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Background: The individual specificity and temporal stability of the human 
gut microbiota have revealed significant compositional differences across 
geographical provenances. However, the gut microbiota variations among 
people residing in different regions within a province remain enigmatic.

Methods: Shotgun metagenomics sequencing was performed to analyze the gut 
microbiota of 381 unrelated Chinese Han individuals living in two cities (Wuhan 
and Shiyan) of Hubei Province. To obtain the optimal model that can distinguish 
geographically close populations, three machine learning (ML) algorithms based 
on microbiota or functions were employed.

Results: Significant differences in microbial α diversity and β diversity were 
observed. Flavonifractor plautii and Bacteroides stercoris were region-specific 
markers that presented higher relative abundances in Wuhan individuals. By 
utilizing the genus-level index commonly used for 16 s RNA as the base model, 
the prediction accuracy was greatly improved when species and functional 
data were added. Among the three ML algorithms, the random forest algorithm 
achieved the best performance, with an AUC of 0.943.

Conclusion: The gut microbiota of individuals residing in the same province is 
significantly similar; however, pronounced differences in bacterial composition 
were noted between individuals. Integrating the gut microbiota and functions 
using machine learning algorithm can distinguish people from geographically 
close environments, offering a foundation for determining geographical origin 
through the gut microbiota. Moreover, a deeper understanding of host-specific 
associations may offer valuable forensic and clinical assistance.
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Introduction

The human gut harbors complex microbial ecosystems with 
individual specificity and temporal stability that has an important 
impact on human health (Kuziel and Rakoff-Nahoum, 2022). Host 
factors, including geography, sex, body mass index (BMI), and age, 
play essential roles in shaping the composition and inter-individual 
variance of the gut microbiota (Dong et al., 2023; Wang et al., 2023; 
Pang et al., 2023). Early in 2012, Yatsunenko et al. (2012) emphasized 
that extensive sampling of diverse healthy individuals across varying 
geographic locations could discover their unique gut microbiota. 
Nowadays, numerous studies have been evaluated microbiota ability 
across continents, countries and ethnicities, revealing origin of the 
study participants significantly influences the observed differences in 
the microbiota (Handsley-Davis et al., 2022; Ogai et al., 2022; Cho and 
Eom, 2021). Cheng et al. (2021) employed amplicon sequencing on 
different continents and observed the effects of geographical location 
on microbiota profiles from China and Spain. Zhang et al. (2024) 
constructed a province-prediction model based on 3,224 individuals 
and demonstrated that microbiota compositions in host’s geographical 
location were affected by personal eating habits. Therefore, we inferred 
whether there are differences in gut microbiota among people living 
in different regions of the same province.

Machine learning (ML) represents a versatile suite of tools for 
discerning patterns and relationships in complex data, thereby 
playing a vital role in microbiology (Asnicar et al., 2024). Due to the 
high-dimensional and sparse characteristics of microbial data, ML 
can fit complex multi-dimensional interactions to achieve 
quantitative analysis and accurate prediction (Asnicar et al., 2024; 
Hernandez Medina et  al., 2022). The combination of high-
dimensional microbial data and ML offers distinct advantages in 
terms of temporal stability, geographic specificity, and automatic 
prediction (Xu et al., 2023), which can provide a more accurate 
decision-making basis for the application of microbiota in forensic 
practice (Yuan et al., 2023). To date, forensic scientists have been 
conducted to predict host characteristics by analyzing microbial 
profiles via ML, such as random forest (RF) (Liang et al., 2023), 
linear discriminant analysis (LDA) (Wang et al., 2022), support 
vector machine (SVM), logistic regression (LR) (Li et al., 2023), and 
so on. Yao et al. (2021) performed RF analysis to build a microbiota-
based province-prediction model and realized the geographical 
tracing of unknown samples in Henan, Guangdong, and Xinjiang 
populations. Additionally, they further studied the characteristics 
of the microbial community of individuals living in three regions of 
Guangdong province and obtained an overall accuracy of 0.759 
using RF (Huang et al., 2022). A meta-analysis of more than 3,000 
people from 17 countries demonstrated that the feature-based ML 
model succeeded in the same country classification but had limited 
transferability to others (Chanda and De, 2024). Another study 
investigated the differences in the human microbiota across four 
distinct regions in China and explored the potential of RF to predict 
an individual’s geographical origin based on their microbiome data 
(Lei et  al., 2025). However, the generalized ability of previous 
findings in ML models based on the microbiota has been limited by 
amplicon sequencing and variations among continents or provinces 
within countries.

Here, shotgun metagenomics sequencing was used to identify the 
gut microbiota profiles of 381 volunteers from two cities in Hubei 

Province, China (Supplementary Figure S1). Additionally, our study 
established an optimal prediction model to distinguish between 
participants from different regions. Moreover, we confirmed that 
integrating the gut microbiota and functions might be  able to 
distinguish geographically adjacent populations within a province.

