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Introduction: Drug resistance (DR) of pathogens remains a global healthcare 
concern. In contrast to other bacteria, acquiring mutations in the core genome 
is the main mechanism of drug resistance for Mycobacterium tuberculosis 
(MTB). For some antibiotics, the resistance of a particular isolate can be reliably 
predicted by identifying specific mutations, while for other antibiotics the 
knowledge of resistance mechanisms is limited. Statistical machine learning 
(ML) methods are used to infer new genes implicated in drug resistance 
leveraging large collections of isolates with known whole-genome sequences 
and phenotypic states for different drugs. However, high correlations between 
the phenotypic states for commonly used drugs complicate the inference of 
true associations of mutations with drug phenotypes by ML approaches.

Methods: Recently, several new methods have been developed to select a small 
subset of reliable predictors of the dependent variable, which may help reduce 
the number of spurious associations identified. In this study, we evaluated 
several such methods, namely, logistic regression with different regularization 
penalty functions, a recently introduced algorithm for solving the best-subset 
selection problem (ABESS) and “Hungry, Hungry SNPos” (HHS) a heuristic 
algorithm specifically developed to identify resistance-associated genetic 
variants in the presence of resistance co-occurrence. We assessed their ability 
to select known causal mutations for resistance to a specific drug while avoiding 
the selection of mutations in genes associated with resistance to other drugs, 
thus we compared selected ML models for their applicability for MTB genome 
wide association studies.

Results and discussion: In our analysis, ABESS significantly outperformed the 
other methods, selecting more relevant sets of mutations. Additionally, we 
demonstrated that aggregating rare mutations within protein-coding genes into 
markers indicative of changes in PFAM domains improved prediction quality, 
and these markers were predominantly selected by ABESS, suggesting their high 
informativeness. However, ABESS yielded lower prediction accuracy compared 
to logistic regression methods with regularization.
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Introduction

Tuberculosis chemotherapy and the 
problem of drug resistance

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), 
remains a leading cause of death from a single infectious agent, despite 
a decrease in annual TB mortality rates in recent years (World Health 
Organisation, 2020). TB is a curable disease, typically treated effectively 
with a combination of drugs. Until 2020, when the WHO treatment 
guidelines were significantly updated, the two basic schemes of TB 
therapy had been applied (Jnawali and Ryoo, 2013). Naive patients 
were effectively treated with a combination of first-line drugs including 
rifampicin (RIF), isoniazid (INH), pyrazinamide (PZA), ethambutol 
(EMB). Streptomycin (STR) was used for TB treatment since 1945, 
initially as monotherapy and later as part of the first-line regimen after 
other first-line drugs were endorsed. Due to the high prevalence of 
resistance and serious adverse effects, it has been used in addition to 
other first-line drugs since 1991 in cases of treatment failure. Today, 
streptomycin is still recommended for restrictive use as a substitute for 
amikacin (Rocha et al., 2021; Singh et al., 2015). Relapse cases were 
treated with second-line drugs such as fluoroquinolones (ofloxacin 
(OFX), levofloxacin (LEV), moxifloxacin (MOX) and ciprofloxacin 
(CIP)) and injectable drugs (kanamycin (KAN), amikacin (AMK) and 
capreomycin (CAP)). In 2020, the WHO endorsed several new drugs 
for treating MDR-TB, including bedaquiline, linezolid, clofazimine, 
cycloserine and terizidone. At the same time, KAN and CAP were 
excluded from use, and the priority of drugs for inclusion in 
combination therapies was revised (Migliori et  al., 2020). Recent 
recommendations provide the highest priority for fluoroquinolones, 
bedaquiline and linezolid as the second-line drugs for TB treatment 
(World Health Organisation, 2020). Other second-line anti-TB drugs, 
such as ethionamide (ETH)/prothionamide (PTH), cycloserine (CS), 
P-aminosalicylic acid (PAS), are considered to be  less effective. 
Recently, there has been growing concern over the increasing fraction 
of multidrug resistant (MDR) isolates, which are resistant to the most 
potent anti-TB agents rifampicin (RIF) and isoniazid (INH), as well as 
extensively drug-resistant (XDR) isolates, which were defined as MDR 
with additional resistance to any of aminoglycosides and 
fluoroquinolones until 2021 (World Health Organisation, 2020). The 
definition of XDR-TB was updated in 2021 in alignment with changes 
in treatment regimens (WHO Announces Updated Definitions of 
Extensively Drug-Resistant Tuberculosis, 2024). In this study, we used 
former definitions of first-and second-line drug classes and the 
XDR-TB (Jnawali and Ryoo, 2013).

Mutations in genes targeted by drugs are a main mechanism of 
drug resistance in MTB (Trauner et al., 2017). Additionally, if MTB 

develops resistance to one drug, it often acquires resistance to other 
drugs more easily (Moura et al., 2017).

Several laboratory methods exist for detecting MTB DR. The ‘gold 
standard’ involves measuring the minimal concentrations of 
substances that inhibit bacterial growth to assess resistance/
susceptibility levels (Andrews, 2001). However, phenotypic tests are 
time-consuming due to MTB’s slow growth, expensive, and can only 
be performed in laboratories with high biosafety levels. As a result, 
genotypic tests have gradually been replacing them.

Interpretation of phenotypic effects of 
mutations

Most methods for predicting MTB phenotype from genotype 
utilize the direct association (DA) approach based on the 
interpretation of detected mutations as benign or causal (Chen et al., 
2019). Prior knowledge of genes likely involved in drug action has 
facilitated the identification of mutations that confer drug resistance. 
A pioneering DA approach was developed by Walker et al. (2015), 
followed by the creation of other catalogs of resistance-causing 
mutations based on thorough literature reviews (Allix-Béguec et al., 
2018; Domínguez et al., 2016; Miotto et al., 2017), machine learning 
methods (Farhat et al., 2016) and comparative genomics (Ghosh and 
Saha, 2020). Recently, WHO standardized methodology for compiling 
a catalog of mutations best explaining drug phenotypes (Walker et al., 
2022). We have compiled a list of known or proposed MTB genes with 
mutations associated with resistance to RIF, INH, PZA, EMB, STR, 
AMK, KAN, CAP, MOX, CIP, OFX, ETH and PTH in 
Supplementary Table S1.

Looking for new mutations conferring drug 
resistance

Direct association models perform well for some drugs with well-
known mechanisms of action, e.g., rifampicin and isoniazid. However, 
for other drugs, e.g., pyrazinamide, ethambutol, fluoroquinolones, 
mutations in known genes may not fully explain phenotypes (Chen 
et al., 2019; Schleusener et al., 2017). The number of potential loci 
contributing to drug resistance is large (Farhat et  al., 2019). For 
instance, in experiments with E. coli, high levels of resistance can 
result from the modulation of expression of a large number of 
functionally diverse genes (Palmer et al., 2018). Consequently, the 
discovery of new causal mutations remains an ongoing challenge.

Many variations of genome-wide association studies (GWAS) 
were used to identify new genome loci associated with MTB drug 
resistance, analyzing datasets that include nearly complete-genome 
genotypes along with characterized drug phenotypes. Some methods 
are based on the detection of sites with recurrent mutations in 
phylogenetically unrelated strains (Zhang et al., 2013; Farhat et al., 
2013; Coll et al., 2018; Hicks et al., 2018; Hicks et al., 2019), others 
utilize machine learning (ML) approaches such as k nearest neighbors 
(Sergeev et al., 2019), regularized logistic regression (Sergeev et al., 
2019; Niehaus et al., 2014; Lees et al., 2020), support vector machine 
(Niehaus et al., 2014; Yang et al., 2017; Kavvas et al., 2018), gradient-
boosted trees (Sergeev et al., 2019; Deelder et al., 2019), random forest 
(Sergeev et al., 2019; Yang et al., 2017), mixture models (Yang et al., 

Abbreviations: MTB, Mycobacterium tuberculosis; DR, drug resistance; MDR, 

multidrug resistant; XDR, extensively drug resistant; WHO, World Health 

Organization; NGS, Next Generation Sequencing; PCR, polymerase chain reaction; 

GWAS, genome-wide association study; DA, direct association; ML, machine 

learning; HMM, hidden Markov model; MCP, minimax concave penalty; SCAD, 

smoothly clipped absolute deviation; HHS, ‘hungry-hungry SNPs‘; ABESS, 

polynomial-time algorithm for best-subset selection problem; PFAM, protein 

families database; ROC AUC, area under receiver operating characteristic curve; 

NPV, negative predictive value; PPV, positive predictive value.
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2017) and linear mixed models (LMM) that account for the clonal 
structure of MTB population (Farhat et al., 2019; Coll et al., 2018; 
Earle et al., 2016). New methods are constantly being developed, for 
example, the one based on boolean compressed sensing (Zabeti 
et al., 2021).

