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Salix psammophila sand barriers are the main measure used in desertification 
control engineering technology, which is widely used in China’s northwest desert 
region. To clarify the change characteristics and driving factors of soil enzyme 
stoichiometric ratios and microbial metabolic limitation during the decay of S. 
psammophila sand barriers, we  determined soil basic physical and chemical 
properties and C:N:P stoichiometric ratios in the sand-buried portion of the S. 
psammophila sand barriers from 1 to 10 years. The results showed that (1) soil 
C:N showed an increasing trend, but soil N:P showed a decreasing trend over 
time. The activities of leucine aminopeptidase, β-1,4-n-acetylglucoside, and 
alkaline phosphatase first increased and then decreased with the increase of 
S. psammophila sand barrier years, and reached the maximum value at 6 years. 
(2) Redundancy analysis revealed that soil stoichiometric ratios were the main 
factors driving soil enzyme activities and their stoichiometry. (3) The soil enzyme 
C:N:P stoichiometric ratio was approximately 0.8:1:1. The enzyme vector lengths 
ranged from 0.66 to 1.09, and the vector angles ranged from 41.86° to 49.70°. 
Soil microorganisms were limited by nitrogen in the early stages (<5 years), while 
in the later stages (5–10 years) they were phosphorus-limited. Therefore, in the 
process of S. psammophila sand barriers assisting in the restoration of vegetation, 
it is considered to add an appropriate amount of nitrogen fertilizer to the soil in 
the first 5 years and add a small amount of phosphate fertilizer in the last 5 years 
to ensure ecosystem stability. Our findings are of great significance for artificial 
interventions for vegetation restoration and desert ecological conservation in 
desert areas.
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1 Introduction

As the main sandy shrub native species in the Kubuqi Desert, S. psammophila has strong 
drought and high-temperature tolerance and sprouting ability, which makes it a good material 
for sand barriers. Usually, the stem of S. psammophila is cut into a length of 50–60 cm, half of 
it is inserted into the sand soil, and half is exposed to the atmosphere, and laid on the surface 
of the dune according to different specifications (e.g., 1 m × 1 m or 1.5 m × 1.5 m, etc.) to 
change the speed, direction, and structure of the wind-sand flow (Gao et al., 2013). Compared 
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with some traditional wind-tight or tightly structured sand barriers, 
such as clay, pebbles, etc., the S. psammophila sand barrier is a wind-
transparent structure with a more significant protective effect, and it 
has the dual functions of plant measures and engineering measures. 
Therefore, it is one of the important measures for artificial intervention 
of desertification control means in the arid region of Northwest China. 
Many previous studies have shown that it can effectively reduce near-
surface wind speed, increase surface roughness, improve soil fine 
particulate matter and soil organic matter, and promote vegetation 
recovery (Gao et al., 2013; Zhang et al., 2016; Dai et al., 2019).

However, the lower part of the S. psammophila sand barriers, due 
to long-term burial in a sandy environment, is subjected to the 
phenomenon of decay and disintegration by the irregular hygroscopic-
desorption of soil moisture and decomposition by microorganisms 
(Wang et al., 2021a). Inevitable natural degradation releases nutrient 
elements C, P, and K from the sand barriers to the soil in a fluctuating 
state (Wang et al., 2021b). In this process, the community structure 
and diversity of soil microorganisms are also directly affected (Liang 
et al., 2021; Liang et al., 2023). Soil microorganisms play an important 
role in soil organic matter decomposition and nutrient transformation 
(Shi et al., 2020), and they secrete extracellular enzymes according to 
changes in soil nutrients, thus obtaining carbon (C), nitrogen (N), and 
phosphorus (P) from the soil to meet their own growth needs. This 
process is a catalyst and key driver of soil nutrient cycling and material 
transformation (Cui et al., 2020; Hill et al., 2014). The absorption and 
utilization of nutrients such as C, N, and P in soil are regulated by soil 
enzymes in the environment (Wang et  al., 2015). It is generally 
believed that β-1,4-glucosidase (BG), alkaline phosphatase (ALP), 
β-1,4-N-acetylglucosaminidase (NAG), and leucine aminopeptidase 
(LAP) can catalyze the production of bioavailable terminal monomers 
to regulate C, N, and P in soil (Sinsabaugh et al., 2008). These enzymes’ 
activities can serve as proxy indicators of microbial resource allocation 
for C, N, and P acquisition (Schimel and Weintraub, 2003; Fanin 
et al., 2016).

