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contamination in protein-rich 
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Background: Mycotoxigenic fungi pose significant threats to food safety and 
marketability. Crop-specific differences in susceptibility to these fungi can 
influence contamination levels.

Objectives: The resistance or susceptibility of protein-rich pulse crops—chickpeas 
(Cicer arietinum L. cv. CDC Frontier), lentils (Lens culinaris Medik cv. Eston), peas 
(Pisum sativum L. cv. LeRoy), and corn (Zea mays L. cv. H97C) to infection by 
Aspergillus flavus were evaluated using a kernel screening assay (KSA).

Methodology: A. flavus strain 70 (AF-70) expressing green-fluorescent protein (GFP) 
was used to quantify fungal spread and mycotoxin production. Fungal infection 
and toxin levels, including aflatoxins (AFB1, AFB2), cyclopiazonic acid (CPA), and 
α-aflatrem, were monitored at 2-day intervals over a 10-day period post inoculation.

Results: Although all seeds were infected by A. flavus, corn produced 
significantly higher levels of AFB1 and AFB2 compared to pulses. However, pulses 
accumulated relatively higher levels of CPA and α-aflatrem.

Conclusion: While pulses may be less susceptible to aflatoxin contamination 
than corn, the elevated concentrations of CPA and α-aflatrem underscore 
the need for further toxicological evaluation and mechanistic studies. Future 
research should explore the underlying resistance mechanisms from field to 
storage to better ensure crop safety.
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1 Introduction

Increasing human population and depletion of natural resources in recent decades have 
become critical issues that need to be addressed globally (Quintieri et al., 2023). The global 
population is projected to reach 9.7 billion by 2050, up from the current 8.0 billion, thus 
adding approximately 1.7 billion people over the next 26 years (United Nations Department 
of Economic and Social Affairs, 2022). Consequently, the demand for healthy, nutritious, and 
sustainable food and feed products is paramount. Current food and feed systems, particularly 
livestock-based meat production, would benefit from incorporating plant-rich protein sources 
like pulses (i.e., beans, chickpeas, lentils, etc.). This would create a synergistic balance to feed 
the growing population and reduce environmental impacts through decreased water and land 
usage (Heinke et al., 2020; Godfray et al., 2018). The plant-based protein industry is rapidly 
expanding and is projected to become a $27 billion industry by 2030 (Singh et al., 2024). 
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Including pulses would aid in diversifying cropping systems, providing 
a sustainable nutrition source, and developing a resilient food and feed 
supply chain for the growing population (Singh et al., 2024).

Chickpeas (Cicer arietinum L.), lentils (Lens culinaris Medik), and 
peas (Pisum sativum L.) are cultivated pulse crops grown worldwide, 
belonging to the Fabaceae (Leguminosae) family (Henchion et al., 2017; 
Quintieri et al., 2023). Currently, these pulses offer a good balance 
between sustainability and nutritional value, providing high dietary 
protein, fiber, and energy content (Acuña-Gutiérrez et al., 2022). The 
Dietary Guidelines Advisory Committee recommends a plant-based 
diet to reduce cholesterol, improve muscle mass, maintain bone health, 
address obesity, and meet protein requirements more effectively than 
animal-based proteins (Gavrilova et al., 2020; George et al., 2020; Singh 
et al., 2024). Protein concentrations for chickpeas, lentils, and peas 
range from 12.6–30.6%, 20.6–31.4%, and 21.2–32.9%, respectively 
(Dahl et al., 2012; Wood and Grusak, 2007; Yadav et al., 2007). In 
comparison, the average protein content of animal-based proteins, 
excluding fish and insects, is 22.0% (Day et al., 2022). Introducing 
pulses into diets may prevent various diseases, enhance global food and 
feed security, and provide high protein content alongside traditional 
animal-meat products or in formulations for meat alternatives (Hertzler 
et al., 2020; Massawe et al., 2016; Quintieri et al., 2023). Despite being 
labeled as “underutilized” legume crops, pulses are widely used in many 
countries. These plant-rich protein sources need to be evaluated for 
food and feed safety and quality due to their inclusion in human and 
livestock diets. Pulses are excellent candidates for developing novel food 
and feed products, including meat-based alternatives (Acuña-Gutiérrez 
et al., 2022; Gräfenhahn and Beyrer, 2024; Rebello et al., 2014).