Correlations between phenotypic states of 
commonly used drugs complicate 
interpretation of GWAS results

Although a few newly identified loci have been experimentally 
confirmed as causal (Palmer et al., 2018; Farhat et al., 2013; Coll et al., 
2018), many others require verification and may be  spuriously 
associated. Compared to the DA approach, the accuracy of drug 
phenotype prediction has been significantly improved by the 
application of ML to mutations occurring in known drug-associated 
genes (Chen et al., 2019; Farhat et al., 2016; Kavvas et al., 2018; Yang 
et al., 2018; Yang et al., 2019; Kouchaki et al., 2019). The improvement 
is partly achieved due to the high correlation between phenotypic 
states for drugs usually prescribed in combination (Yang et al., 2018; 
Kouchaki et al., 2019). The presence of a specific mutation that causes 
resistance to one drug informs a model about high probability of 
resistance to other drugs. For example, the katG S315T mutation 
conferring resistance to INH typically arises before acquisition of RIF 
resistance (Cohen et al., 2015; Manson et al., 2017), making it a good 
predictor for MDR, especially when RIF resistance is caused by rare 
rpoB mutations (van et  al., 2001; Hazbón et  al., 2006). Such 
correlations can pose challenges for ML models trained on datasets 
with properties different from the real-life datasets (Kouchaki et al., 
2019). Additionally, models based on resistance co-occurrence are 
unable to capture rarer causal mutations because covariates would 
mask weak signals (Yang et al., 2018). Finally, such models may not 
produce new insights into the mechanisms of drug resistance.

Dealing with rare mutations

Alongside resistance co-occurrence, one of the major problems in 
GWAS is the ‘curse of dimensionality’, driven by the high 
dimensionality of ML models and the modest sizes of training 
datasets. Most mutations in the MTB genome are rare, occurring in 
only one or two isolates in the datasets comprising tens of thousands 
of sequences (Stritt and Gagneux, 2023). As a result, their phenotypic 
effects could not be reliably estimated. Aggregation of mutations with 
the subsequent exclusion of rare mutations is a way of dimensionality 
reduction. It is typically done by constructing features indicating the 
presence of mutations in specific genes or regulatory regions (Chen 
et al., 2019). For pncA, which carries multiple mutations impairing its 
function, Karmakar et  al. (2020) endorsed a method of mutation 
aggregation based on the prediction of their impacts. They employed 
a rather complicated model requiring a set of mutations with known 
effects for training, which makes it impossible to generalize for any 
MTB protein. Aggregated features reduce dimensionality without loss 
of interpretability and allow for the accounting for mutations not 
present in the training set. In this study, we used HMM models from 
the protein families database (PFAM) for aggregation as a mechanism 
to predict the impacts of mutations on protein functions.

Overview of the feature selection methods

In ML, feature selection is a process of selecting a subset of the 
most relevant variables (features) for use in a predictive model. In our 
study, features are binary variables, each representing the presence or 
absence of a specific mutation at a particular site in the genome. 
Additionally, we include features for complex events, such as “broken 
gene” and “PFAM domain change,” which may aggregate multiple 
mutations and are also encoded as binary variables. We use linear 
models to predict binary phenotypic states, i.e., resistance to a specific 
drug, based on genomic features. We  compared multiple feature 
selection methods in terms of both their prediction accuracy and the 
biological relevance of the identified associations between genes and 
drugs. These methods included logistic regression with various 
regularization techniques: lasso (L1) (Tibshirani, 1996), minimax 
concave penalty (MCP) (Zhang, 2010), smoothly clipped absolute 
deviation (SCAD) (Fan and Li, 2001) and elastic net (Zou and Hastie, 
2005). We also employed an algorithm for the best-subset selection 
(ABESS), which searches for the smallest subset of features that best 
explain drug phenotypes (Zhu et al., 2020). Additionally, we used a 
heuristic algorithm specially designed for GWAS in datasets with 
highly correlated features  – “Hungry, Hungry SNPos” (HHS) 
(Libiseller-Egger et al., 2020). We assume that our data exhibit high 
heterogeneity in the strength of mutation effects, i.e., some mutations 
have strong effects on a phenotypic state, while others have weak 
effects. We also assume that the true model is sparse, with only few 
features having nonzero effects relative to the total number of features. 
All of these ML models are well-suited for feature selection in settings 
with sparse, heterogeneous effects and highly correlated features (Roy 
et al., 2023).

The logistic regression model searches for additive coefficients β 
of genomic variations to maximize the likelihood of the dataset. Wald 
and likelihood statistics allow estimating statistical significance of 
coefficients β (Richardson, 2011). Likelihood maximization tends to 
assign nonzero weights to all features, underestimating the impact of 
causal features and overfitting the noise. Also, due to correlations with 
benign features, the causal ones may be overlooked during feature 
selection. Lasso regularization (Tibshirani, 1996) adds a linear 
regularization term to the likelihood function, penalizing large 
coefficients, which is also known as L1 norm regularization. As a 
result, it selects only one feature from a subset of highly correlated 
ones. Ridge regression (Hoerl and Kennard, 1970a; Hoerl and 
Kennard, 1970b) penalizes the squared β  coefficients (L2 norm), while 
elastic net combines both L1 and L2 penalties. Lasso has been shown 
to outperform unregularized stepwise feature selection in both 
prediction quality and the proportion of causal features in the selected 
set in simulated data (Tibshirani, 1996; Grogan and Elashoff, 2016). 
In simulated bacterial GWAS, lasso performs better or similarly to 
linear mixed models (LMMs), even in the presence of high linkage 
disequilibrium (LD) and strong population structure (Saber and 
Shapiro, 2020). Elastic net has earlier been shown to outperform lasso 
in prediction quality (Lees et al., 2020).

Penalizing large coefficients comes at a price: large true 
coefficients may also be penalized. While regularization techniques 
each have their drawbacks and limitations, new methods are 
constantly being developed. Fan and Li introduced SCAD 
regularization which applies a nonlinear decreasing penalty to large 
coefficients (Fan and Li, 2001). A similar effect is achieved by MCP 
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regularization (Zhang, 2010). In feature selection, MCP and SCAD 
outperformed lasso on all types of simulated data, except for 
non-sparse data with a low signal-to-noise ratio, in which case the 
elastic net was the leader (Kumar et al., 2021).

Some methods penalize the number of nonzero coefficients (L0 
norm regularization), which makes the optimization function 
non-differentiable and requires enumerating feature subsets to 
identify the best one. ABESS efficiently implements enumeration and 
optimizes various information criteria (AIC, BIC, cross-validation, 
and an original asymptotic criterion - SIC) to find the best subset (Zhu 
et al., 2020). For each feature set size, starting from one up to the user-
defined maximum, the best subset of features is constructed, and the 
final subset is selected based on the chosen information criterion. The 
best subset of a given size is constructed by first selecting features most 
strongly correlated with the target variable (the binary phenotypic 
state, in our case). The solution is iteratively improved by scoring all 
features based on the content of the currently selected set and 
swapping the least informative features with the most informative 
ones. This procedure is shown to converge in a finite number of steps 
(Zhu et  al., 2020). A thorough theoretical analysis of ABESS is 
provided in the original paper, where the authors study the sufficient 
conditions for the algorithm’s correctness and prove that, under such 
conditions, its running time is polynomial. Like LASSO, SCAD, and 
MCP, ABESS can identify the correct model if feature correlations are 
not too high, the true number of causal features is small, and the true 
coefficients are sufficiently large, while the data is not too sparse. All 
the methods have difficulties when there are many features with small 
effects (Zhu et al., 2020).