The ratio of microbial extracellular enzymes can reflect the 
biochemical balance between microbial metabolism and nutritional 
requirements (Sun et  al., 2021), and is often used to measure the 
nutrient requirements and limitations of soil microorganisms (Hill 
et al., 2010). Sinsabaugh et al. (2010) put forward the concept of soil 
enzyme stoichiometry and found that the stoichiometric ratio of soil 
C:N:P enzyme activity on the global scale, that is, ln BG: ln(NAG + 
LAP): ln ALP, was 1:1:1 (Zhong et al., 2021). However, the expression 
of soil microbial enzymes will vary with changes in the soil 
environment, and soil enzymatic ratios may no longer follow a 1:1:1 
relationship. The C:N:P ratio of enzyme activities may be influenced 
by climate, vegetation, soil properties, and human activities (Xu et al., 
2017). Existing studies have not concluded that soil microbial enzyme 
activity is significantly affected by a certain factor, and most findings 
vary by study area. For example, Mo et  al. (2020) found that soil 
enzyme activity was significantly associated with several soil 
physicochemical properties. Li et al. (2021) found that total potassium 
was a key factor affecting soil enzyme activity in a study of typical 
farmland. Tan et al. (2021) also reported that soil enzyme activity was 
mainly nutrient-driven. However, the relationship between soil 
enzyme activities and nutrient changes during the decay of 
S. psammophila sand barriers is not known.

In recent years, research on S. psammophila sand barriers has 
focused on the physicochemical properties of sand barrier degradation 

under UV irradiation (Wang et  al., 2024), soil physicochemical 
properties, changes in microorganisms, and shifts in biomass in the 
decay process of sand barriers (Liang et al., 2021; Liang et al., 2023). 
Changes in soil enzyme stoichiometric ratio and microbial metabolic 
restriction during the decay of the S. psammophila sand barrier are 
still poorly understood. Therefore, in this paper, the soil around the 
sand S. psammophila sand barriers in different years of the Kubuqi 
Desert was selected as the research object to investigate the change of 
soil enzyme activities and the nutrient limitation of microorganisms. 
We  make the following assumptions: (1) The decay process of 
S. psammophila sand barriers may promote an increase in soil enzyme 
activities and a responsive relationship with soil properties. (2) With 
the increase of sand barrier decay, soil enzyme C:N:P stoichiometry 
may change, and microbial metabolism is limited by one or more 
nutrients. This study was to further clarify the characteristics and 
driving factors of soil enzyme activities and enzyme stoichiometry in 
the process of S. psammophila sand barrier decay to provide a scientific 
basis for the restoration of desert ecosystems and the management of 
soil nutrients.

2 Materials and methods

2.1 Study area

The study area is located in the Kubuqi Desert in Duguitala 
Town, Ordos, Inner Mongolia (Figure 1). This region is located in the 
north of the ridge line of the Ordos Plateau (40°29′16″–40°29′35″N, 

108°40′09″–108°41′21″E) and has a temperate continental arid 
climate with a great temperature difference between seasons, 
abundant sunshine, and a short frost-free period. The average 
temperature in January is −13.4°C, the average temperature in July is 
22.8°C, the average annual precipitation is 311.8 mm, and the annual 
average wind speed is 2.8 m/s. Sandy soils are dominated by medium 
and fine sands with low clay and powder granules. Landform types 
include mobile dunes, fixed dunes, and semi-fixed dunes. Vegetation 
types are primarily Salix psammophila, Agriophyllum squarrosum, 
Psammochloa villosa, Corispermum hyssopifolium, and Artemisia 
ordosica. To ensure the normal operation of the road through the 
sand, prevent road damage caused by wind erosion or sand burial, 
and reduce the intrusion of wind and sand flow, semi-concealed 
S. psammophila sand barriers were installed on both sides of 
the expressway.