Contamination of grains and pulses by fungi, and subsequently 
mycotoxins, can occur at any stage of the supply chain: in the field, at 
harvest, during transportation, and storage (Begum and Samajpati, 
2000). Aflatoxins, secondary metabolites produced by Aspergillus spp., 
contaminate a variety of food and feed crops globally, including well-
studied crops such as corn, cottonseeds, peanuts, and tree nuts pre- 
and post-harvest (CAST, 2003). Aflatoxin B1 (AFB1), a potent 
mutagenic and carcinogenic mycotoxin produced by Aspergillus flavus 
and A. parasiticus, has been extensively studied in various food and 
feed sources (Kumar et al., 2021). However, there is limited literature 
on the susceptibility of pulses to Aspergillus spp. and aflatoxin 
production (including strains B1 and B2) (Acuña-Gutiérrez et  al., 
2022). Currently, there are no specific regulatory limits for aflatoxin in 
pulses; however, in the US, corn has a 20-ppb (parts per billion) limit 
for general commerce (FDA, 2025). Chickpeas have been documented 
as susceptible to fungal pathogens, including Aspergillus and Fusarium 
species, primarily due to poor field conditions, mechanical damage 
during harvest, inadequate transportation, processing issues, and poor 
storage conditions (Donato et al., 2022; Ramirez et al., 2018). While 
aflatoxin has been reported in lentils in Iran and Egypt, the prevalence 
was low, with mean levels below the limit of detection (LOD) (Ahmadi 
et al., 2022; El-Maraghy, 1988). Conversely, in Bangladesh, aflatoxin 
levels in lentils exceeded the U.S. maximum regulatory limit of 20 ppb 
for human food consumption (Roy et al., 2013). Peas (Pisum sativum 

L.) have shown high resistance to aflatoxin formation, with studies 
indicating no detectable toxin from pulses infected with A. flavus  
(El-Kady et al., 1996).

With limited data on the accumulation of aflatoxin in pulses such as 
chickpeas, lentils, and peas, more studies are needed to understand the 
effects of infection, given the increasing demand for protein-rich plant 
sources for dietary consumption and the need to address public health 
concerns and sustainability of food supply systems. This study utilized 
Aspergillus flavus AF-70, a toxin-producing strain expressing a green 
fluorescent protein (GFP), to assess fungal growth and the accumulation 
rates of AFB1, AFB2, cyclopiazonic acid (CPA), and α-aflatrem in 
chickpeas, lentils, peas, and corn over a 10-day period with 2-day interval 
sampling post-inoculation. The objective was to understand fungal 
infection patterns, colonization, growth, and aflatoxin accumulation in 
protein-rich pulses using a kernel screening assay (KSA). The hypothesis 
was that under identical infection pressure by Aspergillus flavus, protein-
rich pulse crops, specifically chickpeas, lentils, and peas, accumulate lower 
levels of aflatoxins compared to corn.

2 Materials and methods

2.1 Fungal strains and growth conditions

Aflatoxigenic A. flavus 70-GFP (AF-70 GFP) was grown in the 
dark at 31°C on a 2X V8 medium (10% V8 juice, 2% agar, pH 5.2) 
(Rajasekaran et  al., 2008). Spores from 7-d old cultures were 
suspended in 0.02% Triton X-100, and the conidial concentration was 
determined with a hemocytometer and adjusted to 3.0 × 106 conidia/
mL. In AF-70 GFP, GFP is produced under control of the constitutively 
expressed A. nidulans glyceraldehyde phosphate dehydrogenase 
(gpdA) gene promoter inserted into niaD (Rajasekaran et al., 2008).

2.2 Plant-rich protein sources

Chickpeas [Cicer arietinum L. cv. CDC Frontier], lentils [Lens 
culinaris Medik cv. Eston], and peas [Pisum sativum L. cv. LeRoy] 
were provided by USDA-ARS laboratories (Dr. Clarice J. Coyne and 
Dr. Marilyn Warburton, Western Regional Plant Introduction Station, 
Washington State University, Pullman, WA). The seed source location 
and year for chickpeas, lentils, and peas were Central Ferry, WA, and 
Richland, MT, in years 2022, 2019, and 2023, respectively. These 
varieties were selected due to germplasm resources provided by 
USDA-ARS. A non-GMO, yellow, dent-corn hybrid [Zea mays], H97C 
(Hybrid85, Omaha, NE, United  States) was purchased from corn 
produced for growers seed in 2022. Corn was included as a positive 
control in this study. All botanical terms in this manuscript are 
according to Kiesselbach (1999) and Allaire and Brady (2008).

2.3 Kernel screening assay

Undamaged lentil, corn, pea, and chickpea seeds were surface 
sterilized with 70% ethanol and subjected to a KSA (Brown et al., 
1993; Brown et  al., 1995; Rajasekaran et  al., 2013). The same 
procedures developed for corn were used for pulses to determine 
A. flavus infection, as there was a lack of published methods 

Abbreviations: AFB1, Aflatoxin B1; AFB2, Aflatoxin B2; CPA, Cyclopiazonic acid; 

AF-70, A. flavus strain 70; GFP, Green fluorescent protein; LOD, Limit of detection; 

KSA, Kernel screening assay; FAO, Food and Agriculture Organization of the United 