ABESS outperformed SCAD, MCP, and Lasso regularization on 
simulated data in the original study (Tomasicchio et  al., 2016). 
However, other benchmarks comparing these methods on different 
simulated datasets have yielded inconsistent results, suggesting that 
their performance depends on the underlying data structure (Hanke 
et al., 2020; Roy et al., 2023).

In addition to well-known and theoretically grounded approaches 
described above, new heuristic methods are being developed for 
GWAS to address feature correlations by taking the population 
structure into account (Libiseller-Egger et  al., 2020). The HHS 
algorithm begins by assigning a score to each SNP, reflecting the 
correlation with phenotype while adjusting for the population 
structure. The score can be modified to account for class imbalance in 
the phenotype and allele frequencies. Similar to ABESS, the currently 
selected set of features (all having positive scores) is iteratively 
optimized by decreasing the normalized scores of mutually correlated 
features until convergence (Libiseller-Egger et al., 2020).

We benchmarked these methods on a large dataset and evaluated 
their ability to select biologically relevant genes and associate them 
with the proper drugs, while being trained on samples exhibiting 
resistance co-occurrence. Based on our benchmarking results, 
we propose a two step feature selection procedure utilizing ABESS, 
which emerged as the top performer in our evaluation. This procedure 
aims to uncover new associations that may have been missed during 
the initial selection step.

Methods

Supplementary Figure S1 summarizes the main steps of our study.

Dataset preparation

The dataset comprises phenotypically characterized whole-
genome sequences of M. tuberculosis gathered from multiple studies 
(Walker et al., 2015; Farhat et al., 2019; Zhang et al., 2013; Farhat et al., 
2013; Coll et al., 2018; Yang et al., 2017; Kouchaki et al., 2019; Casali 
et al., 2014; Pankhurst et al., 2016; Johnsen et al., 2019). Illumina reads 
were trimmed and mapped to the H37Rv reference genome 
(AL123456.3). Variants were called with GATK HaplotypeCaller and 
multiple filtering steps were applied.

For each isolate, the nucleotide sequence of every protein-coding 
gene was translated, the corresponding amino acid sequence was 
aligned to the reference protein sequence carefully accounting for 
potential frameshifts and start or stop codon loss. Genes with 
mutations caused the resulting protein to be  50% shorter or 30% 
longer than the reference were classified as ‘broken’, and mutations 
within these genes were excluded from consideration. Finally, 
we  obtained a list of mutations relative to the reference genome 
including mutations in noncoding regions, missense mutations, loss-
of-function mutations, and aggregated features (see below). 
Synonymous mutations were excluded from the analysis.

The final dataset was divided into subsets containing only isolates 
with known phenotypes for each antibiotic. Aggregation of rare 
mutations and machine learning were performed separately for each 
subset. For each drug, the corresponding subset was randomly split 
into five non-overlapping subsets (folds). Each fold was used as the 
testing set one at a time, while the union of the remaining folds served 
as the training set. Below we refer to every such partitioning of the 
dataset into the training and the testing sets “the dataset split” (see 
“Dataset and raw data processing” in Supplementary Methods and 
Supplementary Figures S1, S2 for details).

Aggregation of mutations

We examined three types of aggregated features: (i) an indicator 
of the presence of any mutation in a gene (“gene aggregation” feature), 
(ii) an indicator that a gene is broken, i.e., it has a loss-of-function 
mutation (“broken gene” feature), and (iii) features indicating that a 
function of a PFAM domain was likely affected by mutations (“PFAM 
domain” features).

If there is any mutation in a gene, the “gene aggregation” feature 
is assigned a value of “1,” and “0” otherwise. “Broken gene” feature is 
assigned a value “1” if the length of the encoding amino acid sequence 
is sufficiently different from the length of the gene product in the 
reference genome, otherwise it is assigned a value “0” (see the 
previous section).

To generate PFAM domain features we used pre-trained models 
available for 3,369 M. tuberculosis genes in the PFAM database.1 Using 
these models for amino acid sequences of domains, we computed scores 
representing the probabilities that domain sequences were generated by 
corresponding HMM models. We  then converted these scores into 
binary variables by selecting a threshold for each domain and for each 
drug separately, optimizing the separation of resistant and susceptible 

1 https://www.ebi.ac.uk/interpro/
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sequences in the training set of each dataset split. If a domain score 
exceeded the threshold, the function of the domain was considered to 
be affected by mutations and the corresponding binary variable was 
assigned a value of “1” and a value “0” otherwise (see “PFAM domains 
based feature aggregation” in Supplementary Methods).

Estimating the impact of aggregation

To measure the effect of aggregation, we  evaluated results of 
classification of isolates into resistant and susceptible phenotypic states 
with logistic regression with L1 regularization using different feature 
set combinations. The basic feature set included mutations only, 
comprising SNPs and Indels, without aggregation. Three other feature 
sets contained both aggregated features and mutations, excluding rare 
mutations occurring <3 times in the training set: (1) SNPs and Indels 
with PFAM domain features; (2) SNPs and Indels with “broken gene” 
features; (3) SNPs and Indels with “gene aggregation” features. In these 
three sets and in other analyses described below, rare mutations were 
filtered out after the generation of aggregated features.

We computed ROC AUC and F1 scores using 5-fold cross-
validation. Logistic regression was trained on the training sets of 
dataset splits, and the scores computed on testing sets were averaged. 
To assess the statistical significance of the differences in scores between 
the models trained on different feature sets, we repeated this procedure 
100 times. We then calculated the Wilcoxon paired rank test between 
two vectors of length 100 of corresponding scores. The null model 
assumes that there is no difference between the performance of logistic 
regression on different feature sets and the difference of scores 
obtained on 5-fold cross-validation is explained only by chance. 
We  considered differences to be  significant if the p-value, with 
Bonferroni correction to the number of drugs, was lower than 5%.

The scheme of the comparison of feature aggregation strategies is 
presented in Supplementary Figure S2.

Feature selection and model quality 
evaluation

We evaluated the performances of several methods – regularized 
logistic regression (L1, MCP and SCAD), elastic net, HHS and ABESS – 
using 5-fold cross-validation for each drug separately. After the training 
of each method on each of the five training sets, we obtained a list of 
features with non-zero coefficients. For each feature, we computed the 
number of times it was selected by each method.

We defined a feature as ‘majorly selected’ if it was selected in three or 
more dataset splits. For each such feature, we computed Fisher’s exact test 
p-value for its association with phenotypic states on the testing set of the 
first dataset split. To estimate the prediction accuracy of the subsets of 
selected features, we trained the ordinary logistic regression using these 
features, and computed ROC AUC, sensitivity, specificity, NPV and PPV.

To search for additional features associated with drug phenotypes, 
we  performed a second iteration of ABESS on the subset of data 
unexplained by the majorly selected features from the first iteration. 
For the second iteration of ABESS, we  removed resistant isolates 
correctly classified on the previous iteration and some randomly 
selected susceptible isolates to maintain class balance. All features 
majorly selected for at least one drug with positive coefficients in the 

first iteration were completely removed to prompt the method to 
search for the new associations. After training of ABESS, the feature 
selection process was repeated. The same procedure was performed 
for HHS (see Supplementary Methods for details).

Accounting for the population structure

It is widely accepted that due to clonal evolution of bacteria, certain 
multicomponent genetic features associated with resistance may 
be shared by groups of strains with common ancestry. These groups 
may comprise distinct clades on the phylogenetic tree, which may 
be associated with geographic regions or specific MTB genetic lineages. 
Therefore, genetic markers of such clades could spuriously be associated 
with drug resistance or susceptibility by any statistical learning method.