2.2 Experimental design

In July 2021, we collected samples of S. psammophila sand barriers 
laid on gentle dunes on both sides of the Xingba sand-traversing 
expressway. In this study, all study sites were located next to a highway 
through the desert, with flat terrain. These S. psammophila sand barriers 
were installed every year in cooperation with the local forestry 
department, which was mainly used for wind and sand protection of 
desert highways and long-term observation of the experiment. Thus, it 
was possible to accurately determine the age of the sand barriers. Using 
the method of “space” instead of “time,” the sample plots of 1–10 years 
were selected for the study. Three 1 m × 1 m grids were randomly 
selected in each sample area, with an interval between the grids of over 

https://doi.org/10.3389/fmicb.2025.1585493
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liang et al. 10.3389/fmicb.2025.1585493

Frontiers in Microbiology 03 frontiersin.org

10 m. One sample was taken from the center of each of the four sides of 
each grid, and the 12 samples taken from each sample plot were mixed 
homogeneously to form one test sample. There are three replicates of 
sample plots of the same age. A total of 360 samples were collected. The 
test samples were collected from the soil in the most serious part of the 
S. psammophila sand barrier decay, and the thickness was 5 cm. We first 
gently brush the soil off the surface of the sand barrier and collect it into 
the envelope. A small shovel was then used to collect soil that was 
tightly packed within 1 cm of the sand barrier. After the sample was 
mixed evenly, it was placed in a Ziplock bag and transported back to the 
laboratory in a refrigerated box (4°C). The soil samples were passed 
through a 2-mm sieve indoors and divided into two parts. One part was 
placed in a cool place and air-dried for the determination of soil 
physical and chemical properties, while the other part was placed in a 
refrigerator at 4°C for the determination of enzyme activities.

2.3 Determination of soil physicochemical 
properties

Soil water content (SWC) was determined using the oven-drying 
method. The soil pH value (water:soil = 2.5:1) was measured using a 
PHSJ-4A pH meter (Zhangqiu Meihua International Trading Co., 
China). The soil organic carbon (SOC) was determined using the 
Walkley-Black method (Nelson and Sommers, 1996). The soil available 
nitrogen (AN) was obtained by the continuous alkali hydrolysis 
reduction diffusing method (Cornfield, 1960). The soil available 
phosphorus content (AP) was measured by the Olsen method (Olsen 
and Sommers, 1982). The content of available potassium (AK) in soil 
was obtained by NH4OAc extraction and flame photometry. The soil 
total nitrogen (TN) was determined using the semi-micro Kjeldahl 
method (Bremner, 1996), and the determination of soil total 
phosphorus (TP) was conducted using the sodium hydroxide fusion-
molybdenum antimony anti-colorimetric method. Soil C, N, and P 
stoichiometric ratios use the ratio between SOC, TN, and TP.

2.4 Soil enzyme activity assay

Soil extracellular enzyme activity was determined by the 
96-microtiter enzyme plate fluorescence assay (Saiya-Cork et  al., 

2002). For BG, NAG, LAP, and ALP assays, 1 g of fresh soil from a 
2 mm sieve was weighed, and 125 mL of distilled water was added and 
shaken for 2 h (25°C, 180 r/min) to form a suspension. The sample 
suspension, a substrate solution, and a buffer were injected into a 
96-well enzyme standard plate in a specific sequence using a 
multichannel pipette. After incubation for 4 h at 25°C under light-
proof conditions, 50 μL of 0.5 mol L−1 NaOH solution was added to 
each well to terminate the reaction, and 250 μL was transferred to BG, 
which is closely related to C cycling labeled 96-well plates (excitation 
wavelength 365 nm, emission wave length 450 nm). The soil enzyme 
activity was calculated after a negative control and quenching 
correction. The unit of enzyme activity was nmol g−1 h−1.

2.5 Data analysis

The vector length (Vector L) and angle (Vector A) of enzyme 
stoichiometry are calculated using Equations 1, 2 (Moorhead et al., 2016):
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In the formula, the length of Vector L indicates the degree of soil 
microbial C limitation. The size of Vector A indicates the degree of soil 
microbial N and P limitation; when Vector A deviates from 45°, the 
soil is N-limited or P-limited, and the greater the upward deviation, 
the stronger the P restriction, while the greater the downward 
deviation, the stronger the N limitation. ATAN2 is the arc tangent of 
the line from the origin to the point [lnBG:ln ALP, and 
lnBG:ln(NAG + LAP)]. Degrees represent the tangent angle.