Nations; FDA, Food and Drug Administration.
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specifically for pulses. Surface sterilized seeds were briefly immersed 
in a 3.0 × 106 conidial inoculum and placed in plastic vial caps (20 mm 
diameter, 6 mm height). The same procedure was applied for day 0 
seeds but were not treated with A. flavus suspension. Four caps were 
placed in an open-tissue culture dish (60 × 15 mm; Becton Dickinson, 
CO., Oxnard, CA, United States), representing one experimental unit. 
Culture dishes were placed side by side in a clear tray 
(243 × 243 × 18 mm, Nunc bioassay dish; Thomas Scientific, 
Swedesboro, NJ, USA) lined with 3 mm chromatography paper 
(Whatman International, Maidstone, UK) (Figure  1). The lid was 
placed on top of the tray but was not sealed. High humidity (>95% 
RH) was maintained by adding 25 mL of sterile deionized water to the 
trays. Seeds were incubated in the dark at 31°C and sampled at day 0, 
2, 4, 6, 8, and 10 after inoculation with A. flavus.

2.4 GFP quantitation

Chickpeas, lentils, peas, and corn were ground and homogenized 
using a SPEX SamplePrep Geno/Grinder 2010 (1740 rpm, 1.5 min; 
Cole-Parmer, Vernon Hills, IL, United States), with 3/8″ stainless steel 
balls. The samples were stored at −80°C until analysis, where seeds 
were diluted in 1.0 mL Sorenson’s phosphate buffer (pH 7.0) and 
centrifuged at 10,000  rpm for 15 min. Supernatants were then 
analyzed for GFP using a BioTek Synergy Neo2 (Agilent, Santa Clara, 
CA) with excitation at 485 nm and emission at 535 nm. Relative 
fluorescence units were used for statistical analyses and normalized as 
% values relative to the highest data point.

2.5 Aflatoxin, cyclopiazonic acid, and 
α-alfatrem extraction and analysis

Following the growth of fungal strains on seeds, AFB1, AFB2, CPA, 
and α-aflatrem were extracted for analysis. The materials were ground 
in 15 mL polycarbonate vials (OPS Diagnostics, Lebanon, NJ, 
United  States) with a SPEX SamplePrep Geno/Grinder 2010 
(1,740 rpm, 1.5 min; Cole-Parmer, Vernon Hills, IL, United States), 
and 25 mg of sample material was weighed with 500 mL of 100% 

methanol (MeOH). Samples were shaken overnight on a shaker table 
at room temperature (22°C) and 210 RPM. The extracts were filtered 
through cotton plugs, and the filtrates were concentrated using a 
Savant speedvac (Thermo Scientific). Each extract was redissolved in 
methanol (1 mL), particulates were removed via centrifuge, and the 
supernatant was analyzed using a Waters (Milford, MA, United States) 
Acquity Ultra Performance Liquid Chromatography (UPLC) system 
(40% methanol in water, BEH C18 1.7 μm, 2.1 mm × 50 mm column) 
using fluorescence detection (excitation: λ = 365 nm, emission: 
λ = 440 nm). Samples were diluted to 10-fold if the aflatoxin signal 
saturated the detector. An analytical standard (Sigma-Aldrich) was 
used to identify and quantify AFB1 and AFB2. Aflatoxin content was 
expressed in ng AFB1/g and AFB2/g seed sample (ppb).

To assess the presence of CPA and α-aflatrem, the re-dissolved, 
centrifuged extracts were diluted 10-fold and analyzed on a Waters 
Acquity UPLC and Xevo G2 XS QTOF mass spectrometer (MS) as 
previously reported (Moore et al., 2022), briefly: the MS was equipped 
with a Z-spray ionization source running in ESI + mode using Waters 
MassLynx 4.2 software Separation was achieved with a gradient 
solvent system (A: 0.1% formic acid in water; B: 0.1% formic acid in 
acetonitrile) on a Waters BEH C18 1.7 μm, 2.1 × 50 mm column: 5% 
B (0–1.25 min.), to 25% B (1.25–1.5 min.), to 100% B (1.5–5.0 min.), 
then 100% B (5.0–7.5 min.), followed by column equilibration at 5% 
B (7.6–10.1 min.). Data were analyzed on Waters UNIFI 1.9.4 software 
using the “Quantify Assay Tof 2D” analysis method with lock mass 
corrected by UNIFI. CPA and α-aflatrem was purchased from Sigma-
Aldrich (Sigma-Aldrich, St. Louis, MO, United States) and used for 
quantification. CPA and α-aflatrem content were expressed in ng 
CPA/g per sample (ppb) and ng α-aflatrem/g per sample (ppb).

