the ambient temperature from 22◦C (20:01–07:59 h) to
35◦C (08:00 to 20:00 h). Within each room, pigs were randomly
assigned to one of the three diets varying in the dietary crude
protein (CP) contents and AA levels, being (1) diet HP, high CP
diet (17.19% CP), 0.78% of standardized ileal digestive (SID) Lys,
AA:Lys ratios, Met+Cys 61.5%, Thr 70.5%, Trp, 23.1%, Val, 92.3%,
and Ile 82.1%, without supplemental crystalline AA; (2) low CP-
free AA-supplemented diet (LPAA), low CP diet (12.46% CP),
supplemented with crystalline AA, SID Lys of 0.78%, AA:Lys ratios,
Met+Cys 57.7%, Thr 62.8%, Trp 17.9%, Val 65.4 %, Ile 52.6%, and
diet LPAA+, low CP diet supplemented with crystalline AA along
with increased SID Lys level (+20%) and AA:Lys ratios (14.28% CP,
SID Lys 0.94%, AA:Lys ratios, Met+Cys 65%, Thr 72%, Trp 20%,
Val 70%, and Ile 54%). Therefore, a 2 × 3 factorial arrangement
with two housing temperatures (TN and CHS) and three diets
(HP, LPAA, LPAA+) resulted in six treatments. Each treatment
had eight replicates of one pig each. The experiment lasted 27
days. A complete description of the animal study, such as body
composition, nutrient intake, nitrogen balance, serum, and plasma

metabolites concentration, fromwhich the samples were taken, was
previously described elsewhere (de Oliveira et al., 2022).

2.2 Sample collection and DNA extraction

At the beginning of the experiment (day 0) and at the end (day
27), before any other sample collection (i.e., rectal temperature),
fecal samples for 16S rRNA-based microbiome analysis were
collected. The fecal sample was chosen as a proxy for the large
intestine gut microbiome composition and temporal sampling of
live animals. Each day, a fecal sample was aseptically collected
from the rectum of all pigs (48 pigs) after rectal stimulation. It
was kept on ice during transport to the laboratory and stored at
−80◦C until further processing. Before DNA extraction, 250mg
of fecal sample was washed using 2ml of sterile PBS (phosphate-
buffered saline) and centrifuged once (4.5min, 8 × 1,000 rcf). The
supernatant was carefully discarded, and the formed pellet was
used to repeat the procedure twice. The final pellet was used for
DNA extraction following the manufacturer’s instructions using
the DNeasy PowerSoil Pro Kit (Qiagen, Hilden, Germany). All
samples were eluted in 60 µL of an elution buffer and frozen at
−80◦C before quality assessment and sequencing. All samples were
quality-checked for DNA concentration using a Nanodrop One
spectrophotometer (Thermo Fisher Scientific, Inc., Middletown,
VA, USA).

2.3 16S rRNA amplicon sequencing and
bioinformatic processing

The V4 region of the bacterial 16S rRNA gene was amplified
from each sample using Phusion High-Fidelity PCR Master Mix
with HF Buffer (Thermo Scientific, Waltham, MA, USA), following
the modified dual-indexing sequencing strategy (Kozich et al.,
2013; Yang et al., 2022, 2023; Korth et al., 2024). Paired-end
sequences were analyzed using the Quantitative Insights Into
Microbial Ecology (QIIME2) program version 2, 2021.2 (Bolyen
et al., 2019). Sequences were truncated (220 bases for forward
reads and 160 bases for reverse reads) and denoised into amplicon
sequence variants (ASVs) using deficiency of adenosine deaminase
2 (DADA2) (Callahan et al., 2016), then rarefied to 5,000 reads per
sample, as previously described (Summers et al., 2019; Gonçalves
et al., 2024). All ASVs were assigned taxonomic information using
a pretrained sklearn-based taxonomy classifier SILVA reference
database (silva-138.1-ssu-nr99) (Pedregosa et al., 2011; Quast et al.,
2013). All sequencing can be found on NCBI (https://www.ncbi.
nlm.nih.gov/bioproject/PRJNA985664, accessed on 20 June 2023).
Before statistical analysis, only bacterial taxa (contained domain =

“Bacteria”) containing genus-level information in the name (g from
QIIME2 output) were filtered for both diversity and taxonomic
analyses. For co-occurrence network analysis, information on the
genus included in the Clostridiaceae family was collapsed together.
A similar procedure was performed for the Prevotellaceae family.
For the remaining analysis, information at the genus level was
analyzed separately.
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2.4 Network analysis for community
structure

Co-occurrence networks were used to identify the central
taxa of the treatment’s community. Network construction and
visualization were performed using the NetCoMi package (Peschel
et al., 2021) within the R version 4.3.0 statistical framework.
Overall, samples were normalized to 5,000 reads and grouped
by day, temperature, and diet. According to the day of
sample collection (0 and 27), each association-based network
was constructed for each group or identified treatment by
employing a centered log-ratio transformation and Spearman-
based correlations between the 50 most abundant microbial taxa.
Only the taxa pairs with an absolute association/dissimilarity >3
were used for sparsification. Data interpretation was summarized
based on each node representing a bacterial taxon; the size of
each node was scaled according to the eigenvector centralities of
the community, and the different colors indicated the modules
(clusters) calculated in network construction. The forest green
and red edges represented the estimated positive and negative
Spearman’s correlations, respectively, whereas the edge thickness
corresponded to the strength of the association. Edges representing
a value<0.5 were not shown. The three taxa with the highest degree
of centrality were selected to highlight cluster-specific central taxa.