To investigate if there are any subsets of phylogenetically related 
isolates in our dataset where shared ancestry serves as a marker of 
resistance, we constructed a maximum likelihood phylogenetic tree 
for all isolates included in our study (see Supplementary Methods for 
details). For each drug, we  pruned all isolates lacking phenotype 
information and obtained the corresponding subtree. We then applied 
TreeBreaker (Ansari and Didelot, 2016) to each subtree to infer clades 
with a prevalence of resistant isolates significantly different from 
parental clades. Branches of each subtree having posterior probabilities 
of prevalence switches larger than 0.5 were used as structural binary 
features, taking a value of one for all descendent isolates and zero for 
all other isolates.

Geographic locations of isolates were obtained from NCBI 
BioSample records. If location data were missing in a BioSample record, 
the location of an isolate was assigned based on text descriptions in the 
corresponding BioProject record, if possible. We used the information 
about a country, where an isolate had been sampled, for further analysis. 
To test if the distribution of isolates belonging to each clade identified by 
TreeBreaker by countries was significantly different from the distribution 
of all isolates, we computed a sum of squares of differences of isolate 
frequencies within country categories belonging to the TreeBreaker 
clades and frequencies of isolates in the entire tree. We  computed 
p-values for this statistic by multiple permutations of location labels of 
isolates. Bonferroni correction for the number of applied tests for all 
subtrees together was used for the p-values. We considered significant 
p-values below the Bonferroni corrected 5% threshold.

Isolates were assigned to the MTB genetic lineages based on the 
catalog of the TB-Profiler lineage-defining mutations (Bosch et al., 
2021). To test if the distribution of isolates belonging to each clade 
identified by the TreeBreaker by lineages was significantly different 
from the distribution by lineages of all isolates, we applied the similar 
procedure as for the geographic location test.

Isolates that had no location or lineage information were ignored 
in the corresponding tests (see Supplementary Methods for details).

Results

Most mutations are rare

Short reads and phenotypes for 13 drugs were obtained from 
publicly available sources (Supplementary Table S2) (Walker et al., 
2015; Farhat et al., 2019; Zhang et al., 2013; Farhat et al., 2013; Coll 
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et al., 2018; Yang et al., 2017; Kouchaki et al., 2019; Casali et al., 2014; 
Pankhurst et al., 2016; Johnsen et al., 2019). After subsequent data 
preprocessing, our dataset comprised 12,333 whole-genome sequences 
for which binary phenotype (resistance or susceptibility) for at least 
one of 13 antibiotics was known.

For all antibiotics, the number of mutations significantly exceeded 
the number of isolates. Moreover, most mutations (>67%) were rare: 
they appeared in the dataset in three or less isolates (Table 1).

The phenotypic states of most drugs are 
coherent

To illustrate and quantitatively characterize the coherence of 
phenotypic states, we computed Pearson’s correlations for all pairs of 
drugs. The correlation was computed on the isolates phenotypically 
characterized for both drugs in a pair. The resulting heatmap is 
presented in Figure  1. Many pairs of phenotypes turned out to 
be strongly correlated. High correlations are expected for drugs from 
one pharmacological group such as aminoglycosides (amikacin, 
kanamycin, streptomycin, capreomycin) and fluoroquinolones 
(moxifloxacin, ofloxacin, and ciprofloxacin). Aminoglycosides share 
three known genes associated with resistance (rrs, tlyA, gidB) and 
fluoroquinolones share two (gyrA, gyrB) (Table 1). Another cause of 
high correlation is joint antibiotic treatment, which is probably the case 
for rifampicin and isoniazid, as well as for all pairs of the first-line drugs.

Aggregation of mutations improves 
phenotype prediction quality

After exploring the dataset, we focused on creating an effective 
representation of genotypes to evaluate feature selection models. Due 
to the predominance of rare mutations and the substantially higher 

total number of mutations compared to the number of isolates in the 
dataset for some drugs, we  generated the following aggregated 
features: “broken genes,” “gene aggregation” and “PFAM domains” (see 
“Methods”). We then created three feature sets, each containing one 
of the aggregated features along with mutations, excluding rare 
mutations occurring in fewer than three isolates. To compare the 
feature sets with aggregated features to the initial feature set, which 
included all mutations without aggregation, we  evaluated the 
classification accuracies of logistic regression models with L1 
regularization, trained on these sets for the binary drug phenotype 
prediction task.

The feature sets containing aggregated features demonstrated 
significantly higher phenotypic state prediction quality for some drugs 
compared to feature sets with no aggregation (Figure  2 and 
Supplementary Tables S3–S8). Although the differences in ROC AUC 
values were moderate, they often exhibited large statistical significance 
due to small variances across all feature sets (Supplementary Table S9). 
Feature sets incorporating PFAM domain features yielded higher AUC 
scores for all drug groups except fluoroquinolones and for six drugs 
individually. However, for four drugs, domain features impaired the 
classification accuracies, and for three others, AUC scores differed 
insignificantly (Supplementary Table S3). Models trained on the 
dataset including “broken genes” features outperformed the baseline 
models in pairwise comparisons for 8 out of 13 drugs, for four drugs 
they decreased AUCs (Supplementary Table S4). “Gene aggregation” 
feature was superior only for 5 out of 13 drugs, while for 7 drugs the 
result was the opposite (Supplementary Table S5). Results for the F1 
score were generally consistent with ROC AUC results 
(Supplementary Tables S6–S8). We  also compared PFAM domain 
features with gene aggregation. PFAM domain-based aggregation 
outperformed gene aggregation for most drugs in terms of both ROC 
AUC and F1 score (Supplementary Tables S10, S11). Based on these 
findings, we  retained PFAM domain features and “broken genes” 
features in all further experiments.

TABLE 1 The descriptive statistics of the dataset.

Drug name Classification 
by the 
treatment line

Drug group Number of 
isolates with 

known 
phenotype

Resistance 
fraction

Number of 
mutations

Fraction of 
indels 

among all 
mutations

Fraction of 
rare 

mutations

Rifampicin

First line

11,913 24.2% 301,227 3.6% 77.1%

Isoniazid 11,828 29.5% 300,368 3.6% 77.1%

Pyrazinamide 9,329 12.0% 261,081 3.6% 77.6%

Ethambutol 10,346 14.9% 287,143 3.6% 77.9%

Streptomycin

Aminoglycosides

4,805 35.6% 149,347 3.8% 77.6%

Kanamycin

Second line

1,209 28.7% 45,512 4.6% 74.8%

Amikacin 1,878 21.7% 47,794 4.5% 72.8%

Capreomycin 1,959 21.0% 54,308 4.6% 75.2%

Ofloxacin

Fluoroquinolones

1,974 24.1% 55,591 4.5% 76.4%

Moxifloxacin 1,223 21.4% 36,115 4.8% 74.1%

Ciprofloxacin 471 22.3% 30,313 4.2% 74.8%

Ethionamide Thiocarbamide 

derivative

700 40.3% 27,284 4.5% 71.0%

Prothionamide 442 40.7% 8,231 5.1% 67.9%

We define a mutation as rare if it occurs in fewer than three genotypes in the dataset.
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Comparison of feature selection 
algorithms

In this study, we explored six methods for the selection of causal 
DR mutations: logistic regression with L1, MCP, and SCAD 
regularization, elastic net, HHS, and ABESS. Feature selection models 
were trained on the training parts of five dataset splits for drug 
resistance prediction tasks (separately for each drug). The mutations 
selected in at least one dataset split by each method are listed in 
Supplementary Tables S12–S17, along with the number of dataset 
splits in which each mutation was chosen. For each method, 
we focused on features selected in at least three splits and evaluated 
their predictive power and, importantly, the correctness of these 
features, i.e., the ability of each model to infer genuine associations 
and disentangle them from the spurious ones.