2.6 Microscopy

At each sampling time frame, eight seeds were randomly chosen 
and photographed using a Nikon-SMZ25 research stereomicroscope 
(Nikon Instruments, Melville, NY, United States) equipped with an 
Andor Zyla 4.2 sCMOS Digital Camera (Nikon Instruments, Melville, 
NY, United States) including fluorescence and bright field images of 
AF-70 GFP. The seeds were then divided evenly for use in aflatoxin 

FIGURE 1

A typical kernel screening assay (KSA) set up. Each culture dish contains 4 seeds, constituting a replication, with 9 total replicates for analysis and 2 
replicates for imaging. Seeds showcase Aspergillus flavus infection on day 4 of (A) peas, (B) lentils, (C) corn, and (D) chickpeas.
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analysis and GFP quantitation. A minimum of 9 replicates (4 seeds 
each) were used for each day of sampling. The seed exteriors were 
cleaned with 9 mL of deionized water and vortexed for 15 s to remove 
spores on the seed pericarps for counting and stored at 4.0°C. All 
seeds were photographed both externally and internally with a 
horizontal cross-section following methods published by Rajasekaran 
et al. (2013).

2.7 Spore counts on seed coats

The seeds were placed in 15 mL centrifuge tubes with a plug seal 
cap (Corning Inc., Corning, NY, United States) with 9 mL of deionized 
water, vortexed for 15 s, and removed to collect external mycelia for 
spore counts. The samples were stored at 4.44°C until analysis, where 
samples were vortexed for 5 s, 10 μL of liquid was pipetted into 
disposable hemocytometer slides containing 4 replicates per sample 
and analyzed using an Olympus Cell Counter model R1 (Olympus 
Life Sciences, Waltham, MA, United States). The seeds were externally 
cleaned with Kimtech Wipes (Kimtech Science, Vaughan, Ontario), 
deionized water, and placed in 15 mL polycarbonate vials (OPS 
Diagnostics, Lebanon, NJ, United  States) stored at −80°C until 
further analysis.

2.8 Statistical analysis

Average AF-70 GFP fluorescence, AFB1 and AFB2 values, external 
spore counts, CPA, and α-aflatrem from a minimum of nine replicates 
per days 0, 2, 4, 6, 8, and 10 were subjected to two-way ANOVA with 

Geisser–Greenhouse correction, with Dunnett’s multiple comparison 
to test for simple effects within rows in GraphPad Prism (version 
10.2.0) software (GraphPad Software Inc., La Jolla, CA, USA). The 
fixed effects were time and plant type, and random-effects were 
aflatoxin levels. Corn kernels were used as control for comparison of 
infection and contamination versus pulses. To investigate the 
relationship between aflatoxin and AF-70 GFP expression, a 
correlation analysis was performed using Pearson correlation 
coefficients. Statistical significance for treatment effects were declared 
at p ≤ 0.05. Trends are discussed at p ≤ 0.10. All data is presented as 
means ± the standard error of the mean (SEM) unless stated otherwise.

3 Results

3.1 Fungal entry, infection, and 
colonization in seeds

Undamaged seeds from four protein-rich plant sources (chickpeas, 
lentils, peas, and corn) were inoculated with AF-70 GFP conidial 
suspension, and the fungus was allowed to colonize the seeds under 
high humidity conditions (Figure 1). Infected seeds were observed 
under a stereo light microscope and photographed at regular intervals 
for each day (0, 2, 4, 6, 8, and 10), as shown in Figure 2. Mycelia were 
observed on the seed coats 2 days after inoculation in all seeds. The 
first visible infection for corn kernels was at the pedicel, whereas 
pulses had visible infection around the entire seed coat on day 2 
(Figure 2). By day 4, lentils exhibited visible swelling and on day 6, 
peas and chickpeas swelled due to internal fungal growth (Figure 2). 
Sclerotia development was noted only on lentils by day 4 and was 

FIGURE 2

Light micrographs of (A) chickpeas, (B) corn, (C) peas, and (D) lentils over time (days) after inoculation with AF 70-GFP. Visual photographs are taken on 
a 2-day interval from day 0 to day 10. The arrows represent sclerotia formation across seeds.
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present on all seeds and kernels by day 6. On day 10, the entire 
endosperm was colonized to the fungus across all seeds. Future studies 
will separate out the endosperm and embryo to determine where 
fungal growth is localized.

Fluorescence due to AF-70 GFP growth inside the seeds of 
chickpeas, peas, lentils, and corn was detected in longitudinal sections 
(Figure  3). A typical progression of AF-70 GFP fluorescence was 
observed in corn kernels, where entry was first observed by near the 
corn pedicel (base), which spread throughout the endosperm and 
embryo by day 10. Fluorescence in chickpea micropyles was also 
observed. Production of sclerotia was observed inside all seeds, 
including corn kernels, by day 8; however, the sclerotia did not 
fluoresce. The path of fungal spread was more evident in corn than the 
other pulses (Figure 3).