2.5 Statistical analysis

All bacterial taxonomic outputs from QIIME2 were processed
for quality control, all the way to statistical modeling using R
version 4.3.0. The tidyverse library (version 1.3.1) was used for
data exploration, analysis, and visualization (exploratory analysis
and final plotting). Only bacterial genus-level annotation was used
in all statistical analyses. All analyses were conducted based on
temperature (housing temperature) × diet (nutritional strategies)
interactions (temperature slice diet and diet slice temperature). A
one-way analysis of variance (ANOVA) was used to assess the effect
of diets on each temperature, as well as the effect of temperature
on each diet on alpha-diversity metrics (Shannon and Simpson’s
D indexes), beta-diversity decomposition analysis (PC1 or PC2),
taxon distribution, and differential taxonomic biomarkers. All
ANOVAmodels were performed using the aov() function, whereas
all the post hoc comparisons were performed using the TukeyHSD()
function. When the temperature × diet interaction was significant
in the ANOVA model (p < 0.05), a Tukey test was used to perform
post hoc comparisons of diets according to temperature.

Both Shannon and Simpson’s D indexes of alpha-diversity
were calculated with the diversity() function from the vegan
library (version 2.6.2). Beta-diversity analysis was used to evaluate
the dissimilarity among groups. It was calculated using the
vegdist() function from the vegan library (version 2.6.2), while
using Bray–Curtis’s distance matrix and removing all missing
values of the analysis. A permutational multivariate analysis of
variance (PERMANOVA) was used to calculate the effect of
day, diet, temperature, and their interactions on beta-diversity
(Bray–Curtis distances), using the adonis2 (permutations = 999,
method = “bray”) from the vegan library (version 2.6.2). A
supplementary beta-diversity analysis was performed to evaluate

the effect of noising taxa on the final results. Noising taxa were
assumed to be those taxa that were not significant based on
taxonomic biomarker relative abundance of the most abundant
taxa, structure of core community, and linear discriminant analysis,
effect size (analysis described below). Treatments were assessed for
analysis of similarity (ANOSIM) based on Operational Taxonomic
Units (OTUs) relative abundance and generated a test statistic
R using the method = “bray” from the vegan library version
2.6.2. For the principal coordinate analysis (PCA), a classical
multidimensional scaling model was used to reduce the data
to three dimensions (three principal coordinates – PCs), using
the cmdscale function (k = 3) from the stats library version
4.3.0. A 3D plot was performed using plot_ly packages (Sievert,
2020). Taxon distribution was evaluated by individual taxon-
based relative abundance (proportion), calculated per pig while
accounting for the day, temperature, and diet. Taxa with relative
abundance >2% (cut-off) were considered the most dominant
taxa in the community. The identification of differentiating taxa
was evaluated by Linear Discriminant Analysis (LDA) Effect
Size (LeFse) according to treatments and experimental days. The
analysis was performed with the aid of the Galaxy platform with a
Wilcoxon p-value adjustment to 0.05 and a threshold (cut-off) on
the logarithmic LDA score for discriminative taxa set at 2. Taking
into account all samples, a 1change in taxa distribution over the
experiment was calculated as follows:

1change (%) =

Relative abundance on day 27
− Relative abundance on day 0

Relative abundance on day 0

Based on the most abundant taxa, the structure of the
core community, and differential taxa on LeFse analysis, a list
of potentially differential taxonomic biomarkers was set. The
1change among taxonomic biomarker relative abundance across
groups was depicted as a heatmap using the transformed [log2
(f + 1)] relative abundance of those listed taxa. For taxa with
zero mean counts for a given treatment, the value of 0.01 was
added before the transformation was applied. Taxa from the list
of potentially differential taxonomic biomarkers were individually
tested using the ANOVAmodel, followed by post hoc comparisons,
when necessary, as previously described.

Ultimately, Pearson’s correlations between taxa were used to
construct the heatmap using the corrplot and correlogram in R
using the ellipse method while ordered by hierarchical clustering
(Wei and Simko, 2024; Wright, 2022). Data interpretation
was summarized based on each ellipsis having its eccentricity
parametrically scaled to the correlation value. Ellipses sloping
top to the right or top to the left indicate positive and negative
correlations, for each trait pair, respectively. The shading of the
ellipse also denoted the strength of the relationship. Correlations
were significant if p < 0.05. The default parameters were used for
calculations if not stated for all R functions.

2.6 Computational platforms

All 16S rRNA microbiome bioinformatic analyses were
performed on Crane, one of the Linux high-performance
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computing clusters at the University of Nebraska Holland
Computing Center (HCC) [https://hcc.unl.edu/].

3 Results

3.1 Experimental approach and analytical
workflow

In our previous assessment of these data (de Oliveira et al.,
2022), we found that CHS negatively affected feed intake of pigs
from days 0–27, and the AA supplementation was not capable of
ameliorating this effect due to the absence of a diet × temperature
interaction. Heat stress has also been reported to disturb the feeding
behavior of pigs, modifying the size of the meal, the duration
of each meal, and intervals between meals (de Oliveira et al.,
2023). Given this, we conducted a 16S rRNA analysis based on
microbiome analysis to evaluate the impact of Diet, Temperature,
and their integrative effects on the fecal microbiome level. Figure 1
illustrates the experimental design and objectives of the study. In
this randomized factorial design (2 × 3), the interaction between
three different diets and two temperatures on fecal microbiome
composition at an endpoint in relationship with the beginning
of the study was evaluated. To our knowledge, this is the first
study evaluating the fecal microbiome of pigs fed diets varying in
protein and functional AA content and raised in CHS conditions—
conditions that may be found in commercial conditions in swine
production. To achieve our goals, we deployed the analytical
workflow as shown in Figure 2, which systematically assessed
community diversity, composition, and structure to identify major
differentiating taxa across treatments.