Materials and methods

Cohort description and sample collection

A total of 381 healthy individuals of Han nationality, 
originating from the Hubei Province, China, were enrolled. The 
inclusion criteria were as follows: (1) were >18 years old; (2) had 
no cancer, cardiovascular, or intestinal-related diseases; and (3) 
had no record of antibiotic usage in the previous 3 months. Stool 
samples were gathered and promptly stored at −80°C until DNA 
extraction. Moreover, blood and urine samples were analyzed by 
clinicians to acquire biochemical parameters. Demographic 
information (sex, age, height, weight, region) and lifestyle 
information (smoking) were collected via a questionnaire. 
Additionally, BMI = weight (kg)/height2 (m2). This study was 
performed in accordance with the Declaration of Helsinki and 
approved by the Ethics Committee of Tongji Medical College, 
Huazhong University of Science and Technology (2020S146). All 
the participants provided written informed consent.

Metagenomics sequencing of stool 
samples

DNA was extracted from the stool samples using the MGIEasy 
Kit (MGI, Shenzhen, China). Approximately 500 ng of isolated 
DNA was used for library preparation and 100-bp single-end reads 
were sequenced on the DNBSEQ-T10 platform (MGI, Shenzhen, 
China). Low-quality reads were removed using SOAPnuke v2.1.7 
(Chen et al., 2018). Contaminating human reads were filtered using 
Bowtie2 v2.5.0 and gcc v10.4.0 (reference database: GRCh38) with 
default parameters (Langmead and Salzberg, 2012). Taxonomic 
profiling of the bacterial community was performed using 
MetaPhlan v3.0.13 (Beghini et al., 2021). The relative abundances 
of each phylum, genus, and species were determined by aggregating 
the relative abundance of their annotated genes per individual. 
Rarefaction and extrapolation (R/E) sampling curves for estimation 
of total richness of microbial features in the population were 
constructed using a sample size-based interpolation/extrapolation 
algorithm implemented in the iNEXT package for R (Hsieh 
et al., 2016).

Functional profiling of the gut microbiota

The microbial metabolic pathways were conducted with 
HUMAnN v3.1.1 (Beghini et al., 2021) for profiling the abundance 
of microbial metabolic pathways. After filtering the unmapped and 
unintegrated pathways, the remaining MetaCyc pathways 
underwent max-min normalization, and the relative abundances 
were recalculated. Furthermore, Spearman’s correlation between 

https://doi.org/10.3389/fmicb.2025.1586195
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Luo et al. 10.3389/fmicb.2025.1586195

Frontiers in Microbiology 03 frontiersin.org

the gut microbiota and pathways was conducted. Only the 
interaction of absolute spearman rho greater than 0.3 and false 
discovery rate (FDR) less than 0.05 were screened. The 
co-occurrence network was visualized by Cytoscape v3.10.2 
(Shannon et al., 2003). Additionally, the rewiring and community 
changes in the microbiota-pathway networks were quantified by 
NetShift (Kuntal et al., 2019). The drivers behind NetShift were 
obtained by introducing a neighbor shift score combined with 
quantification of node intermediation to transform node neighbors 
in the network.

Microbiota and functional feature 
comparisons across different regions

The relative abundances of microbiota compositional data and 
MetaCyc pathways were used for downstream analyses. Alpha 
diversity (Shannon, Simpson, and richness) and beta diversity based 
on bray-curtis distance were computed. Differences between groups 
were plotted using principal coordinate analysis (PcoA), and 
differential clustering of microbial communities/functions was 
assessed using permutational multivariate analysis of variance 
(PERMANOVA) with the adonis function. Genus-level enterotype 
analysis was performed using bray-curtis distance and K-Nearest 
Neighbors clustering. The microbiota variation explained by personal 
characteristics and smoking status was evaluated with the envfit 
function. Additionally, a linear model was employed to assess the 
impacts of characteristics on the variance of each species after 
adjusting the smoking status. The network properties of microbial 
co-occurrence, including edge number, vertex number, and average 
degree, were assessed using the igraph package (Csárdi et al., 2024). 
Moreover, the relationship between microbiota and clinical 
measurements was performed. To assess the impact of distinct 
microbial communities/functions, a rigorous analysis was performed 
utilizing the linear discriminant analysis (LDA) Effect Size (LefSE) 
analysis (Gao et al., 2024).

Machine learning analysis

Microbiota profiles and pathways were pre-filtered for more 
than 5% prevalence using MaAsLin2 v1.16.0 (Mallick et al., 2021). 
To obtain more specific microbiota profiles/pathways, the second 
round of screening was performed using Boruta v8.0.0. RF, 
support vector machine (SVM), and xgboost were applied. 
Participants were divided into training set (N = 306: 158 in Shiyan 
and 148 in Wuhan) and testing set (N = 75: 39 in Shiyan and 36 in 
Wuhan), with a ratio of 8:2. Fivefold cross-validation was repeated 
three times to construct a classifier model based on the training 
set. To evaluate the performance of the model, the area under the 
curve (AUC), accuracy, average precision (AP), and F1 score were 
calculated in the testing set. Besides, net reclassification 
improvement (NRI) and integrated discrimination improvement 
(IDI) were used to assess the incremental predictive performance 
of outcomes. Moreover, the optimal region-prediction model was 
obtained based on AUC. Finally, the AUC of the optimal model 
was calculated according to the sex subgroup in testing set.