3.2 External Aspergillus flavus spore counts

Spores were collected from seed coats of chickpeas, lentils, peas, 
and corn for the respective day-intervals of 2, 4, 6, 8, and 10 (Figure 4); 
day 0 was not measured due to surface seed sterilization. Chickpeas 
resulted in the greatest conidial production by A. flavus spores 
(3.76 × 106 ± 1.38 × 105 conidia mL−1), whereas lentils supported the 
least conidial production (1.60 × 106 ± 3.04 × 105 conidia mL−1) 
(p = 0.24; Supplementary Table 1). Aspergillus flavus spore production 
(conidia mL−1) increased each day on chickpeas, corn, and peas with 
maximum spore production the final day (10); however, maximum 
spore production on lentils occurred on day 6 (2.28 × 106 ± 2.78 × 105 
conidia mL−1) followed by a decrease in conidia, which accompanied 
a noticeable reduction in lentil size on day 8 and 10. Differences of 

pulse seeds compared to corn over day intervals for spore production 
(conidia mL−1) was significant for chickpeas on day 8 and 10 (p ≤ 0.01; 
Supplementary Table 1).

3.3 Aflatoxin content and GFP fluorescence

The amount of A. flavus fungal colonization by chickpeas, lentils, 
peas, and corn, as estimated by GFP fluorescence, was measured at the 
day intervals 0, 2, 4, 6, 8, and 10 after inoculation (Figure 5). Corn had 
the highest average GFP relative fluorescence and fungal colonization 
(30.93 ± 12.02%), with a maximum value of 74.04 ± 12.02% compared 
to the pulses (p = 0.63). Peas had the lowest average relative 
fluorescence (25.05 ± 9.26%) compared to corn (p = 0.35). Lentils had 
an average GFP relative fluorescence of 30.43 ± 8.36%, with a 
maximum value of 49.06 ± 8.36%; whereas chickpeas had an average 
GFP relative fluorescence of 29.18 ± 11.18%, with a maximum value 
of 63.92 ± 11.18%. Maximum GFP fluorescence was recorded for 
chickpeas, corn, and peas on day 10; however, lentils had the highest 
maximum value on day 8 (Figure 5; Supplementary Table 1).

AFB1 and AFB2 production in the four plant-rich protein sources 
was determined by UPLC (Figure 6). Corn was contaminated by the 
most AFB1 (15658.0 ± 7975.0 ng/g−1 or ppb), with a maximum value 
of 44428.0 ng/g−1 (Figure 6; Supplementary Table 1). Lentils were the 
least contaminated with average AFB1 (1325.0 ± 416.4 ng/g−1), with a 
maximum value of 2390.0 ng/g−1. On day 8 and 10, all pulses had 
statistically significant differences compared to corn for AFB1 and 
AFB2 (p < 0.001; Supplementary Table 1). Similarly, for AFB2, corn 
had the highest quantity (907.6 ± 449.6 ng/g−1), with a maximum 
value of 2540.0 ng/g−1, and lentils had the lowest average AFB2 

FIGURE 3

AF 70-GFP fluorescence in longitudinal sections of (A) chickpeas, (B) corn, (C) peas, and (D) lentils over time (in days) after inoculation. Visual 
photographs are taken on a 2-day interval from day 0 to day 10.
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(63.6 ± 19.6 ng/g−1), with a maximum value of 103.7 ng/g−1. 
Differences of pulses compared to corn over day intervals for AFB1 
and AFB2 is in Supplementary Table 1.

A correlation analysis between relative fluorescence and AFB1 
production by AF-70 GFP was compared to determine the connection 
between fungal growth and aflatoxin production (Figure 7). There was 
a very strong positive correlation (r = 0.92) between relative 
fluorescence and AFB1 in corn. There was a strong positive correlation 
(r = 0.71) between relative fluorescence and AFB1 in peas. Additionally, 
there was a moderate positive correlation (r = 0.55 and r = 0.57) 
between relative fluorescence and AFB1 in chickpeas and lentils, 
respectively. Aspergillus flavus in corn (measured by AF-70 GFP) is a 
good indication of aflatoxin contamination, whereas infection of peas, 
and to a lesser extent chickpea and lentils infection, is not always a 
good indication of aflatoxin contamination.

Cyclopiazonic acid (CPA), a phytotoxin with potential virulence 
factor, was measured across the four plant-rich protein sources 
determined by UPLC–MS. CPA production in corn had an average of 
851.0 ± 621.30 ng/g−1. Chickpeas had the highest overall average at 
5548.0 ± 3661.0 ng/g−1. Lentils averaged 3208.0 ± 1492.0 ng/g−1 for 
CPA, whereas, peas averaged 2768.0 ± 2074.0 ng/g−1, respectively. 
Additionally, α-aflatrem, a tremorgenic mycotoxin produced from 
A. flavus, was measured across the four plant-rich protein sources 
determined by UPLC–MS (Figure 8). Corn had the lowest average at 
1.4 ± 0.9 ng/g−1 of α-aflatrem production. Lentils had the highest 
average with 2381.0 ± 1420.0 ng/g−1 of α-aflatrem production. 
Similarly, chickpeas averaged 1620.0 ± 1487.0 ng/g−1 whereas peas 
averaged 1926.0 ± 18550.0 ng/g−1 across all day intervals. Differences 
of pulses compared to corn over day intervals for α-aflatrem is in 
Supplementary Table 1.