3.2 Alpha-diversity

Alpha-diversity was measured using Shannon’s (richness)
and Simpson’s (evenness) indexes of diversity, considering the
factorial design and the percentual changes from days 0–27.
As expected, regardless of temperature or diet effects, overall,
on average, pigs increased the alpha-diversity fecal microbiome
over time (day, p < 0.01, Supplementary Tables S1, S2). The
significant diet × temperature interaction for Shannon’s (p =

0.026, Supplementary Table S1) and Simpson’s D (p = 0.022,
Supplementary Table S2) index point out that, at the beginning of
the trial, the baseline alpha-diversity differed among dietary groups
in TN in terms of richness (Figure 3A, p = 0.051) and tend to
differ in terms of evenness (Figure 3C, p = 0.092). The baseline
alpha-diversity of pigs assigned to CHS did not differ. However,
upon examining the Temperature effect for each dietary group,
pigs of the LPAA group in CHS started the experiment with higher
alpha-diversity (Figures 3B, D) than pigs raised in TN (p = 0.003).
On day 27, pigs fed different dietary treatments raised in TN had
similar richness (Figure 3A) and evenness (Figure 3C) to those
raised in CHS. However, pigs fed LPAA+ and raised in TN had
greater richness (p = 0.042) when compared to CHS pigs, with
no difference in evenness (p = 0.542). It is worth highlighting
that all the aforementioned initial differences in alpha-diversity of
baselines no longer existed on day 27 (p > 0.05).

3.3 Beta-diversity

The beta-diversity PERMANOVA model
(Supplementary Table S3) revealed a significant effect of
temperature × diet (p = 0.028, R² = 0.03171) and a tendency for
temperature × day (p = 0.090, R² = 0.01386) interaction. The
main temperature (p= 0.006, R²= 0.03002) and day (p= 0.001, R²
= 0.30642) effects were also captured by the analysis, supporting
a major temporal change in the fecal microbiome composition
(∼30% explained by day alone). Upon splitting the analysis by
day, the PERMANOVA model on day 0 (Supplementary Table S4)
demonstrated a temperature × diet significant interaction (p =

0.017, R² = 0.09406) and a tendency for temperature effect (p
= 0.081, R² = 0.04112), while on day 27, PERMANOVA model
supported only the Temperature effect (p = 0.004, R² = 0.08777).
The PCA did not capture discrete differences in clusters on day 0 (p
= 0.703, R²= 0.02873) or even on day 27 (p= 0.696, R²= 0.03008),
reflecting overlapping compositional aspects. Beta-diversity
composition, as analyzed by PC1 or PC2 separately, showed no
significant changes in community dispersal (volatility), regardless
of diet or day within each temperature (Supplementary Figures 1a,
b, e, f). Although a trend in Temperature effects was observed
for clusters at the baseline (p = 0.081, R² = 0.04112), significant
dissimilarity between TN and CHS groups was detected on day 27
(p = 0.004, R² = 0.08777) (Figures 4A, B). The overall observed
trend in temperature effects on day 0 was associated with more
variability in community dispersal of pigs in LPAA+ diet group
in CHS compared to TN pigs, as shown by the beta-diversity
composition (PC2, p = 0.014, Supplementary Figure S1d).
Nonetheless, on day 27, pigs fed LPAA+ diets raised under TN
had a greater community dissimilarity than their counterparts
raised in CHS (PC1, p = 0.045, Supplementary Figure S1g). A
3D plot of the three major axes generated by PCA, considering
all samples, was depicted in Supplementary Figure S2 as a scatter
plot, grouped by diet (Supplementary Figure S2a), temperature
(Supplementary Figure S2b), and day (Supplementary Figure S2c),
to support our analytical assessment.

All the meaningful effects in terms of beta-diversity
remained unaltered (Supplementary Tables S6–S8,
Supplementary Figure S5), even after removing putatively
“noising” taxa—categorized as taxa that were on average low in
relative abundance (cut-off > 2%)—upon evaluating the core
community structure (Figure 5), and by using a LeFse analysis to
identify the more differentiable taxa (Supplementary Figure S4).
In addition to PERMANOVA-based modeling, a non-parametric
test (ANOSIM) was used (filtering or not the noising taxa—
clarify that in parenthesis here) to determine whether differences
between intertreatment groups were significantly greater than
differences between intratreatment groups. The R-value of the
unweighted unique fraction (UniFrac) rank on day 0 was R

= 0.049, and p = 0.108 (Supplementary Figure S3a). The lack
of significant statistical differences (p = 0.108) indicated no
difference between the intertreatment groups. Therefore, no major
dissimilarities in the microbial communities between treatments
at the beginning of the experiment were observed. In contrast,
the R-value of the unweighted UniFrac rank on day 27 was R =

0.107, and p = 0.008 (Supplementary Figure S3b), which indicated
a difference in intertreatment groups, resulting in dissimilarity
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FIGURE 1

Cyclic heat stress study experimental design. Housing temperatures: 1TN, thermoneutrality (24 h, ∼21.9◦C) (n = 24) and 2CHS, Cyclic heat stress
(12 h, ∼33.8◦C and 12h, ∼22.4◦C) (n = 24). 3Diets: HP, high crude protein (CP) diet (n = 8); LPAA, low CP-free amino acid (AA) supplemented diet (n
= 8); LPAA+ = low CP-free AA-supplemented diets and digestible Lys level (+20%), and Lys: AA ratios above recommendations (n = 8). Experimental
design workflow including the number of animals per treatment, and phenotypes of interest: fecal microbiome composition and community
structure including di�erences in taxon distribution, and correlation between the relative proportion of a given taxa.

in the microbial communities between treatments at the end of
the experiment.