To assess the prediction quality of the selected feature sets, logistic 
regression models were trained on the training sets using the features 
chosen by each method, and prediction performance was evaluated 
using ROC AUC on the testing sets. For comparison, we also evaluated 
the prediction quality of the DA method based on the WHO catalog 
(Walker et al., 2022). Feature sets obtained by the logistic regression 
with L1, SCAD, MCP and elastic net regularization techniques 

exhibited similar prediction quality, whereas HHS performed the 
worst, except for capreomycin and amikacin. The DA method based 
on WHO catalog showed lower prediction quality for all drugs 
compared to all methods, except for HHS, which yielded the worst 
results for most drugs (Figure 3 and Supplementary Tables S18–S24). 
This outcome was expected since the catalog was constructed by 
applying stringent statistical thresholds to label mutations as “associated 
with resistance,” resulting in higher specificity and lower sensitivity 
(Supplementary Tables S18–S24), and being overly conservative in 
its predictions.

We also compared the number of selected features and the 
stability of selection by different methods (Supplementary Table S25). 
The number of selected features varied among the algorithms with 
logistic regression with different regularization techniques typically 
picking more features than ABESS and HHS. When comparing the 
number of features selected in at least one dataset split with the 
number of majorly selected features (selected in at least three splits), 
surprisingly, elastic net demonstrated the largest fraction of features 
selected in 3 and more splits, demonstrating relatively high stability. 
However, these sets were still too large to interpret, while the second 
leader  - ABESS - majorly selected the small number of features 
(Supplementary Table S25).

FIGURE 1

Concordance of drug resistance acquisition between co-administered drugs and drugs within common pharmacological groups. The heatmap 
displays the Pearson correlation between phenotypic states for drug pairs. Correlations were calculated using only isolates with known phenotypic 
states for both drugs in each pair.
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Next, we  examined the correctness of selected features. 
Assuming that most of each drug’s phenotype could be explained by 
mutations in a relatively small number of genes involved in anti-TB 
drug action, we compared the methods based on their ability to 
correctly identify known associations of drugs with genes. Below, 

we refer to a gene as a “gene associated with a given drug” if this gene 
was associated with resistance to given drug in previous studies 
(Supplementary Table S1). We refer to a gene as a “gene selected by 
the method for a given drug” if at least one mutation in this gene was 
majorly selected by this method for this drug. We  compared 

FIGURE 2

Comparison of drug resistance prediction accuracies using the original mutation feature set and feature sets with various aggregations of rare features. 
Aggregation of loss-of-function mutations and mutations occurring in PFAM domains likely affecting protein functions, improves, rather than 
compromises, accuracy for most drugs. Panels A1–C1: comparison of mean ROC AUC scores of logistic regression evaluated on different feature sets 
across drug groups: (A1) “SNPs and Indels” vs “SNPs and Indels and gene aggregation excluding rare mutations”; (B1) “SNPs and Indels” vs “SNPs and 
Indels and broken genes excluding rare mutations”; (С1) “SNPs and Indels” vs “SNPs and Indels and PFAM domains excluding rare mutations.” The 
Wilcoxon signed-rank test was used to evaluate statistical significance. p-values for drug groups that demonstrated a statistically significant increase in 
AUC due to aggregation are colored in teal, while those showing a significant decrease are colored in red. Panels A2–C2: the pie charts display the 
percentage of drugs for which models trained on datasets with feature aggregation outperform (shown in teal), underperform (shown in red), or have 
no effect on the score (shown in gray).
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methods by their ability to select features corresponding to genes 
known to be associated with resistance to a particular drug while 
avoiding features associated with other drugs. For this, we considered 
only genes whose mutations are known to be  associated with 
resistance to some drugs, i.e., present in Supplementary Table S1. 
Thus, for each drug, each gene can be selected or not selected by the 
tested method, and, on the other hand, be  associated or not 
associated with resistance to this drug in Supplementary Table S1. 
Therefore, a gene is a “true positive” (TP) if it was selected by the 
method for a given drug and is associated with this drug, a “false 
positive”(FP) if it was selected but is not associated, a “false 
negative”(FN) if it was not selected but is associated, and a “true 
negative”(TN) if it was not selected and is not associated with this 
drug. If a gene is associated with multiple drugs, it is considered 
either TP or FN for each drug depending on whether it was selected 
by the algorithm.

The first comparison criterion is PPV (Table 2). In our case, it is 
the number of genes associated with a given drug selected by the 
method (TP) divided by the number of all genes selected for the 
particular drug (TP + FP) among genes associated with resistance to 
any of the drugs. ABESS exhibited the highest PPV for 8 antibiotics, 
while HHS was the best for five drugs, logistic regression with elastic 
net regularization performed best for prothionamide. Logistic 
regression with L1, SCAD and MCP regularization showed the 
lowest PPVs.

We also examined two additional metrics to emphasize the 
strength and weakness of each method: sensitivity (Sn = TP/
(TP + FN)) and specificity (Sp = TN/(TN + FP)). The values of 

sensitivities were the same or better for logistic regression methods 
compared to ABESS and HHS. However, the specificity values were 
consistently lower for these methods (Table 2).

The genes selected by ABESS generally are in agreement with the 
literature (Table 3 and Supplementary Table S1). It is also noteworthy 
that ABESS predominantly selects PFAM domain features, 
constituting approximately 53% of all majorly selected features 
(Table 3).

ABESS does not select features clearly 
associated with the population structure

Structural features were generated for all drugs by TreeBraker (see 
“Methods,” Supplementary Table S26). The number of structural 
features varied from 1 for prothionamide to 163 for rifampicin (see 
Supplementary Table S27). To assess whether the phylogenetic features 
correspond to specific geographic locations or MTB phylogenetic 
lineages, we assigned geographic locations to 3,541 isolates (about 29% 
of the dataset) for which this information was available, and lineage 
information to all but two isolates, for which lineage-defining 
mutations from the TB Profiler table were found 
(Supplementary Table S28). Across all drugs, for 139 (about 21%) of all 
structural features, the distributions of isolates having these features by 
location categories were significantly different from the distributions 
by location categories of all isolates with known phenotypic states for 
corresponding drugs. For 480 (about 69%) of all structural features, the 
distributions of isolates by MTB phylogenetic lineages were 

FIGURE 3

Drug resistance prediction accuracies of compared ML methods. Logistic regression models with SCAD, MCP, elastic net and L1 regularization 
outperform other methods. The figure shows the average ROC AUC scores of logistic regression models trained on features majorly selected by 
regression with L1 (teal), MCP (magenda) and SCAD (blue) regularization, elastic net (orange), HHS (grey), ABESS (red) and WHO catalog (cyan). Feature 
selection models were trained on the training parts of 5 dataset splits, and features selected in at least three of the splits were included. Logistic 
regression was trained using these selected features on the training set, and ROC AUC was estimated on the testing set. The ROC AUC scores were 
averaged over all dataset splits.
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TABLE 2 Comparison of the ability of feature selection methods to correctly identify genes involved in drug resistance.

Metric PPV Sensitivity Specificity

Method L1 SCAD MCP Elastic ABESS HHS L1 SCAD MCP Elastic ABESS HHS L1 SCAD MCP Elastic ABESS HHS

Rifampicin 0.09 0.09 0.09 0.11 0.50 0.33 0.50 0.50 0.50 0.50 0.50 0.50 0.68 0.68 0.68 0.74 0.97 0.94

Isoniazid 0.38 0.40 0.40 0.33 0.75 1.00 1.00 0.80 0.80 0.60 0.60 0.20 0.71 0.79 0.79 0.79 0.96 1.00

Pyrazinamide 0.11 0.11 0.11 0.09 0.50 0.08 0.33 0.33 0.33 0.33 0.33 0.33 0.73 0.73 0.73 0.67 0.97 0.63

Ethambutol 0.25 0.25 0.25 0.10 0.50 0.33 0.33 0.33 0.33 0.11 0.11 0.11 0.63 0.63 0.63 0.63 0.96 0.92

Streptomycin 0.33 0.33 0.33 0.30 0.50 0.33 1.00 1.00 1.00 1.00 0.67 0.67 0.80 0.80 0.80 0.77 0.93 0.87

Kanamycin 0.17 0.13 0.13 0.15 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.68 0.58 0.58 0.65 0.97 1.00