4 Discussion

Pulses serve as a protein alternative or compliment to animal-
based products (Henchion et al., 2017; Kunz et al., 2020; Quintieri 
et al., 2023). Increasingly, global citizens are incorporating pulses into 
their diet, driven by health interests and environmental sustainability 
awareness (Singh et al., 2024). The Food and Agriculture Organization 
of the United Nations (FAO) announced in 2016 it was the “Year of 
Pulses” to highlight their global importance, with consumption steadily 
increasing in recent decades, projecting to reach a $27 billion industry 
by 2030 (Singh et al., 2024). The benefits of using pulses in human diets 
are multifaceted, including improvement of cardiovascular health, 
enhanced metabolism, obesity prevention, and overall gut microbiome 
improvement due to their rich nutrient profile, including proteins, 
fiber, vitamin, and minerals (Curran, 2012; Mudryj et  al., 2014; 
Patterson et al., 2009; Singh et al., 2024). Additionally, pulses are crucial 
for crop diversification, contributing to a resilient food chain. Ensuring 
the safety of pulses in food and feed is essential due to their global 
health relevance (Kunz et al., 2020). Therefore, in this study, growth of 
A. flavus, and production of aflatoxins, CPA, and α-aflatrem were 
examined using a KSA procedure over a 10-day timeframe to 
determine infection patterns, fungal growth, and colonization of 
undamaged pulse seeds (chickpeas, lentils, and peas) under a 
controlled environment, with cereal grain corn as a positive control.

Using an A. flavus strain expressing GFP genes to track aflatoxin 
contamination in pulses is a new method that has previously been 
applied to monitor fungal spread and aflatoxin levels in corn and 
cottonseed (Rajasekaran et  al., 2008; Rajasekaran et  al., 2013; 

FIGURE 4

Aspergillus flavus spores (conidia ml−1) on seed coats of chickpeas, 
corn, lentils, and peas over a 10-day interval period.

FIGURE 5

Production of AF 70-GFP on 2-day intervals after inoculation (as 
indicated by relative fluorescence %) on chickpeas, corn, lentils, and 
peas.

FIGURE 6

Growth of AFB1 and AFB2 (ng/g−1) on 2-day intervals after inoculation 
of chickpeas, corn, lentils, and peas.
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Rajasekaran et al., 2017). This method is easy, sensitive, and rapid, 
allowing the evaluation of resistance or susceptibility of undamaged 
seeds based on GFP fluorescence. In corn, a strong correlation exists 
between GFP fluorescence and aflatoxin levels (Rajasekaran et al., 2013; 
Figure 6), with our study showing an exceptionally high correlation 
(r = 0.92). However, in pulses such as chickpeas, lentils, and peas, the 
direct relationship between A. flavus infection (Figure 7) and aflatoxin 
accumulation (Figure 6) was less robust, with correlations of r = 0.71 in 
peas, and lower correlations of r = 0.55 and 0.57  in chickpeas and 
lentils, respectively. This discrepancy is possibly due to the presence of 
antifungal factors in pulses, for example, interference from seed coat 
compounds like flavonoids, polyphenols, or differences in lipid, 
lipoxygenase, and oxylipin content (Doehlert et al., 1993; Burow et al., 
1997; Xue et  al., 2003). Minimal AFB1 and AFB2 production was 
observed in pulses compared to corn under identical conditions 
(Acuña-Gutiérrez et  al., 2022; Davidson et  al., 2012; Figures 4, 5). 
Moreover, in our study, the degradation of lentils, peas, and chickpeas 
during the cleaning process on days 8 and 10, likely due to complete 
internal tissue rot, may partly explain the reduced aflatoxin production 
despite high external spore counts and GFP fluorescence. Finally, it is 
important to note that GFP fluorescence primarily emanates from 
young A. flavus mycelia and spore structures, while older fungal 
structures such as sclerotia and spores exhibit diminished fluorescence. 
This characteristic, along with inherent differences in seed coat 

FIGURE 7

Correlation between relative fluorescence and AFB1 produced from AF 70-GFP for chickpeas, corn, lentils, and peas.

FIGURE 8

Production of CPA (ng/g−1) and α-aflatrem (ng/g−1) on 2-day intervals 
after inoculation on chickpeas, corn, lentils, and peas.
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composition among pulses, contributes to the limitations of using GFP 
as a universal marker for fungal colonization in these diverse seed types.