Statistical analyses

All the statistical analyses were performed using R v4.3.2. 
Wilcoxon rank sum test and chi-square test were conducted to 
compare continuous variables and categorical variables, respectively. 
Alpha diversity, beta diversity, adonis, envfit, and enterotype analysis 
were applied to the vegan package (Oksanen et al., 2024). Multiple 
comparisons were corrected using the false discovery rate (FDR) 
algorithm.

Results

Overview of populations

To ascertain whether the gut microbiota can distinguish between 
populations that are relatively proximate to each other, 381 volunteers 
(aged 25–75 years) residing in two cities (Wuhan and Shiyan) within 
the Hubei Province of China were recruited. No significant differences 
were observed in sex, age, height, weight, and BMI between the two 
groups (Table 1).

Landscape of the gut microbiota across 
populations

A total of 13 phyla, 218 genera, and 649 species were obtained by 
shotgun metagenomics sequencing (Supplementary Table S1). Our 
sample size allowed us to encompass over 80% of the total expected 
microbial features, as estimated by bootstrap analysis 
(Supplementary Figure S2A). The presence rates of these microbial 
features become relatively stable (within 80% of the numbers observed 
for the whole cohort) when at least 44% of the cohort is sampled 
(approximately 169 samples) through subsampling. However, the 
number of observed species increased with sample size, reaching an 
estimated total of 777 species at 2,000 samples, which indicated that 
other rare microbial species remained undiscovered. Bacteroidetes, 
Firmicutes, Proteobatcteria, Actinobacteria, and Fusobacteria were the 
five most abundant bacterial phyla in all the samples (Figure 1A). Gut 
microbiota composition exhibited significant variations among the 
populations, with the relative abundance of Bacteroidetes ranging from 
0.08% to over 94.01%, for instance. To gain insight into the microbiota 
composition that may be  potentially critical for the stability and 
consistency of the gut ecosystem, genera or species present in more 
than 90% of individuals (named “core microbiota”) were investigated. 
Twelve core genera (Bacteroides, Prevotella, Parabacteroides, 
Streptococcus, Eubacterium, Anaerostipes, Blautia, Lachnoclostridium, 
Roseburia, Faecalibacterium, Flavonifractor, and Escherichia) and ten 
core species (Bacteroides ovatus, Bacteroides thetaiotaomicron, 
Bacteroides uniformis, Bacteroides vulgatus, Parabacteroides distasonis, 
Blautia wexlerae, Clostridium bolteae, Faecalibacterium prausnitzii, 
Flavonifractor plautii, and Escherichia coli) were observed (Figure 1B; 
Supplementary Figure S2B). Interestingly, 90% of the core species were 
short-chain fatty acid (SCFA)-producing bacteria, with the exception 
of Blautia wexlerae. Furthermore, two distinct optimal enterotype 
clusters were identified (Figure  1C). Enterotype 1 (driven by 
Bacteroides) and enterotype 2 (Prevotella) accounted for 83.20 and 
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16.80% of the participants, with no difference between regions 
(Supplementary Figure S2C; Table 1). To identify the region and other 
characteristics related to the gut microbiota, seven variables based on 
species were evaluated by envfit. Age explained the largest variance 
(R2 = 0.294), followed by weight (R2 = 0.157), BMI (R2 = 0.119), and 
region (R2  = 0.119) (Figure  1D, FDR < 0.05). Moreover, the 
interpretation of individual characteristics by gut microbiota at the 
genus level showed that the region maintained the leading position 
(R2 = 0.121, FDR < 0.05, Supplementary Figure S2D). Interestingly, 
smoking had no explanatory power for species (R2  = 0.001, 
FDR = 0.662) and genus (R2 < 0.001, FDR = 0.879). Additionally, the 
variation attributed to personal characteristics for each species was 
estimated after adjusting the smoking status, and the primary 
determinant was subsequently identified. Fifty-nine species with 
cumulative adjusted R2 > 1% could be explained. Both sex and region 
dominantly accounted for the variations observed among species, 
region was the unique factor responsible for the inter-individual 
variations across 14 species, including Flavonifractor plautii, 
Bacteroides stercoris, Blautia_sp_CAG_257, 6 species from the 
Clostridium genus, and so on (Figure 1E; Supplementary Table S2). 
Hence, we speculated that region was an important factor contributing 
to variation in the gut microbiota.