3.4 Taxonomic changes

3.4.1 Community structure and core-membership
Apart from the fecal community structure evaluated at the

beta-diversity level, we used co-occurrence networks at the
beginning and end of the experiment to identify the first three
central taxa of the community of each treatment (Figure 5). At the
same time, we assessed topology, interactions, and associations
within the community. Taking together all treatments, at the
beginning of the experiment (day 0), the unique central taxa
were: Blautia, Catenibacterium, Eubacterium hallii, Eubacterium
nodatum, Megasphaera, Oscillospira, Peptococcus, Solobacterium,
Streptococcus, Subdoligranulum, and Syntrophococcus. At the end
of the experiment (day 27), the unique central taxa observed
across both days were Acidaminococcus, Dorea, Intestinibacter,
Lachnospiraceae NK4A136, Peptococcus, Phascolarctobacterium,
Rikenellaceae RC9, Ruminococcus, Ruminococcus gauvreauii,
Turicibacter, and Peptococcus. A further evaluation of each
treatment showed that, regardless of treatment, the central taxa
at the end of the experiment (day 27) were different from those

observed at the beginning of the experiment (day 0), with no
hallmark of network alteration.

3.4.2 Identifying major core taxa through relative
abundances and enrichment analysis

On day 0, seven taxa (Christensenellaceae R7, Clostridium

sensu stricto 1, Lactobacillus, Megasphaera, Streptococcus,
Terrisporobacter, and Treponema) represented the most abundant
taxa (cut-off > 2%), and accounted for around 74% of the
community as a whole. On day 27, the most abundant taxa were
Christensenellaceae R7, Clostridium sensu stricto 1, Lactobacillus,
Megasphaera, Prevotella, Prevotellaceae NK3B31, Prevotellaceae

UCG-001, Streptococcus, Terrisporobacter, Treponema, and
Turicibacter, accounting for approximately 78% of the total
community. It is worth highlighting that all the most abundant
taxa on day 0 remained the most abundant taxa on day 27.
Supplementary, according to LeFse results, demonstrated
that Clostridium sensu stricto 6, Oscillospira, Succinivibrio,
Terrisporobacter, and Turicibacter were discriminating between
treatments on day 0 (Supplementary Figure S4a), whereas, on
day 27, seven discriminative genera (Clostridium sensu stricto

6, Corynebacterium, Mogibacterium, Prevotellaceae UCG 004,
Rikenellaceae RC9, Sarcina, and Streptococcus) were identified
(Supplementary Figure S4b).
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FIGURE 2

The analytical workflow included (1) community alpha-diversity (Shannon’s and Simpson’s D indexes) and beta-diversity (community composition,
PERMANOVA for variance decomposition); based on (2) structure of core community, relative abundance and di�erentially abundant taxa (LeFse), a
list of potentially di�erential taxonomic biomarkers was built and 1change was calculated (3) and, (4) Taxa distribution (heat map), taxonomic
di�erences (ANOVA), and taxa correlation (Pearson) were also evaluated.
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FIGURE 3

Alpha-diversity analysis (Shannon’s and Simpson’s D indexes) of the fecal microbiome composition of pigs. For both alpha-diversity metrics, a
one-way ANOVA analysis was used to measure the e�ect of each studied factor (temperature, diet, and day) and their interactions. Housing
temperatures: thermoneutrality and cyclic heat stress. Diets: HP, high crude protein (CP) diet; LPAA, low CP-free amino acid (AA) supplemented diet;
LPAA+, low CP-free AA-supplemented diets and digestible Lys level (+20%), and Lys:AA ratios above recommendations. When the interaction
temperature × diet was significant based on the one-way ANOVA analysis (p < 0.05), a Tukey test was used to perform post hoc comparisons for
each temperature. Di�erent superscript letters indicate significant di�erences between diets (p < 0.05). *Significant di�erence (p < 0.05) in housing
temperature within diets. For both, Simpson’s and Shannon’s indexes, eight samples/treatment/day were used. (A) Shannon’s and (C) Simpson’s D
indexes of alpha-diversity across pigs’ diet at the beginning (day 0) and at the end (day 27) of the experiment, in each housing temperature,
respectively. (B) Shannon’s and (D) Simpson’s D indexes of alpha-diversity across pigs’ housing temperature, on days 0 and 27, in each diet,
respectively. All treatments had equal fecal sample size (n = 8) on both days, except for TN LPAA+ on day 0 (n = 7). Each animal was considered an
experimental unit throughout the analysis.

Collectively, our systematically analytical approach resulted
in a list of 34 potentially differential fecal taxonomic biomarkers
that could be differentially affected by diet and/or temperature
over time, including Acidaminococcus, Blautia, Catenibacterium,
Christensenellaceae R7, Clostridium sensu stricto 1, Clostridium
sensu stricto 6, Corynebacterium, Dorea, E. hallii, E. nodatum,
Intestinibacter, Lachnospiraceae NK4A136, Lactobacillus,
Megasphaera, Mogibacterium, Oscillospira, Peptococcus,
Phascolarctobacterium, Prevotella, Prevotellaceae NK3B31,
Prevotellaceae UCG 004, Prevotellaceae UCG 001, Rikenellaceae
RC9, Ruminococcus, R. gauvreauii, Sarcina, Solobacterium,
Streptococcus, Subdoligranulum, Succinivibrio, Syntrophococcus,
Terrisporobacter, Treponema, and Turicibacter.