Amikacin 0.17 0.17 0.17 0.11 1.00 0.50 1.00 1.00 1.00 0.50 0.50 0.50 0.68 0.68 0.68 0.74 1.00 0.97

Capreomycin 0.15 0.13 0.13 0.13 0.50 1.00 1.00 1.00 1.00 0.50 0.50 1.00 0.65 0.58 0.58 0.77 0.97 1.00

Ofloxacin 0.13 0.13 0.11 0.14 1.00 0.33 1.00 1.00 1.00 1.00 0.50 0.50 0.58 0.58 0.48 0.61 1.00 0.94

Moxifloxacin 0.13 0.13 0.13 0.09 0.50 1.00 1.00 1.00 1.00 0.50 0.50 0.50 0.58 0.55 0.55 0.68 0.97 1.00

Ciprofloxacin 0.11 0.11 0.11 0.13 1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.74 0.74 0.74 0.77 1.00 1.00

Ethionamide 0.18 0.20 0.20 0.20 0.67 0.00 0.67 0.67 0.67 0.67 0.67 0.00 0.70 0.73 0.73 0.73 0.97 0.97

Prothionamide 0.11 0.13 0.12 0.13 0.00 0.00 0.67 0.67 0.67 0.67 0.00 0.00 0.47 0.57 0.50 0.53 0.97 0.97

The methods that incorporate a parsimony assumption, namely ABESS and HHS, demonstrate better PPV and Specificity statistics, indicating that they are less likely to select genes known to be associated with other drugs compared with regularized logistic regression 
methods. Below, we refer to a gene as a “gene associated with a given drug,” if it has been associated with resistance to that drug in previous studies (Supplementary Table S1). We refer to a gene as a “gene selected by the method for given drug” if at least one mutation in 
this gene was majorly selected by the method for that drug. Only genes associated with at least one drug, i.e., those present in Supplementary Table S1, are considered. Thus, for each drug, each gene can either be selected or not selected by the method, and can also 
be associated or not associated with the drug. A gene is a “true positive” if it was selected by the method for a given drug and is associated with that drug, a “false positive” if it was selected but not associated with the drug, a “false negative” if it was not selected but is 
associated, and a “true negative” if it was not selected and is not associated with the drug. If a gene is associated with multiple drugs, it is considered either TP or FN for each of the drugs depending on whether it was selected by the algorithm. Maximum values for all 
drugs and all metrics are highlighted in bold.
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TABLE 3 Mutations (relative to H37Rv) and aggregated features which are majorly selected by ABESS.

Drug name Gene Position Type of event Reference allele Alternative allele Number of 
splits in which 

the feature 
was selected

Rifampicin

eccC2 258 SNV R P 5

rpoB 435 SNV D V 5

rpoB 450 SNV S L 5

rpoB – PF04565 is changed – – 5

fadA – PF00108 is changed – – 4

katG – PF00141 is changed – – 4

rpoB 435 SNV D Y 3

Isoniazid

katG – PF00141 is changed – – 5

katG 315 SNV S T 5

fabG1 −15 SNV C T 5

rpoB – PF04565 is changed – – 4

inhA – PF13561 is changed – – 4

pepC – PF02127 is changed – – 3

Pyrazinamide

pncA – PF00857 is changed – – 5

fadA – PF00108 is changed – – 5

Rv2017 262 SNV A E 4

Rv2017 – PF06114 is changed – – 4

ctpB – PF00403 is changed – – 4

Rv0108c −73 Insertion T GT 4

nadD −44 SNV T G 4

rpoB – PF04565 is changed – – 4

Rv2585c 462 SNV C S 3

Ethambutol

embB 406 SNV G A 5

embB – PF04602 is changed – – 5

rpoB – PF04565 is changed – – 5

embB 406 SNV G S 4

ctpB – PF00403 is changed – – 3

eccC2 258 SNV R P 3

fadA – PF00108 is changed – – 3

Streptomycin

inhA – PF13561 is changed – – 5

katG 315 SNV S T 5

katG – PF00141 is changed – – 5

rpsL – PF00164 is changed – – 5

rrs 514 SNV A C 5

Kanamycin

gyrA – PF00521 is changed – – 5

rrs 1,401 SNV A G 5

eis −10 SNV C T 3

eis −14 SNV G A 3

htrA −33 Insertion T GT 3

Amikacin rrs 1,401 SNV A G 5

Capreomycin
rrs 1,401 SNV A G 5

fabG1 −15 SNV C T 4

(Continued)
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TABLE 3 (Continued)

Drug name Gene Position Type of event Reference allele Alternative allele Number of 
splits in which 

the feature 
was selected

Ofloxacin gyrA – PF00521 is changed – – 5

Rv1897c – PF02580 is changed – – 3

gyrA 91 SNV S P 3

Moxifloxacin gyrA – PF00521 is changed – – 5

katG – PF00141 is changed – – 4

gyrA 91 SNV S P 3

Ciprofloxacin pks8 1,357 SNV A T 5

gyrA – PF00521 is changed – – 3

Ethionamide fabG1 −15 SNV C T 4

inhA – PF13561 is changed – – 4

ethA – PF00743 is changed – – 3

fbpC – PF00756 is changed – – 3

Prothionamide pncA – PF00857 is changed – – 3

Genes associated with resistance to the given drug in previous studies (Supplementary Table S1) and correctly assigned to this drug by ABESS are marked in bold, improperly assigned genes 
are underscored.

significantly different from those of all isolates with known phenotypic 
states for corresponding drugs (see Supplementary Tables S28, S29). 
These findings indicate strong geographic and phylogenetic signals in 
the structural features and, consequently, in the dataset.

All structural features were added to the set of genetic features for 
each corresponding drug, and the compound feature sets were used 
for feature selection with the ABESS method. None of the structural 
features were majorly selected (Supplementary Table S30), and none 
of the selected SNVs were from the TB-Profiler catalog of lineage-
defining SNVs used for genotyping (Napier et al., 2020). Therefore, the 
population structure of the data did not appear to compromise the set 
of features selected by ABESS.

New associations can be found by 
repeating the search on the unexplained 
resistant isolates

Features majorly selected by ABESS did not fully explain resistance 
for several drugs. A significant percentage of isolates, especially for 
second-line drugs, had resistant phenotypes that were not explained by 
mutations selected in three or more folds (Table 4). To address this, 
we  performed a second iteration of ABESS on a reduced dataset 
containing resistant isolates which were not explained by majorly 
selected features in the first iteration (Supplementary Table S31) (see 
“Methods”). For six drugs, the second iteration increased the number 
of isolates with correctly explained resistant phenotype, with increases 
ranging from 0.38 to 24.26% (Table 4). Among the 26 features majorly 
selected at the second iteration, 19 were known from the literature as 
DR-associated mutations or domains in the DR-associated genes, 16 of 
these were correctly predicted for the corresponding drugs (Table 5). 
Two drug-associated genes that were missed in the first iteration (embA 
for ethambutol and gid for streptomycin) were identified in the 
second iteration.

We attempted to apply this approach to the other methods tested 
above. All variants of logistic regression turned out to majorly select 
so many features, that these features explained all resistant isolates in 
the first iteration. This came at the cost of mixing correct genes with 
the ones associated with other drugs, according to the literature 
(Table 2). Meanwhile, HHS, which performed the worst in terms of 
ROC AUC (Figure 1), explained much fewer resistant isolates on 
average compared to ABESS. Although the percentage of explained 
resistant isolates increased significantly after the second iteration for 
all drugs, these values remained lower than those for ABESS for all 
drugs except pyrazinamide, kanamycin, amikacin, capreomycin and 
ethionamide (Table 4 and Supplementary Table S33). The second 
iteration enabled HHS to select relevant mutations: of the 43 features 
majorly selected in the second iteration, 19 were point mutations and 
19 were change of domain events, 4 of which were in DR-associated 
genes known from the literature (Tables S33-S34). Twenty of these 43 
features were in genes selected in the first iteration, including one 
domain change event; 15 domain events were selected in new genes. 
Three of the domain features selected in the second iteration were in 
known drug associated genes not selected in the first iteration: the 
PF01751 PFAM domain change event in the gyrB gene was selected 
for ofloxacin, the PF00743 PFAM domain change event in the ethA 
was selected for ethionamide and the PF00141 PFAM domain change 
event in katG was selected for isoniazid. The rpsL K88R was selected 
for streptomycin. Thus, the second iteration allowed HHS to identify 
gyrB, katG, rpsL and ethA, which had not been selected in the first 
iteration. However, compared to ABESS, HHS tended to select more 
genes that were not associated with any drug in the literature.