The data were tested for normality and homogeneity of variance. 
Data that had a non-normal distribution and non-homogeneity of 
variance were log-transformed. One-way analysis of variance was used 
to analyze differences in the soil physicochemical properties, soil enzyme 
activity, enzyme stoichiometry ratios, vector length, and vector angle of 

FIGURE 1

Location of the study area (Hangjin County, Ordos, Inner Mongolia, China).
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the S. psammophila mechanical sand barriers of different ages. Soil C:N 
enzyme activity ratios were expressed as ln(BG):ln(NAG + LAP), soil 
C:P enzyme activity ratios as ln(BG): ln(ALP), and soil N:P enzyme 
activity ratios as ln(NAG + LAP):ln(NAG + LAP). Vector transformation 
of enzyme stoichiometry translates biochemical reactions into a 
computable mathematical framework. Tukey was used for post-hoc 
multiple comparisons. Canoco 5.0 software was used to complete the 
redundant relationship analysis between soil physicochemical properties, 
soil enzyme activity, and enzyme stoichiometric ratio. Origin 2021 and 
GraphPad Prism 9.4.0 software were used for drawing.

3 Results

3.1 Physico-chemical properties of Salix 
psammophila sand barrier soil in setting 
different years

There were differences in soil properties around the 
S. psammophila sand barrier at different years (Figure 2). SWC and AK 
were significantly higher than the other groups at 7 years (p < 0.05), 
with values 2.73 and 1.46 times higher than those at 1 and 2 years, 
respectively (Figures 2a,f). The first 5 years of decaying S. psammophila 
sand barrier can increase the content of AK, but most of them showed 
no significant difference after 5 years. As shown in Figures 2b,f, SOC 
and AK generally showed a trend of increasing first and then 
decreasing, with levels ranging from 1.04 to 2.08 g/kg and 62.95 to 
91.62 mg/kg, respectively. AN was highest in the 9-year soil and was 
2.03 times higher than in the 1-year soil. The overall pH of the soil was 
alkaline (8.63–9.34), and with the increasing year of the sand barrier, 
there was a gradually increasing trend (Figure 2c). In addition, the soil 
available phosphorus around the 1-year S. psammophila sand barrier 
was significantly higher than that of the other (Figure 2d, p < 0.05).

The decay process of S. psammophila sand barriers had a 
significant effect on soil stoichiometric ratios (Figure 3, p < 0.05). With 
the increase of time, soil C:N showed an upward trend and reached 
the maximum value in 10 years (Figure 3a). Soil C:P also showed an 
overall increasing trend, but there was no significant difference after 
5 years (Figure 3b). Soil N:P showed a decreasing trend with time, but 
there was no significant difference after 7 years (Figure 3c).

3.2 Soil enzyme activity and its 
stoichiometric characteristics at different 
setting years

As shown in Figures 4a,b, the activities of LAP and NAG, which 
are involved in the N cycle, showed a trend of first increasing and then 
decreasing with time; the ALP activity, which is involved in the P 
cycle, showed a fluctuating trend of increasing first and then 
decreasing with time, with a variation range from 82.06 to 
171.85 nmol g−1 h−1 (Figure 4c); and the BG activity, which participates 
in the C cycle, showed a trend of increasing first and then decreasing 
with time (Figure 4d). The activity of NAG and LAP was significantly 
higher than that in other setting years when the S. psammophila 
mechanical sand barrier was set for 5 years and 6 years (p < 0.05), at 
1.57 and 1.48 times higher compared with that at 1 year. The BG 
activity reached the maximum value when the sand barrier was set for 

5 years, at a 2.86-fold increase compared with the mechanical sand 
barrier set for only 1 year.

As shown in Figure 5a, the ln(BG):ln(NAG + LAP) (enzyme C:N) 
varied in the range of 0.8–1.0, and there were no significant changes 
from 3 to 5 years (p > 0.05). The ln(BG):ln(ALP) (enzyme C:P) varied 
from 0.8 to 1.1, and the activity of soil enzyme C:P was significantly 
higher than that of other setting years when the S. psammophila 
mechanical sand barrier had been set for 5 years (Figure 5b, p < 0.05). 
The ln(NAG + LAP): ln(ALP) (enzyme N:P) varied in the range of 
0.8–1.1, the 5-year soil enzyme N:P was the highest, and there was no 
significant difference in the 3-year, 6-year, and 10-year soil enzyme 
N:P (Figure  5c, p > 0.05). The mean value of the soil enzyme 
stoichiometric ratio C:N:P between the S. psammophila mechanical 
sand barriers set for different numbers of years was about 0.8:1:1.