3.5 Temporal changes across major taxa
relative abundances

The heat map (Figure 6) depicts the taxa distribution over time
(1change) and shows a partial separation of TN and CHS pigs
at the individual animal level. Overall, the hierarchical clustering
divided the pigs into three main clusters: (1) 8 TN pigs (72.7%) and
3 CHS pigs (27.3%) with a clear separation, (2) 6 TN pigs (66.7%)
and 3 CHS pigs (33.3%) clustering together but less distant from
the next cluster, and (3) encompassing 9 TN pigs (33.3%) and the

remaining 18 CHS pigs (66.7%). The taxa group, which comprised
Acidaminococcus, Blautia, Catenibacterium, Corynebacterium,
Dorea, E. nodatum, Lactobacillus, Mogibacterium, Peptococcus, R.
gauvreauii, Streptococcus, Subdoligranulum, and Syntrophococcus,
was found to be most abundant in the first cluster (Figure 6, Cluster
1b). In contrast, the taxa group comprised of Christensenellaceae
R7, Clostridium sensu stricto 1, Clostridium sensu stricto 6, E.
hallii, Intestinibacter, Lachnospiraceae NK4A136, Megasphaera,

Oscillospira, Phascolarctobacterium, Prevotella, Prevotellaceae

NK3B31, Prevotellaceae UCG 004, Prevotellaceae UCG 001,
Rikenellaceae RC9, Ruminococcus, Sarcina, Solobacterium,
Succinivibrio, Terrisporobacter, Treponema, and Turicibacter were
found to be most abundant in the third cluster (Figure 6, Cluster
3a). These findings revealed the microbiota compositional changes
in response to temperature, since cluster 1 was mainly composed
of TN pigs, whereas cluster 3 was composed of CHS pigs.

3.6 Statistical assessment of core biomarker
taxa and their correlation structure

Further assessment of differentiable taxa across
treatments was performed using a one-way ANOVA model
(Supplementary Table S9), and the most important taxa were
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FIGURE 4

Beta-diversity analysis of the fecal microbiome composition of pigs. The Bray-Curtis distance matrix was used to calculate the beta-diversity
between treatments. Housing temperatures: thermoneutrality and cyclic heat stress. Diets: HP, high crude protein (CP) diet; LPAA, low CP-free amino
acid (AA) supplemented diet; LPAA+, low CP-free AA-supplemented diets and digestible Lys level (+20%), and Lys:AA ratios above recommendations.
Two principal coordinates (PC1, PC2) are shown for fecal samples at the beginning (day 0) and the end (day 27) of the experiment, for each housing
temperature (A), and diet (B). Testing all factors (and interactions) by PERMANOVA model supports diet × temperature interactions (p = 0.028, R² =
0.03171), temperature (p = 0.006, R² = 0.03002), and day (p = 0.001, R² = 0.30642) e�ects, but not Diet (p = 0.487, R² = 0.0127) e�ects (shown in
Supplementary Table S3). Testing factors by the PERMANOVA model on Day 0 (shown in Supplementary Table S4) support diet × temperature
interactions (p = 0.017, R² = 0.09406), but not the single e�ect of diet (p = 0.703, R² = 0.02873) or temperature (p = 0.081, R² = 0.04112). Testing
factors by the PERMANOVA model on day 27 (shown in Supplementary Table S5) support the temperature e�ect (p = 0.004, R² = 0.08777) but not
the diet e�ect (p = 0.696, R² = 0.03008) or their interactions (p = 0.467, R² = 0.03847). When the interaction diet × temperature was significant based
on the PERMANOVA model (p < 0.05), a one-way ANOVA analysis was used to evaluate the beta-diversity decomposition analysis of diet and
temperature (Supplementary Figure 1). All treatments had equal fecal sample size (n = 8), except for TN LPAA+ (n = 7). Each animal was considered
an experimental unit throughout the analysis.

depicted in Figure 7. Mogibacterium was identified as significantly
differentiable by diet × temperature interaction (Figure 7A, p

< 0.01). In the CHS condition, the feces of pigs fed the LPAA+
diet had a higher 1change of Mogibacterium than that of pigs
fed the LPAA diet, which showed a negative 1change (reduction
in proportion) over time. Feces of pigs fed the HP diet had an
intermediate 1change (p = 0.030). Under TN conditions, no diet
effect was observed for the Mogibacterium (p = 0.184). In terms
of Temperature effects and considering the TN group as a control
(non-limiting condition of housing temperature), the feces of pigs
raised under CHS conditions increased the relative abundance of
Corynebacterium (Figure 7B), when compared to the feces of TN
pigs (p < 0.001). An absence of change in the relative abundance
of the E. hallii group under the CHS condition (Figure 7C) and a
slight increase under TN conditions was detected (p = 0.045). For
Prevotella (Figure 7D, p = 0.029) and Turicibacter (Figure 7G, p
= 0.040), a slight change in the relative abundance for the CHS
condition was observed when compared to the changes observed
in pigs raised under TN conditions. Solobacterium (Figure 7E)
reduced the relative abundance in the CHS condition compared
to TN (p = 0.012). Streptococcus (Figure 7F) was decreased in the
feces of TN pigs when compared to the feces of CHS pigs (p <

0.001). As for the diet effect, pigs fed the LPAA + diet (Figure 7H)

increased the relative abundance of Oscillospira compared to pigs
fed the HP diet, which reduced the proportion of this taxon.
The feces of pigs fed the LPAA diet had an intermediate change
in relative abundance (p = 0.025) for Oscillospira. In this study,
temperature had the most substantial statistical effect across
individual taxa, driving community structure changes over time.
Significant positive and negative correlations were found between
taxa, which were considered the major core taxa present across
treatments over time and potentially identified as differential
taxonomic biomarkers. Overall, regardless of treatment, the
number of stronger positive Pearson’s correlation values was more
pronounced than negative Pearson’s correlation values (Figure 8).