Discussion

Often, the same ML methods are applied to address two related 
yet distinct tasks: solving classification problems, such as predicting 
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drug genotypic states based on genotypes in our case, and performing 
feature selection, such as identifying mutations reliably associated 
with drug resistance. However, a method that is optimal for one task 
may be unsuitable for another. The primary aim of our study was to 
identify the most effective ML method for uncovering new genes and 
mutations associated with resistance to anti-TB drugs. We evaluated 
various methods for analyzing the relationships between mutations 
in clinical isolates and their corresponding phenotypic states across 
different drugs. The task was particularly challenging due to the high 
correlation among phenotypic states for different drugs, which can 
obscure true weak associations between features and proper drug 
phenotypes. However, for classification tasks, such correlations are 
less problematic as long as the method is applied to datasets with 
similar statistical properties to the training set.

Among the tested methods, ABESS proves to be the most suitable 
for addressing the challenge of correlating response variables, as it 
effectively identifies genuine, experimentally confirmed associations 
between drugs and genes. However, all compared regularized logistic 
regression methods outperform ABESS in terms of a phenotype 
prediction accuracy. Nevertheless, ABESS achieves higher 
classification accuracy than the HHS method (Libiseller-Egger et al., 
2020) or the direct association method based on the 2021 WHO 
mutation catalog, which is overly conservative (Walker et al., 2022). 
While ABESS is the most accurate for uncovering proper functional 
associations between mutations and drugs, it yields the fewest novel 
genes potentially involved in drug resistance. In total, 16 novel genes 
have been selected as markers of drug resistance or susceptibility: 12 in 
the first iteration, and an additional 4 in the second iteration of ABESS.

Five features majorly selected by ABESS corresponded to four 
genes: pepC, Rv2017, fadA and vapB1, each exhibiting positive 

regression coefficients. These features were predictive of resistant 
phenotypes to INH, PZA and MOX (Tables 4, 5 and 
Supplementary Tables S12, S31). We can infer potential mechanisms 
through which these genes contribute to MTB’s adaptation to drug 
actions. Protease pepC is shown to be expressed during pellicle growth 
and is involved in virulence (Kerns et al., 2014). Rv2017 was annotated 
as a potential transcriptional regulatory protein, it was also identified as 
the antitoxin component of the dual toxin/antitoxin pair Rv2016/Rv2017 
(Akarsu et al., 2019). Rv2017 was identified as an essential gene in 
certain MTB strains but not in others (Bosch et al., 2021). Notably, two 
features, SNV and a domain change in Rv2017, were selected as 
predictors of resistance to pyrazinamide. VapB1, an antitoxin belonging 
to the VapBC family, undergoes degradation under unfavorable 
conditions, leading to toxin VapC1 release and subsequent inhibition of 
cell growth (Lu et al., 2016). An insertion upstream of vapB1, potentially 
affecting gene expression, was selected as moxifloxacin resistance 
marker. Our findings are in agreement with previously suggested 
important roles of toxin/antitoxin systems in MTB’s adaptation to drug-
induced stress through a transition to the non-replicative persistent 
state (Khan et al., 2023). Small peptides that mimic the structures of 
interfaces of cognate toxin-antitoxin pairs, disrupting their complexes 
formation by promoting toxin ribonuclease activity, could be explored 
as potential new anti-TB drugs (Srivastava et al., 2021). fadA encodes a 
possible acyl-CoA thiolase and is involved in lipid degradation. In our 
study, a change in fadA N-terminal domain was identified as a resistance 
marker for pyrazinamide. fadA was also associated with ofloxacin and 
kanamycin resistance in one of the early GWAS studies on MTB (Zhang 
et al., 2013). Additionally, fadA expression is induced in log-phase MTB 
upon exposure to isoniazid (Abo-Kadoum et al., 2021). Moreover, fadA 
is secreted under hypoxic conditions and is enriched in granulomas, 

TABLE 4 The second iteration of ABESS improves sensitivity of DR predictions.

Drug name Number 
of 

resistant 
isolates

Number of 
isolates 

participated 
in the first 

ABESS 
iteration

Fraction of 
resistant 
isolates 

explained 
by the first 

ABESS 
iteration

Number of 
resistant 
isolates 

unexplained 
after the first 

ABESS 
iteration

Number of 
isolates 

participated 
in the 

second 
ABESS 

iteration

Fraction of 
resistant 
isolates 

explained by 
the first and 
the second 

ABESS 
iteration

Number of 
resistant 
isolates 

unexplained 
after the 
second 
ABESS 

iteration

Rifampicin 2,277 9,319 89.92% 230 939 91.71% 189

Isoniazid 2,754 9,252 90.39% 265 888 90.77% 254

Pyrazinamide 884 7,334 55.50% 393 3,263 67.78% 285

Ethambutol 1,223 8,143 74.74% 309 2,057 86.71% 163

Streptomycin 1,344 3,769 86.12% 187 523 93.79% 83

Kanamycin 275 961 79.65% 56 195 79.65% 56

Amikacin 322 1,482 71.96% 90 415 71.96% 90

Capreomycin 323 1,547 63.37% 118 566 65.59% 111

Ofloxacin 376 1,559 69.36% 115 477 69.36% 115

Moxifloxacin 206 964 61.96% 78 366 61.96% 78

Ciprofloxacin 81 366 54.70% 37 165 78.96% 17

Ethionamide 222 553 67.96% 71 177 67.96% 71

Prothionamide 144 351 28.89% 102 249 43.61% 81

We defined a resistant isolate as being explained by ABESS on a given dataset split if logistiс regression trained on the training set of this split using the features majorly selected by ABESS, 
classifies this isolate as resistant. All the numbers were averaged across splits. If the fraction of explained isolates for a given drug increases, the values after the first and the second iterations are 
marked in bold.
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where it functions as an acetyltransferase, converting host acetyl-CoA 
to acetoacetyl-CoA. The reduction in acetyl-CoA level promotes 
granuloma progression (Yang et  al., 2021). FadA, along with other 
enzymes involved in fatty acid β-oxidation, is strongly upregulated 
under starvation stress in non-replicative persisters due to a metabolic 
shift from glycolysis to lipid catabolism and ketone body metabolism. 
Starved persisters are more viable in acidic growth conditions and 
under antibiotic stress (Davis et  al., 2024). Notably, pyrazinamide 
targets CoA biosynthesis and remains the only drug active against 
non-replicative persisters (Lamont and Baughn, 2019). Targeting MTB 
lipid metabolism is now considered a promising approach for adjunctive 
therapy (Davis et al., 2024; Kim and Shin, 2023). Overall, novel genes 
selected by ABESS are likely to be compensatory and, in fact, associated 
with survival in the host and drug tolerance.

The HHS method identified 107 novel genes after the first iteration 
and 21 genes after the second iteration. All features selected by HHS 
exhibited positive regression coefficients and, therefore, were 
predictive of resistant phenotypic states (tables S13, S34). After 

additional filtering of selected features by Fisher’s p-value (p-value < 
0.05) 44 and 1 genes remained for the first and second iteration, 
correspondingly. 24 of these genes were identified by HHS as 
associated with resistance to pyrazinamide. There was no overlap in 
the selected sets of novel genes between HHS and ABESS. However, 
the HHS output also yielded some interesting findings.