As shown in Figure 6a, when the S. psammophila sand barrier was 
set for 5 years, the length of the soil enzyme vector was significantly 
higher than that of other setting years (p < 0.05), and the Vector L of 
1–5 years varied in the range 0.70–1.09. The 6–10-year change tended 
to be stable at between 0.66 and 0.90. The soil enzyme Vector A was 
41.86°–49.70°. Vector A was less than 45° when the sand barriers were 
set between 1 year and 5 years, and Vector A was greater than 45° 
between 6 years and 10 years, where the 9-year mechanical sand barrier 
inter-perimeter soil Vector A was significantly greater compared with 
the other setting years. The length of the soil enzyme vector of 10-year-
old sand barriers decreased significantly (Figure 6b; p < 0.05).

3.3 Relationship between soil 
physicochemical properties and soil 
enzyme activity and their stoichiometric 
ratios

Soil enzyme activity and its stoichiometric ratio were set as 
response variables, and redundancy analysis (RDA) was performed 
with soil physicochemical properties and C, N, and P stoichiometric 
ratios as explanatory variables. The results showed that the first axis 
explained 55.43% of the variables, and the second axis explained 
14.49% of the variables (Figure 7). The first four ranking axes could 
cumulatively explain 71.01% of the variation in the relationship with 
soil enzyme activities and their stoichiometry (Table  1). The 
interpretation rates of C:P, N:P, C:N, AP, SOC, AK, and pH were 20.2, 
18.2, 17.8, 8.3, 4.9, 1.0, and 0.6%, respectively. Among them, C:P 
(p = 0.002), N:P (p = 0.002), C:N (p = 0.004), AP (p = 0.006), and SOC 
(p = 0.044) had significant influences on enzyme activity and the 
stoichiometric ratio (Table 2). SOC and pH had a strong negative 
correlation with the soil enzyme stoichiometric ratio. LAP, NAG, and 
BG were negatively affected by soil C:N, AN, and pH.

4 Discussion

4.1 Characteristics of physicochemical 
properties and enzyme activities of soils in 
Salix psammophila sand barriers of 
different years

The decay process of S. psammophila sand barrier bodies 
contributes to the nutrient cycling and nutrient use of desert 
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ecosystems. The decomposition of sand barriers affects soil 
physicochemical properties and microbial community structure, 
thereby impacting soil enzymatic activity. Studies have shown that 
S. psammophila sand barriers can improve soil structure and soil 
nutrients (Zhang et al., 2020). The results of this study showed that the 
SOC and AN contents and enzyme activities were the lowest when the 
sand barrier had been set for 1 year. This is mainly because the study 
area was a quicksand environment before the setting of the sand 
barriers (Zhou et  al., 2014), with low soil nutrients, microbial 

abundance, and enzymatic activity. The activity of ALP reflects the 
potential capacity of the soil to supply effective phosphorus and can 
be used to characterize the fertility of the soil (Nan et al., 2015). In this 
study, soil ALP reached its maximum value in the 6th year when the 
sand barrier was set. This may be due to the promotion of soil alkaline 
phosphatase activity by microbial communities (especially rare taxa) 
containing the alkaline phosphatase gene (phoD) (Xu et al., 2022). 
This was consistent with the findings of Liang et al. (2022) on the 
microbial biomass and soil enzyme activity of the soil of 

FIGURE 2

(a-f) Physical and chemical properties of soil around S. psammophila sand barriers in different years. SWC, soil water content; SOC, soil organic carbon; AP, 
available phosphorus; AN, available nitrogen; AK, available potassium. Different letters (i.e. a–f, in the figure) indicate significant differences between different 
setting years (p < 0.05).
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FIGURE 3

(a–c) Soil stoichiometric ratios of S. psammophila sand barriers in different years. Different letters (i.e. a–g, in the figure) indicate significant differences 
between different setting years (p < 0.05).