4 Discussion

Despite the emerging concern about HS in livestock, effective
changes in modern swine production operations require dramatic
changes in infrastructure, which can be cost-prohibitive at first or
ever. However, alternative strategies related to nutrition in terms of
dietary level of nutrients (e.g., reduced crude protein and increasing
in functional AA), have been studied aiming at maximizing
performance metrics (feed intake, feed conversion, and meat
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FIGURE 5

Structure of fecal microbiome community. The phylogenetic co-occurrence networks of pig’s fecal microbiota at the beginning (day 0) and the end
(day 27) of the experiment, according to dietary treatment for each housing temperature. Housing temperatures: (A) thermoneutrality and (B) cyclic
heat stress. Diets: HP, high crude protein (CP) diet; LPAA, low CP-free amino acid (AA) supplemented diet; LPAA+, low CP-free AA-supplemented
diets and digestible Lys level (+20%), and Lys:AA ratios above recommendations. Only the 50 most abundant microbial taxa were used to build the
association-based networks. Associations between taxa were computed by Spearman’s correlation. For sparsification, only taxa pairs with an
absolute association/dissimilarity >3 were used. Node size is proportional to the eigenvector centralities of the community, and the di�erent colors
indicate the modules (clusters) within the network. The forest green and red edges color indicates the estimated positive and negative Spearman’s
correlations, respectively, while the edge thickness indicates the force of relationships. All treatments had equal fecal sample size (n = 8) on both
days, except for TN LPAA+ on day 0 (n = 7). Each animal was considered an experimental unit throughout the analysis.

deposition) for herds raised under stressful situations (Morales
et al., 2018; de Oliveira et al., 2022). Taking into account (1) the
potential modulatory effect of protein and functional AA levels on
the intestinal microbial ecosystem (Lin et al., 2017), highlighting
that diet is an essential factor in controlling the composition
and metabolic activities of the microbiota, and (2) the limited
information regarding the interactive effects between the host, diet
and temperature (HS); we sought to evaluate the fecal microbiome
composition, community structure, taxonomic distribution, and
taxa correlation across pigs housed under different temperatures
fed diets enriched with functional amino acids expected to help

pigs overcome HS situations. A primary goal of this study was
to identify a set of fecal microbiome taxa under the influence
of diet or temperature effects, aiming to understand which
bacteria could be responsible for physiological adaptation to HS.
Based on a robust and systematic analytical pipeline, and under our
experimental conditions, we identified a list containing 34 potential
biomarkers (possibly even functionally keystone taxa), among
which known members of the swine core fecal microbiome for
growing pigs were prominently present: Acidaminococcus, Blautia,
Corynebacterium, Clostridium, Dorea, E. hallii, Intestinibacter,
Lactobacillus, Megasphaera, Oscillospira, Prevotella, Ruminococcus,
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FIGURE 6

Heat map showing the di�erences in taxon distribution in pig’s feces, based on 1change of transformed [log2 (f + 1)] taxonomic biomarkers of the
most abundant taxa (cut-o� > 2%), the structure of core community (Figure 5), and Linear Discriminant Analysis (LDA), E�ect Size (LeFse)
(Supplementary Figure 4). The 1change was calculated as follows: 1change (%) = (relative abundance on day 27—relative abundance on day
0)/relative abundance on day 0. Housing temperatures: thermoneutrality (TN) and cyclic heat stress (CHS). Diets were HP, high crude protein (CP)
diet; LPAA, low CP-free amino acid (AA) supplemented diet; LPAA+, low CP-free AA-supplemented diets and digestible Lys level (+20%), and Lys:AA
ratios above recommendations. All treatments had equal fecal sample size (n = 8), except for TN LPAA+ (n = 7). Each animal was considered an
experimental unit throughout the analysis.

Solobacterium, Streptococcus, Subdoligranulum, Succinivibrio,
Treponema, and Turicibacter (Holman et al., 2017; Wang et al.,
2019, 2021; Li et al., 2020; Luo et al., 2022; Dong et al., 2023).

Among all major differentiable fecal microbiome taxa found
in this study, E. hallii group, Prevotella, Solobacterium, and
Turicibacter taxa were pronouncedly affected by Temperature,
being enriched over time under the thermal neutral condition.
Prevotella is one of the most predominant genera across the large
intestine of pigs (Looft et al., 2014; Holman et al., 2017) and is
a keystone taxon (increased abundance post-weaning) as it has a
profound influence on the community structure and function of
the gut microbiota in pigs. Eubacterium has also been reported
as a predominant genus in the microbiota of pigs (Xiao et al.,
2016). Whereas Prevotella is capable of producing succinate and
acetate (Franke and Deppenmeier, 2018; Amat et al., 2020; Iljazovic
et al., 2020) as an end product of anaerobic microbial fermentation,
and Eubacterium is capable of producing butyrate (Levine et al.,
2013), although both genera are associated with the production
of propionate (Strobel, 1992; Engels et al., 2016; Trachsel et al.,
2022; Sebastià et al., 2024). Propionate may strengthen intestinal
barrier, promote immune cell function, energy source for the
host apart from colonocytes, which typically use butyrate, and
may affect the secretion of satiety hormones that can affect
feed consumption (Zhang et al., 2019, 2022; Zhao et al., 2019;
Verbeek et al., 2021; Yang and Zhao, 2021; Vasquez et al., 2022;
Andrani et al., 2023; Pandey et al., 2023; Rathert-Williams et al.,