To further investigate the microbial structures of populations in 
geographical proximity, α diversity (Supplementary Table S3) and β 
diversity (Supplementary Table S4) were compared. As shown by the 
α diversity (Shannon, Simpson, and Richness) and β diversity, 
significant differences were observed (p < 0.05; Figures  2A,B; 
Supplementary Figure S3A). Next, the co-occurrence networks were 
performed (Figure  2C). The networks in both regions were 
fundamentally identical in structure, but they still had unique 
networks. Two sub-networks (A: Veillonella, B: Alistipes putredinis) 
differed across cities. For example, species from Veillonella displayed 
a close interaction in Shiyan, and Ruminococcus gnavus from 
sub-network B interacted with Flavonifractor plautii through 
Clostridium species in Wuhan. Additionally, core species Flavonifractor 

plautii was found in conjunction with Hungatella hathewayi, 
Clostridium symbiosum, and Clostridium aldenense in Shiyan, whereas 
it appeared with Eggerthella lenta and Clostridium innocuum in 
Wuhan. The LefSE result showed that 36 microbiota were enriched in 
Wuhan and 10 in Shiyan, which could explain the difference between 
the cities (Figure 2D, FDR < 0.05). Among these bacteria, 63% were 
species that determined the main dissimilarity. Wuhan group was 
characterized by Bacteroides stercoris, while Prevotella copri displayed 
a significant presence in Shiyan group. Additionally, we also found 
that Flavonifractor plautii Ruminococcus gnavus, and Clostridium 
species varied. Considering the imbalance and higher explanation of 
sex, the differential microbiota was identified 
(Supplementary Figure S3B). Eight microbiota co-existed by region 
and sex, including 4 species (Ruminococcus bicirculans, Streptococcus 
salivarius, Bifidobacterium longum, and Clostridium symbiosum) and 
4 genera (Lachnoclostridium, Streptococcus, Bifidobacterium, and 
Ruminococcaceae_unclassified).

Correlations between the gut microbiota 
and clinical parameters

To gain insight into the potential functional associations between 
the gut microbiota and human health, the relationships between 
fifteen clinical parameters and 37 species (27 differential species, 7 
core species, 3 both) were analyzed (Supplementary Table S5). A total 
of 15 bacteria exhibited a significant correlation with at least one 
clinical parameter (FDR < 0.1, Figure  3A). In all populations, 
Bifidobacterium longum had the most association with serum 
indicators of liver health, and Ruminococcus bicirculans showed 
negative correlation with serum lipid levels. Interestingly, 
Bifidobacterium longum and Ruminococcus bicirculans were negatively 
associated with alanine aminotransferase and total cholesterol only in 
their enriched populations, respectively (Supplementary Figure S4). 
Moreover, people with higher relative abundances of Flavonifractor 

TABLE 1 Demographic characteristics of participants with available fecal samples.

Characteristics All
(N = 381)

Shiyan
(N = 197)

Wuhan
(N = 184)

p-value

Sex 0.638

Women 71 (18.6%) 39 (19.8%) 32 (17.4%)

Men 310 (81.4%) 158 (80.2%) 152 (82.6%)

Age 47.0 [37.0; 54.0] 48.0 [41.0; 52.0] 47.0 [35.0; 56.0] 0.912

Height 170 [166; 174] 169 [165; 173] 170 [166; 175] 0.064

Weight 71.7 [64.7; 77.6] 71.0 [64.0; 77.0] 72.4 [65.0; 77.7] 0.318

BMI 24.7 [22.9; 26.6] 24.7 [22.9; 26.6] 24.6 [23.0; 26.6] 0.899

SBP 123 [115; 134] 122 [115; 131] 124 [114; 136] 0.280

TC 4.61 [4.00; 5.16] 4.70 [4.16; 5.33] 4.46 [3.82; 5.07] 0.008

Smoking <0.001

No 322 (84.5%) 181 (91.9%) 141 (76.6%)

Yes 59 (15.5%) 16 (8.12%) 43 (23.4%)

Enterotype 0.138

Prevotella 64 (16.80%) 39 (19.80%) 25 (13.6%)

Bacteroides 317 (83.20%) 158 (80.20%) 159 (86.4%)
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FIGURE 1

The gut microbiota composition of the Hubei population and associated personal characteristics. (A) Top six phyla by mean relative abundance for 
participants in Hubei. (B) The relative abundances (log10) of the core genera. (C) Two major enterotypes found in the stool samples from the Hubei 
population based on principal coordinate analysis (PcoA). (D) The effect sizes of personal characteristics associated with species variations were 
calculated with envfit (vegan), all characteristics with FDR < 0.05. (E) The bar plot displaying variations in each species explained by personal 
characteristics after adjusting smoking status, as estimated through the linear regression method (adjusted R2 > 1%, FDR < 0.05).
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plautii and Ruminococcus gnavus showed increases in low-density 
lipoprotein (LDL) or total cholesterol only in Wuhan (Figures 3B,C).