FIGURE 4

(a–d) Soil enzyme activity of the S. psammophila sand barrier at different setting years. Different letters (i.e.a–f, in the figure) indicate significant 
differences between different setting years (p < 0.05).
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S. psammophila sand barriers. As time increases, the sand barrier 
begins to decay, and the breakage rate reaches its highest point at 
5 years (Gong et  al., 2011). This increases the contact area of the 
S. psammophila sand barrier with the soil, replenishes the SOC and 
TN content in the soil as the degree of decay increases, and provides 

a source of C and N for the survival of microorganisms. Therefore, the 
soil microorganisms around the mechanical sand barrier increase 
(Liang et al., 2021). However, as the sand barriers are continuously 
decomposed by microorganisms, the remaining available organic 
matter decreases and the release of nutrients into the soil gradually 

FIGURE 5

(a–c) Soil enzyme stoichiometry ratios of the S. psammophila sand barrier at different setting years. Different letters (i.e. a–f etc. in the figure) indicate 
significant differences between different setting years (p < 0.05).

FIGURE 6

(a, b) Length and angle of the soil enzyme vector of the S. psammophila sand barrier at different setting years. Different letters (i.e. a–d, in the figure) 
indicate significant differences between different setting years (p < 0.05).
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TABLE 2 Importance ranking and significance test results of interpretation of soil environment variables in S. psammophila sand barrier.

Environment factors Explains/% Contribution/% Pseudo-F p Importance ranking

C:P 20.2 28.4 8.8 0.002 1

N:P 18.2 25.6 10.8 0.002 2

C:N 17.8 25.0 6.0 0.004 3

AP 8.3 11.7 5.8 0.006 4

SOC 4.9 6.8 3.8 0.044 5

AK 1.0 1.4 0.8 0.458 6

pH 0.6 0.8 0.4 0.668 7

SWC 0.1 0.2 <0.1 0.942 8

AN <0.1 <0.1 <0.1 0.986 9

declines, leading to a decrease in soil microorganisms and a 
subsequent decrease in soil enzyme activity.

4.2 Influence of soil physicochemical 
properties on soil enzyme activity and its 
stoichiometric ratio

Changes in the physicochemical properties of the soil of the 
S. psammophila sand barriers at different setting years can have an 

important impact on soil enzyme activity and its stoichiometric ratio 
(Liang et al., 2022; Wang et al., 2019). Soil C, N, and P stoichiometry 
may regulate microbial nutrient metabolism limitation by influencing 
the microbial community composition and metabolism (microbial C 
use efficiency), thereby affecting nutrient cycling in desert ecosystems. 
In this paper, it was found that AP, SOC, and C, N, and P stoichiometry 
significantly affected the soil enzyme activities and their stoichiometric 
ratios. The study found that SOC was the main factor regulating 
changes in enzyme activity and enzyme stoichiometry ratios (Zhong 
et al., 2021). Taylor et al. (2002) also showed that there was a significant 
positive correlation between soil enzymes and SOC, further 
supporting the results of the present study. This is due to the ability of 
SOC to alter soil porosity, aeration, and soil aggregate structure, 
providing a major source of substrates for enzymatic reactions in soil 
(Zhang et al., 2021) and becoming the most complex system in the soil 
solid phase. SOC is the main environmental factor that directly limits 
soil microbial activity, amount, and community composition (He 
et al., 2017). Soil pH affects the decomposition and mineralization of 
soil organic matter, the aggregation and dispersion of colloids, and 
redox processes, and has a direct impact on the rate of participation 
of soil enzymes in biochemical reactions (Xie et al., 2018). Different 
types of enzymes have different optimal pH values. In this study, pH 
was found to be strongly negatively correlated with the activity of the 
four enzymes. This indicates that weakly alkaline soils may be an 
important factor in restraining enzyme activity.

LAP, NAG, and ALP reached their maximum points at 6 years, 
while BG reached a maximum at 5 years, which was consistent with the 
findings of Tian et al. (2019). The reason for this may be that the increase 
in moisture reduces the permeability and oxygen content of the soil, and 
enhanced anaerobic microbial activity leads to the accumulation of C, 
N, and P nutrients (Zhong et al., 2021; Verhoeven et al., 2006), and a 
corresponding increase in enzyme activity. The log-transformed ratio of 

FIGURE 7

Redundancy analysis (RDA) of soil enzyme activity and its 
stoichiometric ratio with soil physicochemical factors.

TABLE 1 Parameter statistics of RDA analysis results.