2023). Producing succinate by Prevotellamay also promote glucose
homeostasis through intestinal gluconeogenesis (De Vadder et al.,
2016). However, we lack further understanding of both species
and strain-level diversity of these microbes, which may refine
our understanding of community assembly and responsiveness to
dietary changes, as research continues to make progress in this area.
For instance, at least two species of P. copri and P. stercorea are
expected to be present in the pig gut microbiome (Amat et al.,
2020), as in humans (Yeoh et al., 2022). Phylogenetic analysis of
P. copri genomes from human isolates suggests distinguishable
geographical signatures that might be due to dietary changes
in the Western population (Tett et al., 2019), which, combined
with in vitro studies, points toward variability in fiber structural
utilization across strains (Fehlner-Peach et al., 2019)—the central
ecological premise for a novel symbiotic developmental strategy.
Prevotella is also negatively associated with other quantitative
traits, such as shedding of Salmonella Typhimurium and the
Monophasic variant of S. Typhimurium in pigs, which could
affect performance through inflammation, and food safety by
contamination of products postslaughter, pointing to a potential
pleiotropic beneficial effect of this keystone member of the swine
microbiome post-weaning (Bearson et al., 2013; Naberhaus et al.,
2020; Gomes-Neto et al., 2023; Kempf et al., 2023). Regarding the
link between animal production traits and microbiota, Prevotella
has shown a positive association with feed intake (Yang et al.,
2018) and body weight gain (Mach et al., 2015), while Eubacterium
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FIGURE 7

Di�erential taxonomic biomarkers (A - Mogibacterium, B - Corynebacterium, C - Eubacterium hallii group, D - Prevotella, E - Solobacterium, F -
Streptococcus, G - Turicibacter, H - Oscillospira). Delta (1) change [log2 (f + 1)] of the proportion of taxonomic biomarkers of pig’s fecal microbiome
a�ected by temperature (Temp), Diet, or their interaction over the experiment. E�ects were evaluated in selected significant taxa based on 1 change
taxonomic biomarker relative abundance of the most abundant taxa (cut-o� > 2%), the structure of core community (Figure 5), and Linear
Discriminant Analysis (LDA), E�ect Size (LeFse) (Supplementary Figure 4). Tests for all non-significant selected taxa are shown in
Supplementary Table S9. The 1 change was calculated as follows: 1 change (%) = (relative abundance on day 27—relative abundance on day
0)/relative abundance on day 0. Housing temperatures: thermoneutrality (TN) and cyclic heat stress (CHS). Diets: HP, high crude protein (CP) diet;
LPAA, low CP-free amino acid (AA) supplemented diet; LPAA+, low CP-free AA-supplemented diets and digestible Lys level (+20%), and Lys:AA ratios
above recommendations. Statistical analysis was performed using the ANOVA model. When the temperature × diet interaction was significant (p <

0.05), a Tukey test was used to perform post hoc comparisons. Di�erent superscript letters indicate significant di�erences between diets according
to housing temperature.

has demonstrated a strong positive correlation with body weight,
body weight gain, and fecal content of butyrate (Oh et al., 2020;
Xu et al., 2021), It suggests that both genera may have a role in
mediating pigs growth performance. In practice, that translates to
a necessity to consider the ecology and genetic diversity of a given
species to develop host-adapted symbiotic strategies, considering
also the scope of the phenotype in question (e.g., colonization

resistance, host metabolism, etc.) (Walter et al., 2018; Hitch et al.,
2022).

In our experimental model, CHS also evoked an enrichment of
Corynebacterium over time. It should be noted that this enrichment
was the most expressive among all the major differentiable fecal
microbiome taxa enriched for heat-stressed pigs. Corynebacteria
are typically present in the genital tract of pigs (Poor et al., 2017),
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FIGURE 8

Correlation structure analysis [log2 (f + 1)] of selected significant taxa in pig’s feces based on 1change taxonomic biomarker relative abundance of
the most abundant taxa (cut-o� > 2%), the structure of core community (Figure 5), and Linear Discriminant Analysis (LDA), E�ect Size (LeFse)
(Supplementary Figure S4). The 1change was calculated as follows: 1change (%) = (relative abundance on day 27—relative abundance on day
0)/relative abundance on day 0. Pearson’s correlation coe�cients are expressed by an ellipse, reordered by hierarchical clustering for each
temperature and each diet. Temperatures: thermoneutrality (TN) and cyclic heat stress (CHS). Diets were HP, high crude protein (CP) diet; LPAA, low
CP-free amino acid (AA) supplemented diet; LPAA+, low CP-free AA-supplemented diets and digestible Lys level (+20%), and Lys:AA ratios above

(Continued)
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FIGURE 8 (Continued)

recommendations. The ellipses have their eccentricity parametrically scaled to the correlation value. Ellipses sloping top to the right or top to the left
indicate positive and negative correlations (p < 0.05), for each trait pair, respectively. The shading of the ellipse also denotes the strength of the
relationship. All treatments had equal fecal sample size (n = 8), except for TN LPAA+ (n = 7). Each animal was considered an experimental unit
throughout the analysis.

and the upper respiratory tract and are often non-pathogenic (Yibin
et al., 2016). Considering that HS may trigger mucosal damage
and decline disease resistance by compromised immune responses
(Gabler et al., 2018; Xiong et al., 2022), which can predispose
pigs to opportunistic pathogens such as Corynebacteria (Bernard,
2012; Tauch et al., 2016). Therefore, a deeper understanding of
the role of this genus for pigs under HS conditions is encouraged,
especially because pigs might be asymptomatic carriers of an
array of Corynebacterium species (Poor et al., 2017), for example,
the potentially zoonotic species C. ulcerans, C. confusum, and C.

amycolatum (Schuhegger et al., 2009; Boschert et al., 2014). The
emerging data on multidrug resistance in this genus (Poor et al.,
2017) cause concern for animal and public health.