Pulses have been shown to resist aflatoxin accumulation despite high 
fungal infection rates with Aspergillus spp. (Acuña-Gutiérrez et al., 2022; 
Figures 5–7). Specific characteristics of pulses, including thick and hard 
seed coats, antifungal proteins, high phenolic compounds, and oxylipins, 
contribute to their ability to regulate aflatoxin accumulation by protecting 
against phytopathogenic fungal attacks and reducing spore germination 
and/or mycelial growth (Acuña-Gutiérrez et al., 2022; Kralova et al., 
2006; Makun et al., 2010; Martínez et al., 2017; Zabka and Pavela, 2013). 
The antifungal protein pisumin, identified in Pisum sativum varieties, has 
demonstrated efficacy against fungal pathogens such as Alternaria, 
potentially explaining the absence of its toxins in pea samples (Kralova 
et al., 2006). While direct research on P. sativum and A. flavus involving 
pisumin remains limited, other antifungal proteins, such as defensins, 
serve critical roles in plant immunity by disrupting fungal cell 
membranes and reducing infection severity. Seed coat structure further 
supports aflatoxin suppression, functioning as both a physical and 
biochemical barrier against fungal invasion. Thick seed coats, particularly 
in lentils, may contribute to reduced conidial production 
(1.60 × 106 ± 3.04 × 105 conidia mL−1), compared to chickpeas, which 
supported the highest levels of A. flavus conidial production 
(3.76 × 106 ± 1.38 × 105 conidia mL−1) (Supplementary Table 1). The 
delayed peak of conidia production in lentils (day 6) followed by a 
reduction on days 8 and 10 suggests a potential structural or biochemical 
factor influencing fungal development.

Phenolic compounds, secondary metabolites involved in plant 
defense, play a significant role in reducing aflatoxin accumulation. 
Flavonoids, tannins, and phenolic acids have been reported to exhibit 
antimycotoxigenic properties (Ahmed et al., 2022; Castano-Duque et al., 
2022; Loi et al., 2020). While in vitro studies have demonstrated the 
effectiveness of phenolic extracts in reducing mycotoxin content across 
cereals, fruits, algae, and other plant products (Hua et al., 1999), research 
specifically on pulses remains limited. In this study, lentils, which 
exhibited lower A. flavus conidial production and fungal colonization 
(relative GFP fluorescence of 30.43 ± 8.36%), also had the lowest levels 
of aflatoxin contamination (1325.0 ± 416.4 ng/g−1 AFB1), highlighting 
the potential contribution of phenolic and structural defense 
mechanisms (Figure 6). Additionally, lipid-derived oxylipins, including 
oleic and linoleic acids, are key regulators of aflatoxin biosynthesis 
(Doehlert et al., 1993). The differential response of pulse crops to fungal 
colonization and aflatoxin accumulation suggests that variability in 
oxylipin content may be  an underlying factor. For instance, lentils 
exhibited peak fungal colonization on day 8, followed by a reduction in 
conidia and seed shrinkage, which coincided with significantly lower 
aflatoxin levels compared to corn (p < 0.001; Supplementary Table 1). 
Further investigation into oxylipin profiles among protein-rich pulses is 
warranted to assess their role in aflatoxin suppression (Acuña-Gutiérrez 
et al., 2022; Cardador-Martinez et al., 2002; Singh, 2017).

AFB1 and AFB2 levels were inversely related to the production of 
CPA and α-aflatrem, other toxic A. flavus secondary metabolites, with 
higher levels observed in pulses compared to corn (Figure 8). CPA, 
produced by certain species of Aspergillus and Penicillium fungi, is 
found in various food sources including cereals, legumes, milk, meat, 
and cheese (Burdock and Flamm, 2000). The CPA levels measured in 
this study, particularly in chickpeas (5548.0 ± 3661.0 ng/g−1) and lentils 
(3208.0 ± 1492.0 ng/g−1), are significantly higher compared to corn 