Interpretation parameter RDA1 RDA2 RDA3 RDA4

Eigenvalues 0.5543 0.1449 0.0098 0.0012

Cumulative variance explained/% 55.43 69.92 70.90 71.01

Pseudo-canonical correlations 0.9173 0.6977 0.5078 0.4567

Explained fitted variation (cumulative) 78.05 98.45 99.83 100.00

The sum of all eigenvalues 1.0000
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soil C-, N-, and P-converting enzyme activities in this paper was found 
to be 0.8:1:1, which deviated from the 1:1:1 ratio of global ecosystems. 
This suggests relatively weak carbon-related metabolic activity in the 
soil, possibly resulting from inadequate organic carbon inputs or altered 
microbial community structure (Lillo et al., 2025).

4.3 Nutrient-limiting factors of Salix 
psammophila sand barriers in different 
setting years

The Vector L of soil enzyme stoichiometry first increased and then 
decreased with the years of the S. psammophila sand barrier setting. 
This demonstrated that the limitation of microorganisms by C first 
increased and then decreased with the increase in time. This may 
be  because the S. psammophila sand barriers themselves are less 
decomposed in the early stages of their installation, and thus less 
available C enters the soil. However, in the later stage of sand barrier 
decay, the content of C in the soil increased, and the utilization of C by 
microorganisms increased, so the restriction was weakened. On the 
other hand, the degree of collapse and breakage of sand barriers reaches 
70–80% after 5 years (Gong et al., 2011), increasing their contact area 
with the soil and promoting microbial decomposition. In addition, 
some graminoids with high C content appear late after the setting of 
the mechanical sand barrier. These Poaceae return their nutrients to the 
soil and reduce C restriction on microorganisms (Qiao et al., 2018).

The results of the study showed that soil microorganisms were 
limited by N in the initial stage of the S. psammophila sand barriers 
setting (<5 years) and by P in the later stage of the setting (>5 years). 
This may be because there was less plant growth on the early quicksand, 
which had limited access to replenish the soil with N, and after 5 years, 
due to the decomposition of the sand barriers, which replenished the 
N content of the soil. The decay of the S. psammophila sand barriers 
has improved the nature of the soil, promoting the restoration and 
growth of vegetation. Microorganisms have some adaptive mechanisms 
to cope with elemental limitations. Microorganisms upregulate high-
affinity nitrogen transport systems, such as ammonium transporters 
(AmtB) and amino acid transporters, under nitrogen-limiting 
conditions to enhance uptake of scarce nitrogen sources in the 
environment (Liu et al., 2024). In addition, microbial up-regulation of 
high-affinity phosphate transport systems (e.g., PstSCAB) enhances 
uptake of inorganic phosphorus (Li et al., 2025). Over time, mechanical 
sand barriers promote the formation and development of biological 
soil crusts. It was found that biological crusts would form on the soil 
surface in the later stage of the S. psammophila sand barrier setting, 
thereby increasing N fixation (Song et al., 2009). Vitousek et al. (2002) 
found that in biological crusts in extreme environments, such as arid 
or semi-arid regions, N fixation will be  more prominent, thus 
alleviating the N limitation of soil microorganisms. In addition, there 
may also be  some biotic or abiotic factors that affect the nutrient 
cycling and limitations of the ecosystem in this area, and the coupling 
effect of the two needs to be further considered in an integrated manner.

5 Conclusion

With the increase in the setting years of S. psammophila sand 
barriers, the enzyme activities of BG, NAG, and LAP showed an 

increasing trend, followed by a decreasing trend. All three were 
mainly negatively affected by soil C:N, AN, and pH. RDA results 
showed that SOC and pH were strongly negatively correlated with 
the stoichiometric ratio of soil enzymes. Soil stoichiometric ratios 
were the main factors driving soil enzyme activities and their 
stoichiometry. Soil microorganisms were primarily N-limited 
during the first 5 years of the S. psammophila sand barrier setting 
and P-limited after 5 years. Five years is the threshold for the type 
of microbial nutrient limitation (N to P). Therefore, nitrogen 
fertilizer should be  added to the soil appropriately for the first 
5 years of the S. psammophila sand barriers, assisting in vegetation 
restoration, but after 5 years, phosphorus fertilizer should be added 
in small quantities to reduce elemental limitation of microorganisms 
and maintain the stability of the area.
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