Turicibacter appears to be a biomarker for autism spectrum
disorder (Gerges et al., 2024), therefore being associated with gut-
brain axis function (Borsom et al., 2023), since it is predicted
to impact intestinal serotonin secretion and neurotransmission
(Wang et al., 2020; Lin et al., 2023). Serotonin requires tryptophan
for its synthesis, and signaling is regulated by G-protein-
coupled receptors (GPCRs) and ligand-gated cation channel
heteropentameric receptors, which can influence gut motility as
well (Gershon and Tack, 2007;Masson et al., 2012; Shah et al., 2021).
As with Prevotella, the genetic diversity of Turicibacter strains may
differentially affect their gut role by altering bile acid production,
serum cholesterol, triglycerides, and adipose tissue mass in mouse
models (Lynch et al., 2023). In a study of social stress in pigs,
Nguyen et al. (2023) found Turicibacter to be enriched in pigs
under stress, suggesting potential participation in physiological
adaptation, which could be the case in our study since pigs under
HS were not enriched with it.

In agreement with the outcomes of the present research, Hu
et al. (2021) reported that Streptococcus and Clostridium were the
top two taxa in the total distribution of the colon microbiota of
HS pigs. Although Xiong et al. (2022) described an increase of
Streptococcus in the microbiome of HS pigs, the present study
reported a slight reduction over time of Streptococcus in pigs under
cyclic HS, when compared to the reduction observed for pigs
raised under thermoneutrality. Streptococcus has been reported
to cause intestinal inflammation and apoptosis in pigs raised
in HS conditions (Xiong et al., 2022), which leads to impaired
performance. However, further studies on species and genetic
diversity are needed.

With the advancement of technology-based omics, recent
research has accumulated evidence demonstrating the influence of
the gut microbiota on feeding behavior and energy metabolism
through the communication axis between the gut and liver
(Ringseis et al., 2020). Several gut-derived compounds may
play a role in the gut-microbiota host communication, such as
bile acids, microbial-associated molecular patterns, methylamines,
amino acid-derived metabolites, and SCFA (Ringseis et al., 2020;
Ringseis and Eder, 2022). Therefore, any microbiome disturbance
might trigger changes in the ratio of commensal/mutualistic
intestinal bacteria and substantially influence the production of

these compounds, upregulating or downregulating the peripheral
feedback signals’ secretion. For instance, SCFAs are reported to
stimulate the peripheral secretion of leptin, an acute-appetite-
inducing signal, which is tightly regulated according to energy
homeostasis and regulates several physiological processes, such as
feeding behavior andmetabolic rate (Xiong et al., 2004). Also, SCFA
affects the secretion of incretins, such as peptide YY and GLP-1 and
glucagon-like peptide 1 (Lin et al., 2012), which are acute satiety-
inducing signals secreted during the preabsorptive phase upon
sensing of feed or specific nutrients like amino acids (Ringseis et al.,
2020). Therefore, the contradictory effects of SCFA on feed intake
regulation cannot be associated solely with the increase or decrease
in production by itself. Instead, the compositional profile of SCFA
matters because the extent to which each specific SCFA contributes
to feed intake regulation is different (Lin et al., 2012). It might
likely help to justify the drop in feed intake reported for the heat-
stressed pigs from where the samples for this study were obtained
(de Oliveira et al., 2022), supported by other trials that linked a
reduction in feed intake with changes in gut microbiota, and hence
the profile of SCFA produced from microbial fermentation (Xia
et al., 2022; Xiong et al., 2020; Hu et al., 2021).

Studies have explored the role of gut microbiota in pig feeding
behavior (He et al., 2022a) and shown the sensitivity of microbiota
to changes in ambient temperature (He et al., 2019; Xiong et al.,
2020; Le Sciellour et al., 2019). However, the in-depth literature
analysis on the interaction between microbiome, feeding behavior,
and heat stress. Although the feeding behavior in conjunction with
gut microbiome has been investigated to be used as a predictor of
body composition traits of finishing pigs (He et al., 2022b), the field
is just beginning to explore the role of gut microbiome interacting
with feed behavior in heat stress conditions and the role of the
gut-brain axis on it.

Our unique experimental approach with the ability to
predictably alter environmental temperature and measure
individual animal feed intake, provides some future great
opportunities that are worth highlighting: (1) the need to increase
the sample size and more evenly spaced sampling of the fecal
microbiome for correlative analysis with feed intake and behavioral
data; (2) the need to consider how randomization is performed
at the beginning of a study since it can create a bias due to the
initial microbiome composition (might become a blocking factor,
for example, testing HS in two groups: high in Prevotella +

Turicibacter vs. low in Prevotella + Turicibacter) to predictably
access how dietary changes and housing under (high vs. normal vs.
low) temperature would influence changes of such taxa over time;
(3) the need for qPCR for absolute quantification of target bacteria
and more detailed temporal dynamics (the use of qPCR also allows
for increasing the sample size); (4) the need for isolation of such
taxa and whole-genome sequencing for further characterization
and creating a collection of potential probiotics; and (5) the need
to get more species level information for community and taxa level
analysis potentially using deep metagenomics in selected samples
and do functional measuring through transcriptomics.
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5 Conclusion

This uniquely designed study identified a collective list of
bacterial genus taxa that may individually vary in the predictive
power but collectively assist in discerning between animals
undergoing CHS and those that are not. Among the strongest
predictors are Prevotella, E. hallii, and Turicibacter, which might
even be associated with physiological adaptation to CHS or reflect a
microbiome bottleneck that could be causatively addressed through
future studies controlling for initial microbiome composition. This
suggests a potential role for SFCA and serotonin in regulating
gut function during CHS, since these are expected metabolic
products of those taxa. Therefore, we propose that our experimental
approach and microbial quantification pipeline can be refined and
expanded to achieve such goals.
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