For instance, the HHS method recovers rpoC association with 
streptomycin and rifampicin resistance. Interestingly, associated 
variants are not the same for these drugs: a single-residue replacement 
at site 402 of rpoC was selected as rifampicin resistance marker, while 
streptomycin resistance was associated with a replacement at site 516 
of the same gene. Mutations in several sites in rpoC were previously 
shown to have a compensatory role for rifampicin resistance (Comas 
et  al., 2012) and Q1126K replacement in rpoC was beneficial in 
rifampicin and streptomycin double-resistant but not in sensitive 
strains (Moura et al., 2017). HHS predicted an association between 
rpoA, another RNA polymerase subunit, variant and pyrazinamide 
resistance. The selected variant, V183G, is known to be compensatory 

TABLE 5 Additional mutations (relative to H37Rv) majorly selected by ABESS on the second iteration.

Drug name Gene Position Type of 
event

Reference allele Alternative allele Number of splits in 
which the feature 

was selected

Rifampicin eccC2 258 SNV R P 4

Rifampicin rpoB 170 SNV V F 3

Rifampicin rpoB 430 SNV L P 3

Isoniazid fabG1 −17 SNV G T 4

Pyrazinamide embB 306 SNV M I 5

Pyrazinamide fadA – PF00108 is changed – – 5

Pyrazinamide pncA – Broken – – 5

Pyrazinamide pncA −11 SNV T C 5

Pyrazinamide embB 306 SNV M V 4

Pyrazinamide Rv0658c 75 SNV L P 3

Pyrazinamide Rv2585c 462 SNV C S 3

Ethambutol embB 306 SNV M I 5

Ethambutol embB 306 SNV M V 5

Ethambutol embA −12 SNV C T 4

Ethambutol embB 1,002 SNV H R 4

Ethambutol embB 1,024 SNV D N 3

Ethambutol Rv0012 233 SNV C R 3

Streptomycin gid – PF02527 is changed – – 5

Streptomycin gid 92 SNV E D 3

Kanamycin gyrA – PF00521 is changed – – 3

Capreomycin rrs 1,484 SNV G T 3

Moxifloxacin vapB1 −2 Insertion C
AGCGCTGTTCTGGCGC 

TAATCTGACGCTAGAATAGCGC
3

Ciprofloxacin gyrA – PF00521 is changed – – 4

Ciprofloxacin gyrA 94 SNV D G 3

Ethionamide Rv0221 – PF06974 is changed – – 3

Prothionamide ethA – PF13450 is changed – – 3

The method identified many rare mutations properly associated with the corresponding drugs, which were missed in the first iteration. Pairs of drugs and genes that were associated with each 
other in previous studies (Table 1) are marked in bold, while pairs in which the gene was associated with a different drug are underscored.
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for mutations in rpoB conferring rifampicin resistance (Comas et al., 
2012). It has been shown recently that MDR strains with RNAP 
compensatory mutations carry more drug resistance mutations and 
could be transmitted at least as effectively as wild-type strains (Goig 
et al., 2023; Loiseau et al., 2023; Merker et al., 2018).

The set of novel genes predicted for pyrazinamide resistance also 
includes 4 membrane transport proteins: cycA (involved in D-alanine, 
D-serine and glycine transport), dppC (probable ABC transporter of 
dipeptide across the membrane), sugI (involved in sugar transport) 
and cysT (probable sulfate-transport ABC transporter) (Kapopoulou 
et al., 2011). cycA and sugI variants were previously associated with 
D-cycloserine resistance, the drug which is commonly used to treat 
MDR and XDR-TB (Chen et al., 2012; Chen et al., 2017).

Additionally, nusG variant is predicted to be  associated with 
rifampicin resistance. NusG is a probable transcription antitermination 
protein which interacts with rho factor and RNA polymerase. Thus, 
the selected variant is likely to be compensatory for rpoB mutations 
and nusG regulatory mutation was previously shown to 
be compensatory in rifampicin and streptomycin double-resistant 
genotypes (Moura et al., 2017).

rplU, which encodes 50S ribosomal protein L21, is predicted by 
HHS to be associated with streptomycin resistance. Notably, another 
ribosomal protein, RpsL, and ribosomal RNA rrs are known targets of 
streptomycin (Table 1). pntAa is predicted by HHS to be associated 
with streptomycin resistance and its annotated function as a proton 
pump suggests its possible role in MDR acquisition.

Logistic regression methods selected the largest set of novel 
genes, with over 500 novel genes remaining after raw p-value filtering 
for each regularization technique. These large sets lack biological 
interpretation proving this group of methods may not be suitable for 
GWAS, despite the fact that these methods provide the highest 
prediction quality (Figure 3).

Even the most effective algorithm among those studied, ABESS, 
was unable to fully disentangle the cross-associations of features to 
different drugs (Table 3). For example, rpoB was selected for isoniazid, 
ethambutol and pyrazinamide while katG was selected for rifampicin. 
Also, when an isolate is resistant to a certain second-line drug, it is 
typically resistant to one or more first-line drugs. Again, such 
co-resistance leads to cross-associations between genes and both first 
and second-line drugs: katG was selected for streptomycin and 
moxifloxacin, pncA was selected for prothionamide, fabG1 was selected 
for capreomycin and ethionamide. Cross-associations between second-
line drug features were also observed, such as the change of gyrA 
domain being selected for kanamycin. Recently new deep learning ML 
methods were suggested for predicting MTB drug resistance, e.g., 
hierarchical recurrent neural networks with attention, transformers 
and convolutional neural networks (Kuang et al., 2022; Jiang et al., 
2022). Generally, these methods have better accuracy of DR prediction 
compared to classical ML methods for large datasets, however these 
methods as well suffer from correlations of features and predict 
spurious associations of mutations and drugs if they were applied for 
the goal of feature selection (Kuang et al., 2022; Jiang et al., 2022).

The prediction quality of ML algorithms is limited by the quality of 
the datasets. One contributing factor is that patients may be infected by 
multiple strains, which leads to errors in both genotyping and 
phenotyping. Further, assigning discrete phenotypes becomes 
challenging in cases of intermediate drug resistance, where resistant 
isolates with low growth rates may be misinterpreted as susceptible 

(Bradley et al., 2015). There is growing evidence that MICs are more 
informative for GWAS than binary phenotypic labels (Ahmad et al., 
2016). Differences in culturing and measurement protocols further 
contribute to inconsistencies in phenotyping, undermining the 
reproducibility of results. For some drugs, phenotypic tests are now 
considered less reliable than sequencing of known drug-associated genes, 
for example, ethambutol, pyrazinamide, ethionamide and prothionamide 
(World Health Organization, 2021). Epistasis may change the phenotypic 
effects of mutations associated with resistance. For instance, eis promoter 
mutations do not confer amikacin or kanamycin resistance if co-occurred 
with loss-of-function mutations in the eis coding region (Organization 
WH, 2023). Our model does not account for epistatic interactions 
between mutations and it is unable to correctly classify cases of sign 
epistasis. These limitations significantly hinder the ability to assess the 
completeness of our understanding of genetics underlying drug 
resistance. The CRyPTIC study, which used a high-quality phenotype 
dataset, demonstrated that an additive model of genetic effects explains 
MIC variance better than binary phenotype variance, albeit still 
imperfectly for most drugs (Consortium TCr, 2022). This study also 
proposed new resistance mechanisms, including one involving the toxin-
antitoxin VapBC20 system, which is in line with our results.

Overall, our study demonstrates the effectiveness of advanced 
feature selection alongside feature aggregation with subsequent 
filtering by frequency. Notably, aggregated features were majorly 
selected and comprised a significant proportion of all selected features. 
Another advantage of the aggregation is the possibility to take into 
account the effects of rare mutations without directly including them 
into the model, which increases both the robustness and training 
speed. Moreover, advanced feature selection is instrumental in 
addressing the problem of correlations between phenotypes. Unlike 
simpler methods, which tend to attribute resistance to one drug to 
mutations in genes associated with resistance to others, the proposed 
strategy offers a more nuanced approach. Importantly, our selection 
strategy mitigates biases associated with population structure, as well. 
Despite the presence of a strong geographic signal in our data, the best 
algorithm did not select any population structure-associated features.
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