Functionality variations of the gut 
microbiota

To explore the metabolic pathways of gut microbiota that are 
potentially affected by regions, the relative abundances of MetaCyc 
pathways shared between individuals were calculated. A total of 515 
pathways were found after filtering unmapped, unintegrated, and 
non-bacterial functions (Supplementary Table S6). The predominant 
metabolic pathway was the dTDP-β-L-rhamnose biosynthesis 
(DTDPRHAMSYN-PWY), which is the key process for the in vivo 
synthesis of deoxythymidine diphosphate L-rhamnose (dTDP-L-
fucose) (Figure 4A). Above 52% of the pathways existed in more than 
90% of individuals (named core pathways), and 174 pathways were 
observed in all people (Supplementary Table S6). According to their 
regions, 41 pathways appeared in only one. The overall structures 
based on their relative pathway abundances were significantly different 
between Wuhan and Shiyan (p < 0.05, Supplementary Figures S5A,B). 
Then, we explored the functional alterations between the regions. 
Differences in 24 pathways with LDA over 2.5 were found (Figure 4B), 
most of which were involved in amino acid biosynthesis, cell structure 
biosynthesis, as well as nucleoside and nucleotide biosynthesis. 

We found PWY-7111 (pyruvate fermentation to isobutanol) was the 
only abundant pathway in Wuhan. Subsequently, the bacterial 
composition of PWY-7111 was analyzed (Supplementary Table S7). 
Differential bacteria accounted for 15% (Shiyan) and 18% (Wuhan), 
and the relative abundance was different (Supplementary Figure S5C).

To further understand the relationships between differential 
bacteria and dissimilar functions across regions, two co-occurrence 
networks were constructed (Figure 4C; Supplementary Tables S8, S9). 
There were no links between the Wuhan-enriched bacteria 
(Streptococcus salivarius, Bifidobacterium longum, and Flavonifractor 
plautii) and pathways. In Shiyan, Flavonifractor plautii interacted with 
the biosynthesis of peptidoglycan, uridine monophosphate, and 
5-aminoimidazole ribonucleotide. Meanwhile, another differential 
bacterium, Ruminococcus gnavus, was negatively associated with 
amino acid biosynthesis. An interesting finding was that both 
populations of Ruminococcus gnavus had pathways interacting with 
Flavonifractor plautii, which were specific to Shiyan. To quantify the 
changes observed among bacteria-pathway associations between 
Wuhan and Shiyan, network shift analyses were implemented 
(Supplementary Figure S6). When Wuhan was utilized as a control, 
Klebsiella quasipneumoniae and 5-aminoimidazole ribonucleotide 
biosynthesis metabolic pathways (PWY-6122 and PWY-6277) were 
particularly important drivers of Shiyan. Conversely, Ruminococcus 
faecis and vitamins biosynthesis (PWY-6897 and PWY-6147) were 
prominent drivers in Wuhan.

FIGURE 2

Differences in gut microbial community profiles between populations from different cities. (A) Alpha-diversities of microbial communities between 
Wuhan and Shiyan (p value was calculated using a wilcoxon test; **p < 0.01). (B) PcoA of pairwise bray–curtis distance showed the separated microbial 
composition between two populations (Adnois R2 = 0.007, p < 0.01). (C) The microbial interaction networks across 2 population, FDR < 0.05, 
cor > ±0.5. The arrows pointed to two sub-networks (Veillonella and Alistipes putredinis). (D) The bar graph of LDA scores showed the taxa with 
statistics difference between two groups. The LDA threshold was 2.
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Gut microbiota and functions differ 
geographically in proximity

To rigorously determine the ML algorithm for predicting 
geographical proximity, three classical and widely utilized algorithms 
(RF, SVM, and xgboost) based on the composition and functionality 
of gut microbiota were implemented and compared (Figure  5A). 
We subsequently identified region-specific microbiota or pathways 
through two rounds of screening to avoid addressing dimensional 
disasters and overfitting, thereby ensuring the robustness and 
reliability of our predictions. Following the first filtering criteria of 
prevalence > 0.05% and FDR < 0.05 by MaAslin2, a total of 37 bacteria 
and 234 pathways were selected (Supplementary Table S10). The next 
step involved a refinement of the selected microbiota, adding species’ 
α diversity or pathways using a more stringent criterion of region 

specificity. The second round of screening was conducted by Boruta 
(FDR < 0.05). After applying this dual-pronged approach, 16 bacteria 
and 12 pathways were identified.

Based on the relative abundance of region-specific markers, 
80% of the participants were divided into a training set and 20% 
into a testing set. The optimal parameters of each model for 
predicting the region were assessed by repeating the fivefold cross-
validation three times on the training set. Model performance 
evaluation was conducted using AUC, average precision (AP), 
accuracy, and F1 score on the testing set (Supplementary Table S11). 
Our results indicated that the AUC of selected bacterial markers 
ranged from 0.820 to 0.920. Among the bacterial models, xgboost 
had the largest AP (0.780), RF and xgboost achieved identical 
accuracy (0.853), while RF exhibited the highest F1 score (0.864). 
For the pathway models, all the models performed poorly. Notably, 
the model integrating microbiota and pathways (integrated model) 