(851.0 ± 621.30 ng/g−1) and align with previous studies reporting 
increased CPA production in legume-rich environments (Chang et al., 
2009). CPA is a tremorgenic mycotoxin that causes symptoms such as 
weight loss, fever, diarrhea, dehydration, ataxia, immobility, and muscle 
spasms, primarily affecting the gastrointestinal tract, liver, spleen, and 
muscle tissues. Although CPA mycotoxicosis is considered less harmful 
compared to aflatoxin toxicity, its relatively high presence in pulses 
raises concerns regarding its potential health implications. Despite its 
toxicological significance, the FDA has not established regulatory 
guidelines for CPA, highlighting a gap in food safety assessments. 
However, the tolerable daily intake for CPA of 0.1 μg/kg body weight 
has been proposed by extrapolating toxicity data from test animals to 
humans (De Waal, 2002; Ostry et  al., 2018). α-Aflatrem, another 
tremorgenic mycotoxin produced by A. flavus (Gallagher and Wilson, 
1978), is a potent neurotoxin known to cause tremors and neurological 
disorders, such as mental confusion, seizures, and hyperexcitability, in 
rats and cattle (Valdes et al., 1985). Similarly, CPA in this study, pulses 
exhibited higher α-aflatrem concentrations compared to corn, with 
lentils having the highest levels (2381.0 ± 1420.0 ng/g−1) followed by 
peas (1926.0 ± 1855.0 ng/g−1) and chickpeas (1620.0 ± 1487.0 ng/g−1), 
while corn contained the lowest levels (1.4 ± 0.9 ng/g−1). α-Aflatrem is 
part of a diverse class of indole diterpene metabolites produced by 
A. flavus that concentrate in hardened fungal mycelia (i.e., sclerotia) 
(Gloer, 1995). These compounds function as antiinsectans, protecting 
sclerotia from predation. The production of α-aflatrem is regulated by 
the veA gene, which is also involved in the biosynthesis of aflatoxin and 
CPA (Duran et  al., 2009). α-Aflatrem remains largely unregulated 
despite its neurotoxic effects. The observed inverse relationship 
between aflatoxin production and CPA/α-aflatrem levels suggests a 
potential shift in secondary metabolite biosynthesis regulation within 
A. flavus. This phenomenon may be linked to metabolic competition 
for biosynthetic precursors and regulatory pathways influenced by 
global transcription factors such as veA and laeA (Calvo et al., 2004; 
Cary et al., 2015). These genes are known to coordinate secondary 
metabolite production and may play a role in prioritizing the synthesis 
of CPA and α-aflatrem in certain environmental conditions. 
Understanding this regulatory interplay could provide insight into 
fungal secondary metabolism and help evaluate whether pulses, despite 
their lower aflatoxin contamination, may still pose significant food 
safety risks due to elevated CPA and α-aflatrem levels.

Addressing the issue of aflatoxin in pulses requires a thorough 
understanding of their growth conditions, storage stability, and post-
harvest handling techniques to implement preventative measures 
globally. Evaluating aflatoxin infection in chickpeas, lentils, peas, and 
potentially other protein-rich pulses like beans is essential for making 
informed decisions regarding health and safety risks (Singh et al., 
2024). Understanding the growth of aflatoxins in pulses is crucial for 
developing effective risk analysis techniques that can be translated into 
political decisions and regulatory compliance worldwide. Employing 
good agricultural practices through a holistic approach with regular 
monitoring can significantly reduce the risk of aflatoxin in pulses, 
through improved analysis and measurement (Nyangi and Runyogote, 
2024). Awareness of these factors across the entire supply chain is vital 
for maintaining food and feed safety in the coming years, given the 
projected population increase and the need for sustainable food 
sources to reduce the carbon footprint (Gräfenhahn and Beyrer, 
2024). Future research will focus on evaluating the impact of A. flavus 

https://doi.org/10.3389/fmicb.2025.1587035
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Branstad-Spates et al. 10.3389/fmicb.2025.1587035

Frontiers in Microbiology 09 frontiersin.org

growth in both fresh and powdered plant products, as well as assessing 
the stability of proteins during growth and storage. Moreover, a 
standardized methodology for A. flavus growth in pulses will 
be developed to enhance consistency in research and safety protocols. 
By adopting a comprehensive strategy that includes good agricultural 
practices, continuous monitoring, and effective risk management, the 
risk of aflatoxin contamination in pulses can be  greatly reduced, 
ensuring food safety and security on a global scale.

5 Conclusion

Pulses, including chickpeas [Cicer arietinum L.], lentils [Lens 
culinaris Medik], and peas [Pisum sativum L.], are highly nutritious 
and protein-dense food products that are anticipated to gain 
popularity in the coming decades due to global demand. Despite 
increased usage in human diets, limited data has been published 
regarding A. flavus and aflatoxin infection in these pulses from a food 
and feed safety standpoint. This study presents a novel methodology 
to determine aflatoxin accumulation using a GFP-expressing A. flavus 
(AF-70 GFP) strain to assess fungal growth, and consequently 
aflatoxin infection rates, CPA, and α-aflatrem in chickpeas, lentils, 
and peas. Pulses did not exhibit higher amounts of aflatoxins 
compared to corn and other grains; however, CPA and α-aflatrem 
production was higher in pulses. Considering the health relevance of 
pulses for human and livestock diets in present day and in the future 
for sustainable aspects, more attention should be  drawn to 
understanding growth conditions of aflatoxin in pulses in field, 
including growing conditions, to storage. Similarly, the mechanism 
of aflatoxin accumulation and resistance to fungal attacks, needs to 
be further explored. Aflatoxin contamination of pulses in planta and 
in stored, powdered commercial products will be  examined in a 
subsequent study.
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