FIGURE 3

Correlation between gut species and clinical parameters. (A) Correlations between species abundance and clinical parameters were calculated through 
spearman correlation test with FDR correction. Only statistically significant correlations were shown where the correlation dot was color-intensified 
according to correlation direction (positive or negative) and coefficient size. (B) Correlations between the relative abundance (log) of Ruminococcus 
gnavus and total cholesterol in Wuhan and Shiyan. (C) Correlations between the relative abundance (log) of Flavonifractor_plautii and low-density 
lipoprotein (LDL) in Wuhan and Shiyan. Correlation coefficient Rho and statistical significance were calculated by spearman correlation analysis. eGFR, 
estimated glomerular filtration rate; HDL, high-density lipoprotein; LDL, low-density lipoprotein; AST, aspartate transaminase; ALT, alanine 
aminotransferase.
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showed superior discriminative capabilities. Specifically, the 
accuracy of xgboost model did not improve, however, RF and 
SVM were the highest (Figure  5B). Nevertheless, other 
performances (AUC, AP, and F1 score) of integrated model were 
enhanced to a certain extent. Furthermore, we analyzed NRI and 
IDI to assess reclassification performance and improvement in 
discrimination of prediction model (Supplementary Table S12). 
The NRI and IDI had great improvements in the integrated model. 
These results suggested that the integrated model outperformed 
genus model.

Among the three algorithms, RF provided the best performance 
with the highest AUC of 0.943, followed by xgboost (AUC = 0.937) 
and SVM (AUC = 0.880) in the integrated model (Figure 5C). The 
accuracy, AP, and F1 score of RF were 0.880, 0.839, and 0.877, 
respectively (Supplementary Table S3). Finally, we determined which 
features of the gut microbiota and pathway were most important for 
the performance of the RF models. The important features included 9 
species, 7 genera, and 12 functions (Figure 5D). Bacteroides stercoris 
was the strongest gut microbial marker for predicting the regions. 
Moreover, another 4 species (Flavonifractor plautii, 1 Clostridium 
species, and 2 Blautia species) were observed to explain most of the 
region variations. Notably, six of the top 10 were pathways, indicating 
that function could play an important role in characterizing the 
region. Due to a high imbalance between sexes, we further analyzed 

the sex subgroups in the testing set. The AUC value was 0.943 
(0.887–1) for males and 0.956 (0.851–1) for women 
(Supplementary Figure S7). These findings suggested that the overall 
model performed well across sexes.

Discussion

We conducted a description of gut microbiota composition in 
Wuhan and Shiyan, Central China. To our knowledge, this study was 
the first effort utilizing shotgun sequencing in geographical proximity 
to characterize the gut microbiota of adults. Bacteroidetes and 
Firmicutes accounted for the majority of the microbial composition in 
healthy Hubei volunteers, which were consistent with the findings in 
Chinese participants (Lu et al., 2021; Ren et al., 2023). The enrichment 
of Bacteroidetes and Firmicutes corresponds to their involvement in 
carbohydrate metabolism and SCFA production (Ramos Meyers et al., 
2022). Compared with the core genera and species of a healthy 
Chinese population, we found another 4 core species (Bacteroides 
uniformis, Blautia wexlerae, Flavonifractor plautii, and Escherichia coli) 
(Zhang et al., 2022). The difference could be attributed to variations 
in population, databases, and definitions. Bacteroides and Prevotella 
were the predominant enterotypes in our study, which fitted well with 
the enterotypes reported in Chinese populations (Syromyatnikov 

FIGURE 4

Microbial functional pathways altered in two populations. (A) The relative abundances of the core pathway. (B) The bar graph of LDA scores showed 
the pathway with statistics difference between two groups. The LDA threshold was 2.5. (C) Co-abundance network of differential species and 
pathways in two populations. Left, network in Shiyan individuals. Right, network in Wuhan individuals, arranged in the same order. Red circles, Wuhan-
enriched; blue circles, Shiyan-enriched. Red edges, positive correlations; blue edges, negative correlations (FDR < 0.05, cor > ± 0.5).
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et al., 2022). Furthermore, region exhibited the strongest interactions 
with genera / species-level profiles. Although gut microbiota had been 
widely reported to vary across continents and countries, the robust 
association between geographic location and gut microbiota 
emphasized the obvious influence of geographical proximity on 
microbial composition in our study (Cheng et al., 2021; Lu et al., 2021).

Numerous studies underscore gut microbiota composition with 
sex (Koliada et al., 2021; Vriend et al., 2024), which suggested that 
regional differences might be influenced by the sex imbalance in this 
study. Meanwhile, several studies have found that changes in gut 
microbiota might have a significant impact on diseases in a sex-specific 
manner by regulating sex hormones, bile acids, lipids, and exogenous 
liver metabolism (Burra et al., 2024; Rosell-Diaz et al., 2024; Bardhan 
et al., 2024). Bifidobacterium longum was identified as one of the key 
species exhibiting sex-dependent variations in abundance. An animal 
study of chronic stress showed that Bifidobacterium longum was 
beneficial for water avoidance stress in rats, especially in females (Choi 
et  al., 2024). Streptococcus salivarius was another sex difference 
species. Chen et al. (2020) suggested that individuals with relatively 
lower abundance of Streptococcus salivarius were more likely to have 
asthma. In our study, there were differences between these two species 
in terms of region and sex. Moreover, no links between these species 
and pathways were observed. Despite an imbalance in sex distribution, 
there was no difference in the distribution between the two regions. 

Considering that the explanatory power of sex was lower than that at 
the regional level, we  speculated that the influence of sex on gut 
microbiota was relatively small in different regions.

Dietary intake can shape and modulate gut microbial 
composition and function across human populations, driving 
geographical differences (Parizadeh and Arrieta, 2023; Ross et al., 
2024). Wuhan and Shiyan are located in two directions of Hubei 
Province, more than 500 km apart. Wuhan lies in east-central 
Hubei, a region rich in wetland resources where water products 
contribute to the local diet (Wikipedia, 2024). Shiyan is located in 
northwestern Hubei, bordering Henan, Chongqing, and Shaanxi 
Provinces, and its eating habits are easily influenced by these 
regions (Wikipedia, 2024). For this reason, we inferred that the 
distinctive characteristics of two cities were accompanied by 
dietary differences. Though Bacteroides stercoris was not the core 
species in healthy Chinese (Zhang et  al., 2022), the RF model 
found it was the most important and was enriched in Wuhan, 
which might be important in distinguishing populations from the 
two regions. A cross-sectional study of forty-nine healthy 
volunteers showed that fiber-rich foods such as grain products 
and vegetables correlated positively with Bacteroides stercoris 
(Gaundal et  al., 2022). Moreover, Wuhan populations had less 
Prevotella copri potentially due to their high adherence to the 
Mediterranean diet (Wang et al., 2021), who might eat more fish 

FIGURE 5

Gut microbiota differentiate geographically proximity. (A) Overview workflow for machine learning applications in our study. (B) The accuracy by data 
type and algorithm. (C) ROC curve of ML models based on bacteria and functions for predicting geographical proximity. (D) Twenty-eight important 
bacteria or functions to perform the prediction by random forest.
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and vegetables (Tsai et  al., 2023). Additionally, Ruminococcus 
faecis was the driver of Wuhan, which was inversely associated 
with processed meat (Yu et al., 2021). Pyruvate fermentation to 
isobutanol (PWY-7111) was the only pathway enriched in Wuhan 
populations. Li et al. (2021) found that a higher healthy plant-
based diet index score (fibers, plant proteins, whole grains, fruits, 
vegetables, nuts, and legumes) was associated with a greater 
relative abundance of pyruvate fermentation to isobutanol. 
Another study revealed that pyruvate fermentation to isobutanol 
was more common in herbivorous bats, suggesting that the 
microbiota might have adaptive functions to the plant-based diet 
(Ingala et al., 2021). Based on this, we suggested the residents of 
Wuhan prefer vegetables and fish to less processed meat.

As reported in a large cohort study with a wide geographic scale 
in China, food is a major mediating factor of geographic location on 
the gut microbiota (Zhang et al., 2024). Energy utilization during 
exercise promotes food breakdown and absorption by gut microbiota 
(Zhang et al., 2024). Lactate-utilizing species from Veillonella, which 
can improve physical performance constructed a strong interaction 
network in Shiyan populations, inferring participants might have a 
greater energy demand (Giacomini et al., 2023). Sleep quality and 
stress can also be  impacted by diet and have been linked to gut 
microbiota composition (Kortman et al., 2024). Kortman et al. (2024) 
indicated that dairy-based products which improve sleep quality 
could decrease the relative abundance of Flavonifractor plautii. 
Chahwan et  al. (2019) found a significant correlation between 
Ruminococcus gnavus and depression anxiety stress scale score. In our 
study, Flavonifractor plautii and Ruminococcus gnavus were increased 
in Wuhan populations, and the bacterial interactions were different. 
Our results speculated that differences in physical, sleep, and stress 
in the two populations might be associated with dietary diversity, 
which were closely related to geographical location. Alterations in the 
gut microbiota induced by differences in dietary habits may 
contribute to health status (Ross et al., 2024). A study from the Dutch 
Microbiome Project identified Flavonifractor plautii and 
Ruminococcus gnavus as signatures of disease (Gacesa et al., 2022). 
Another study revealed that Flavonifractor plautii and Ruminococcus 
gnavus had negative correlations with total and regional body fat 
(Wei et al., 2021). Due to no significant differences in weight and BMI 
between two groups, their possible effects on bacterial differences 
were excluded. Furthermore, Flavonifractor plautii and Ruminococcus 
gnavus were positively correlated with serum lipid levels only in 
Wuhan populations, implying the potential roles in lipid metabolism 
might differ between two populations. Bifidobacterium longum 
belongs to Bifidobacterium and is a common probiotic, which was 
another differential species between Shiyan and Wuhan. Zhao F et al. 
found that the gut bifidobacterial species in people from various 
geographic origins showed different responses to probiotic 
administration (Zhao et al., 2022). Moreover, Bifidobacterium longum 
was only correlated with ALT in the Wuhan populations. A 
randomized controlled trial demonstrated that Bifidobacterium 
longum does not affect liver dysfunction, but may treat liver 
dysfunction caused by medications in patients with depression 
(Gawlik-Kotelnicka et  al., 2024). Furthermore, Bifidobacterium 
longum also showed significant differences between different sexes 
Therefore, regional and sex characteristics should be  taken into 
consideration to ensure optimal therapeutic effects when using gut 
microbiota as probiotics. Additionally, 5-aminoimidazole 

ribonucleotide biosynthesis increased and were drivers of Shiyan 
people. Ma et al. (2021) showed that 5-aminoimidazole ribonucleotide 
biosynthesis were decreased in inflammatory bowel disease patients 
compared with healthy individuals. Hence, Wuhan participants 
might have poor sleep quality, high stress, and suboptimal health 
status. Geographical proximity differences in microbiota composition 
pointed to the underlying impact of dietary intake, lifestyle, and 
health status. Furthermore, personalized probiotic treatment based 
on individual microbiome profiles and geographical backgrounds 
was very important.

With the gradual improvement in human microbiota research, 
scholars found the differences mentioned above can be used to infer 
the geographic location information of individuals (Zhang et al., 2024; 
Ren et al., 2023). Machine learning analysis has a remarkable effect in 
tracing the geographical origin of unknown samples, and has great 
potential in scientific fields such as forensics, bacterial ecology, and 
other sciences (Walker and Datta, 2019). To determine whether the gut 
microbiota or pathways were able to distinguish between two 
geographically close populations, three ML algorithms (RF, xgboost, 
and SVM) were performed. RF can be  trained and employed for 
prediction through multiple decision trees, which can effectively 
mitigate overfitting (Zhang et al., 2023). Xgboost contrasts RF as an 
efficient ensemble learning algorithm that improves prediction 
accuracy by sequentially building multiple decision trees in an attempt 
to reduce the errors of the preceding tree (Sun et al., 2025). SVM is a 
model that uses “support vectors” to construct the hyper-plane in a 
high-dimensional space (Maggioni and Spinelli, 2025). These 
algorithms were chosen for their robustness when working with high-
dimensional data and small sample sizes, as well as their popularity and 
competitiveness in the microbiome field (Papoutsoglou et al., 2023; 
Ning et  al., 2024). Feature selection, which is a common data 
preprocessing method in ML modeling, reduces model complexity and 
improves accuracy (Acikoglu and Tuncer, 2020). Finally, 16 bacteria 
and 12 pathways were identified by MaAslin2 and Boruta. Since 16 s 
rRNA amplicon sequencing could not be thoroughly analyzed at the 
species level, we used only the genus-level index as the base model. An 
important discovery was the substantial improvement in forecast 
precision when integrating both species and pathways index into the 
base model. This compelling outcome highlighted the influence of 
microbiota and their functions in enhancing predictive models for 
people in close geographical proximity. Among three ML algorithms, 
RF achieved the best performance, with an AUC of 0.943. Ryan (2019) 
also developed a RF classifier utilizing a dataset comprising 311 city 
microbiome samples and correctly classified 83.3% in city of origin for 
each sample. Feature importance scores of RF model indicated that 
prediction performance was not attributable to any single bacteria or 
metabolic pathway. Instead, it was the combination of both that played 
a pivotal role. Notably, the top three pathways were involved in alcohol 
degradation and purine nucleotide biosynthesis, which might differ 
between Wuhan and Shiyan populations, primarily owing to dietary 
variations. Additionally, the integrated model based on the RF 
performed well across sexes. Women showed slightly better 
discrimination ability, possibly due to fewer samples within the women 
subgroup. Consequently, both gut microbiota and function could 
reflect personal characteristics and their integration might predict the 
geographic origin of unknown individuals.

Although we  have demonstrated that gut microbiota 
fingerprinting can be  a potential tool for tracing population’s 
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geographical origin (despite the population living in different 
cities from the same province), our study has several additional 
limitations. First, we chose only 2 cities from 1 province with a 
relatively small sample size that may or may not be representative 
of geographical proximity. Second, although the gut microbiota 
has been reported to be  stable in the population, we  cannot 
determine whether these important indicators are stable because 
we did not conduct longitudinal studies (Chen et al., 2018). Third, 
due to the lack of diet questionnaires and other lifestyle factors of 
the populations in the two cities, it is difficult to accurately assess 
the role of these factors in microbial changes. Finally, although the 
model demonstrated robustness across sexes, future studies 
should still consider differences between males and females to 
improve predictive accuracy.

Our study illustrates geographical factors accounted for a 
significant proportion of the variation in the gut microbiota. 
Although people from geographically close environments have 
similar microbiota profiles, they also have their own gut 
microbiota compositions. Integrating the gut microbiota and 
functions using machine learning algorithm can distinguish 
people from geographically close environments. In conclusion, it 
may be possible to determining geographical origin through the 
gut microbiota.
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